001     845361
005     20240708132930.0
024 7 _ |a 10.1063/1.5036817
|2 doi
024 7 _ |a 0034-6748
|2 ISSN
024 7 _ |a 1089-7623
|2 ISSN
024 7 _ |a 1527-2400
|2 ISSN
024 7 _ |a 2128/19860
|2 Handle
024 7 _ |a pmid:30184627
|2 pmid
024 7 _ |a WOS:000443720400003
|2 WOS
037 _ _ |a FZJ-2018-02635
082 _ _ |a 530
100 1 _ |a Scheepers, Fabian
|0 P:(DE-Juel1)166215
|b 0
|e Corresponding author
245 _ _ |a A New Setup for the Quantitive Analysis of Drying by the Use of Gas-phase FTIR-Spectroscopy
260 _ _ |a [S.l.]
|c 2018
|b American Institute of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1540387593_3258
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Drying rates are important for the manufacture of thin films and in specific for the production of electrodes used in electrochemical devices such as fuel cells and electrolyzers. The known procedures to investigate time-dependent sample compositions and selective evaporation rates are insufficient to obtain mean information about the full area instead of a single point analysis. Therefore, a new setup is presented using gas-phase Fourier-transform infrared spectroscopy. This method analyzes the gas-phase composition to recalculate the layer composition in electrode fabrication at any time during drying. According to the golden rule of measurement technology, manufacturer specifications are often overestimated. Therefore, our alternative procedures were used to evaluate the precision of devices used. The calculated measurement precision is confirmed by validation. The expected deviation is quantified to be less than 2% for the common application. Further on, the relative test-retest standard deviation is determined to be 0.3%–0.4%. As a result of the error propagation, the measurement precision is limited by the background gas flow rate precision for common application. At low volume fractions, the influence of the substance flow rate deviations becomes significant. However, further studies will focus on increasing the gas flow rate precision
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Burdzik, Andrea
|0 P:(DE-Juel1)132718
|b 1
700 1 _ |a Stähler, Markus
|0 P:(DE-Juel1)129930
|b 2
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 3
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 4
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 5
773 _ _ |a 10.1063/1.5036817
|g Vol. 89, no. 8, p. 083102 -
|0 PERI:(DE-600)1472905-2
|n 8
|p 083102 -
|t Review of scientific instruments
|v 89
|y 2018
|x 0034-6748
856 4 _ |y Published on 2018-08-03. Available in OpenAccess from 2019-08-03.
|u https://juser.fz-juelich.de/record/845361/files/1.5036817.pdf
856 4 _ |y Published on 2018-08-03. Available in OpenAccess from 2019-08-03.
|x pdfa
|u https://juser.fz-juelich.de/record/845361/files/1.5036817.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:845361
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166215
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132718
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129930
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129883
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b REV SCI INSTRUM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21