000845344 001__ 845344
000845344 005__ 20241127124645.0
000845344 0247_ $$2doi$$a10.1016/j.ijhydene.2018.08.125
000845344 0247_ $$2ISSN$$a0360-3199
000845344 0247_ $$2ISSN$$a1879-3487
000845344 0247_ $$2WOS$$aWOS:000447482900047
000845344 037__ $$aFZJ-2018-02618
000845344 082__ $$a660
000845344 1001_ $$0P:(DE-Juel1)129898$$aPasel, Joachim$$b0$$eCorresponding author
000845344 245__ $$aWater-gas Shift Reactor for Fuel Cell Systems: Stable Operation for 5000 Hours
000845344 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000845344 3367_ $$2DRIVER$$aarticle
000845344 3367_ $$2DataCite$$aOutput Types/Journal article
000845344 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547456795_19393
000845344 3367_ $$2BibTeX$$aARTICLE
000845344 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845344 3367_ $$00$$2EndNote$$aJournal Article
000845344 520__ $$aThe water-gas shift reactor in the fuel processing unit of a fuel cell system has the vital function of reducing the concentration of CO in the reforming reactor's product gas to values of between 1.0 and 1.5 vol% in order to protect the anodic catalyst from becoming irreversibly poisoned. This paper presents Jülich's recent development in this field, specifically the WGS 6 in the 5 kWe class. The WGS 6 is characterized by a fundamentally new concept for arranging high temperature and low temperature shift stages. Both stages are now coaxially integrated in one joint casing to provide higher values for the power density and specific power, whereas in earlier reactor generations, these stages are arranged in two separate, parallel housings. In addition, this contribution presents results from a long-term experiment for 5000 h on stream with WGS 6 and discusses the temporal trends of the product gas composition and reactor temperatures across this timespan. For this experiment, the inlet gas stream is produced by an autothermal reformer, which is installed upstream of the WGS 6.
000845344 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000845344 588__ $$aDataset connected to CrossRef
000845344 7001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b1
000845344 7001_ $$0P:(DE-Juel1)129935$$aTschauder, Andreas$$b2
000845344 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b3
000845344 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000845344 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.08.125$$gVol. 43, no. 41, p. 19222 - 19230$$n41$$p19222 - 19230$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000845344 8564_ $$uhttps://juser.fz-juelich.de/record/845344/files/1-s2.0-S0360319918326983-main.pdf$$yRestricted
000845344 8564_ $$uhttps://juser.fz-juelich.de/record/845344/files/1-s2.0-S0360319918326983-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845344 909CO $$ooai:juser.fz-juelich.de:845344$$pVDB
000845344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b0$$kFZJ
000845344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b1$$kFZJ
000845344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129935$$aForschungszentrum Jülich$$b2$$kFZJ
000845344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b3$$kFZJ
000845344 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000845344 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000845344 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000845344 9141_ $$y2018
000845344 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000845344 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845344 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845344 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845344 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845344 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845344 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845344 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845344 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845344 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845344 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845344 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845344 920__ $$lyes
000845344 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000845344 980__ $$ajournal
000845344 980__ $$aVDB
000845344 980__ $$aI:(DE-Juel1)IEK-3-20101013
000845344 980__ $$aUNRESTRICTED
000845344 981__ $$aI:(DE-Juel1)ICE-2-20101013