000845348 001__ 845348
000845348 005__ 20241127124645.0
000845348 0247_ $$2doi$$a10.1016/j.apenergy.2018.05.116
000845348 0247_ $$2ISSN$$a0306-2619
000845348 0247_ $$2ISSN$$a1872-9118
000845348 0247_ $$2WOS$$aWOS:000441688100013
000845348 037__ $$aFZJ-2018-02622
000845348 082__ $$a620
000845348 1001_ $$0P:(DE-Juel1)207065$$aSamsun, Remzi Can$$b0$$eCorresponding author$$ufzj
000845348 245__ $$aAn Integrated Diesel Fuel Processing System with Thermal Start-up for Fuel Cells
000845348 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000845348 3367_ $$2DRIVER$$aarticle
000845348 3367_ $$2DataCite$$aOutput Types/Journal article
000845348 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528292610_30213
000845348 3367_ $$2BibTeX$$aARTICLE
000845348 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845348 3367_ $$00$$2EndNote$$aJournal Article
000845348 520__ $$aA diesel fuel processor for high temperature polymer electrolyte fuel cells in the 5 kWe power class was developed and tested. Emphasis was placed on a quick and sustainable start-up. Furthermore, operational conditions were identified that would achieve the desired reformate quality for the fuel cell anode. A thermal start-up strategy using a commercial diesel burner was developed and further optimized, resulting in a hybrid strategy with the help of a glow plug. With this strategy, self-sustaining operation of the fuel processor at full load was achieved in 27 min and the resulting reformate was of sufficient quality to operate the fuel cell in 31 min. The experimental plan includes operation periods of between 4 and 24 h with start/stop/regeneration cycles representing the daily operation of an auxiliary power unit at maximum load. With all fuels used, the target carbon monoxide concentration of 1% at the anode inlet (wet reformate) was achieved. Significant deviations from the design parameters were necessary to demonstrate a stable system performance with desulfurized Jet A-1 and to achieve the target carbon monoxide concentration with premium diesel. These results bring diesel fuel processing for auxiliary power units closer to real application, offering experimentally-validated solutions for start-up and stable operation under realistic conditions with different fuels on a systems level.
000845348 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000845348 588__ $$aDataset connected to CrossRef
000845348 7001_ $$0P:(DE-Juel1)129906$$aPrawitz, Matthias$$b1$$ufzj
000845348 7001_ $$0P:(DE-Juel1)129935$$aTschauder, Andreas$$b2$$ufzj
000845348 7001_ $$0P:(DE-Juel1)129898$$aPasel, Joachim$$b3$$ufzj
000845348 7001_ $$0P:(DE-HGF)0$$aPeifer, Peter$$b4
000845348 7001_ $$0P:(DE-Juel1)129902$$aPeters, Ralf$$b5$$ufzj
000845348 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b6$$ufzj
000845348 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.05.116$$gVol. 226, p. 145 - 159$$p145 - 159$$tApplied energy$$v226$$x0306-2619$$y2018
000845348 8564_ $$uhttps://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.pdf$$yRestricted
000845348 8564_ $$uhttps://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.gif?subformat=icon$$xicon$$yRestricted
000845348 8564_ $$uhttps://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845348 8564_ $$uhttps://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845348 8564_ $$uhttps://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845348 8564_ $$uhttps://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845348 909CO $$ooai:juser.fz-juelich.de:845348$$pVDB
000845348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b0$$kFZJ
000845348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129906$$aForschungszentrum Jülich$$b1$$kFZJ
000845348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129935$$aForschungszentrum Jülich$$b2$$kFZJ
000845348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b3$$kFZJ
000845348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b5$$kFZJ
000845348 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b6$$kFZJ
000845348 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b6$$kRWTH
000845348 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000845348 9141_ $$y2018
000845348 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000845348 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845348 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845348 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845348 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845348 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845348 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845348 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845348 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845348 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845348 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845348 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000845348 920__ $$lyes
000845348 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000845348 980__ $$ajournal
000845348 980__ $$aVDB
000845348 980__ $$aI:(DE-Juel1)IEK-3-20101013
000845348 980__ $$aUNRESTRICTED
000845348 981__ $$aI:(DE-Juel1)ICE-2-20101013