000845355 001__ 845355
000845355 005__ 20240711101534.0
000845355 0247_ $$2doi$$a10.1016/j.apenergy.2018.07.014
000845355 0247_ $$2WOS$$aWOS:000453489800034
000845355 037__ $$aFZJ-2018-02629
000845355 082__ $$a620
000845355 1001_ $$0P:(DE-HGF)0$$aGrüger, Fabian$$b0$$eCorresponding author
000845355 245__ $$aCarsharing with Fuel Cell Vehicles: Sizing Hydrogen Refueling Stations Based on Refueling Behavior
000845355 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000845355 3367_ $$2DRIVER$$aarticle
000845355 3367_ $$2DataCite$$aOutput Types/Journal article
000845355 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1531988849_32129
000845355 3367_ $$2BibTeX$$aARTICLE
000845355 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845355 3367_ $$00$$2EndNote$$aJournal Article
000845355 520__ $$aFuel cell vehicles and carsharing depict two potential solutions with regard to pollution and noise from traffic in cities. They are most effective when combined, and hydrogen is produced via electrolysis using renewables. One major hurdle in utilizing fuel cell vehicles is to size hydrogen refueling stations (HRS) and hydrogen production via electrolysis properly in order to fulfill the carsharing vehicles’ demand at any given time. This paper presents data on refueling behavior in free-floating carsharing, which have not been available thus far. Refueling profiles of hydrogen carsharing vehicles are modeled based on this data. Furthermore, this analysis presents and applies a methodology for optimizing topology of a wind turbine-connected HRS with onsite electrolysis via an evolutionary algorithm. This optimization is conducted for different carsharing fleet sizes, and HRS profitability is evaluated. The results show that larger fleets are capable of decreasing hydrogen production costs significantly. Moreover, adding capacity to the HRS in order to prepare for hydrogen demand from private vehicles in the future does not significantly increase costs. However, overall costs are still high compared to the current market price in Germany, requiring further cost reductions.
000845355 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000845355 7001_ $$0P:(DE-HGF)0$$aDylewski, Lucy$$b1
000845355 7001_ $$0P:(DE-Juel1)156460$$aRobinius, Martin$$b2$$ufzj
000845355 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3$$ufzj
000845355 773__ $$0PERI:(DE-600)2000772-3$$a10.1016/j.apenergy.2018.07.014$$p1540-1549$$tApplied energy$$v228$$x0306-2619$$y2018
000845355 8564_ $$uhttps://juser.fz-juelich.de/record/845355/files/1-s2.0-S0306261918310419-main.pdf$$yRestricted
000845355 8564_ $$uhttps://juser.fz-juelich.de/record/845355/files/1-s2.0-S0306261918310419-main.gif?subformat=icon$$xicon$$yRestricted
000845355 8564_ $$uhttps://juser.fz-juelich.de/record/845355/files/1-s2.0-S0306261918310419-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845355 8564_ $$uhttps://juser.fz-juelich.de/record/845355/files/1-s2.0-S0306261918310419-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845355 8564_ $$uhttps://juser.fz-juelich.de/record/845355/files/1-s2.0-S0306261918310419-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845355 909CO $$ooai:juser.fz-juelich.de:845355$$pVDB
000845355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156460$$aForschungszentrum Jülich$$b2$$kFZJ
000845355 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000845355 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b3$$kRWTH
000845355 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000845355 9141_ $$y2018
000845355 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL ENERG : 2015
000845355 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845355 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845355 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845355 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845355 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845355 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845355 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845355 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845355 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845355 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845355 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bAPPL ENERG : 2015
000845355 920__ $$lyes
000845355 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000845355 980__ $$ajournal
000845355 980__ $$aVDB
000845355 980__ $$aI:(DE-Juel1)IEK-3-20101013
000845355 980__ $$aUNRESTRICTED
000845355 981__ $$aI:(DE-Juel1)ICE-2-20101013