001     845348
005     20241127124645.0
024 7 _ |a 10.1016/j.apenergy.2018.05.116
|2 doi
024 7 _ |a 0306-2619
|2 ISSN
024 7 _ |a 1872-9118
|2 ISSN
024 7 _ |a WOS:000441688100013
|2 WOS
037 _ _ |a FZJ-2018-02622
082 _ _ |a 620
100 1 _ |a Samsun, Remzi Can
|0 P:(DE-Juel1)207065
|b 0
|e Corresponding author
|u fzj
245 _ _ |a An Integrated Diesel Fuel Processing System with Thermal Start-up for Fuel Cells
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1528292610_30213
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A diesel fuel processor for high temperature polymer electrolyte fuel cells in the 5 kWe power class was developed and tested. Emphasis was placed on a quick and sustainable start-up. Furthermore, operational conditions were identified that would achieve the desired reformate quality for the fuel cell anode. A thermal start-up strategy using a commercial diesel burner was developed and further optimized, resulting in a hybrid strategy with the help of a glow plug. With this strategy, self-sustaining operation of the fuel processor at full load was achieved in 27 min and the resulting reformate was of sufficient quality to operate the fuel cell in 31 min. The experimental plan includes operation periods of between 4 and 24 h with start/stop/regeneration cycles representing the daily operation of an auxiliary power unit at maximum load. With all fuels used, the target carbon monoxide concentration of 1% at the anode inlet (wet reformate) was achieved. Significant deviations from the design parameters were necessary to demonstrate a stable system performance with desulfurized Jet A-1 and to achieve the target carbon monoxide concentration with premium diesel. These results bring diesel fuel processing for auxiliary power units closer to real application, offering experimentally-validated solutions for start-up and stable operation under realistic conditions with different fuels on a systems level.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Prawitz, Matthias
|0 P:(DE-Juel1)129906
|b 1
|u fzj
700 1 _ |a Tschauder, Andreas
|0 P:(DE-Juel1)129935
|b 2
|u fzj
700 1 _ |a Pasel, Joachim
|0 P:(DE-Juel1)129898
|b 3
|u fzj
700 1 _ |a Peifer, Peter
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Peters, Ralf
|0 P:(DE-Juel1)129902
|b 5
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
|u fzj
773 _ _ |a 10.1016/j.apenergy.2018.05.116
|g Vol. 226, p. 145 - 159
|0 PERI:(DE-600)2000772-3
|p 145 - 159
|t Applied energy
|v 226
|y 2018
|x 0306-2619
856 4 _ |u https://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845348/files/1-s2.0-S0306261918308365-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845348
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129906
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129898
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b APPL ENERG : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21