000845360 001__ 845360
000845360 005__ 20240619091236.0
000845360 0247_ $$2URN$$aurn:nbn:de:0001-2018050917
000845360 0247_ $$2Handle$$a2128/18465
000845360 0247_ $$2ISSN$$a1866-1807
000845360 020__ $$a978-3-95806-319-8
000845360 037__ $$aFZJ-2018-02634
000845360 041__ $$aEnglish
000845360 1001_ $$0P:(DE-Juel1)161308$$aDai, Yang$$b0$$eCorresponding author$$ufzj
000845360 245__ $$aTailoring the Electronic Properties of Epitaxial Oxide Films via Strain for SAW and Neuromorphic Applications$$f- 2018-05-09
000845360 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2018
000845360 300__ $$aVI, 133 S.
000845360 3367_ $$2DataCite$$aOutput Types/Dissertation
000845360 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000845360 3367_ $$2ORCID$$aDISSERTATION
000845360 3367_ $$2BibTeX$$aPHDTHESIS
000845360 3367_ $$02$$2EndNote$$aThesis
000845360 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1525855266_24059
000845360 3367_ $$2DRIVER$$adoctoralThesis
000845360 4900_ $$aSchriften des Forschungszentrums Jülich. Reihe Schlüsseltechnologien / Key Technologies$$v169
000845360 502__ $$aUniversität Köln, Diss., 2017$$bDr.$$cUniversität Köln$$d2017
000845360 520__ $$aIn this work the impact of biaxial strain on the electronic properties of epitaxial grown oxide thin films is analyzed and discussed using two perovskite systems, (Ba$_{x}$Sr$_{1-x}$)TiO$_{3}$ and (K$_{x}$Na$_{1-x}$)NbO$_{3}$. We show that the phase transition temperature of the oxide films can be tuned via in-plane biaxial strain. Compressive strain leads to a reduction of the transition temperature, tensile strain increases the transition temperature. As a result, the electronic properties (i.e. dielectric constant, piezoelectric effect, and even conductivity) are modified. Possible applications of this “engineering” of the electronic properties of oxide films are demonstrated. Strain of ±1.7% in perovskites thin films is generated by the mismatch of the lattice parameters of film and substrate. (Ba$_{x}$Sr$_{1-x}$)TiO$_{3}$ (x = 0, 0.125, 0.37, 1) and K$_{0.7}$Na$_{0.3}$NbO$_{3}$ films with a thickness ranging between 5 nm and 200 nm are deposited on various scandites ((110) oriented DyScO$_{3}$, TbScO$_{3}$, GdScO$_{3}$, and SmScO$_{3}$) using either pulse laser deposition or metal-organic chemical vapor deposition. For the characterization metallic electrodes (Pt or Ti/Pt) are prepared on the oxide film using e-beam lithography and lift-off technology. The structural properties of the biaxial strained thin films are carefully examined via X-ray diffraction, Rutherford backscattering spectrometry, time-of-flight secondary ion mass spectroscopy, and scanning electron microscopy. Cryoelectronic measurements are used to analyze the electronic properties in a temperature range of 5 K to 500 K. The major results are: (i) In oxide ferroelectric thin films, both compressive and tensile biaxial strain result in a material and strain dependent shift of the phase transition temperature of up to several 100 K. For instance, 1.2 % tensile strain shifts the transition temperature by ~300 K in SrTiO$_{3}$ while -0.6 % compressive stress leads to a reduction of the phase transition temperature by ~300 K in K$_{0.7}$Na$_{0.3}$NbO$_{3}$. (ii) The dielectric constant can be modified at a desired temperature (typically room temperature) via the shift of the phase transition towards this temperature. For instance in case of SrTiO$_{3}$ the permittivity is enhanced from ~300 (unstrained bulk SrTiO$_{3}$) to ~8000 by moving the phase transition temperature to room temperature. (iii) The piezoelectric properties of the oxide films are also tailored via strain. As a result surface acoustic waves can be generated in strained thin (e.g. 27 nm) K$_{0.7}$Na$_{0.3}$NbO$_{3}$ films. The strength of the surface acoustic wave signal correlates to the phase transition of the films and might be used for extremely sensitive sensor systems. (iv) Finally, the conductivity of strained SrTiO$_{3}$ films is enhanced due to the increased mobility of electrons and oxygen vacancies. Using an adequate electrode design which affects the electric field and thus temperature distribution in the film, memristor behavior and even a plasiticity of the resistive behavior can be obtained. The latter can be used for applications ranging from the simulation of a biological synapsis to neuromorphic engineering.
000845360 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000845360 8564_ $$uhttps://juser.fz-juelich.de/record/845360/files/Schluesseltech_169.pdf$$yOpenAccess
000845360 8564_ $$uhttps://juser.fz-juelich.de/record/845360/files/Schluesseltech_169.gif?subformat=icon$$xicon$$yOpenAccess
000845360 8564_ $$uhttps://juser.fz-juelich.de/record/845360/files/Schluesseltech_169.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845360 8564_ $$uhttps://juser.fz-juelich.de/record/845360/files/Schluesseltech_169.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845360 8564_ $$uhttps://juser.fz-juelich.de/record/845360/files/Schluesseltech_169.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845360 909CO $$ooai:juser.fz-juelich.de:845360$$pdnbdelivery$$pVDB$$pdriver$$purn$$popen_access$$popenaire
000845360 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845360 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845360 9141_ $$y2018
000845360 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161308$$aForschungszentrum Jülich$$b0$$kFZJ
000845360 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000845360 920__ $$lyes
000845360 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000845360 9801_ $$aFullTexts
000845360 980__ $$aphd
000845360 980__ $$aVDB
000845360 980__ $$aUNRESTRICTED
000845360 980__ $$abook
000845360 980__ $$aI:(DE-Juel1)ICS-8-20110106
000845360 981__ $$aI:(DE-Juel1)IBI-3-20200312