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Zusammenfassung 
 
Multivariate Merkmalsanalysemethoden wurden bisher sehr häufig in den 
Neurowissenschaften eingesetzt, um eine Beziehung zwischen unterschiedlichen 
phänotypischen und behavioralen Messgrößen und bildgebenden neuronalen 
Korrelaten herzustellen. In diesem Zusammenhang ist man zusätzlich mit dem 
Problem konfrontiert, dass hochdimensionale voxelbasierte bildgebende Daten eine 
hohe Rechenleistung erfordern und gleichzeitig ein schwaches Signal-Rausch 
Verhältnis aufweisen. Des Weiteren bieten MRT basierte bildgebende Verfahren die 
Möglichkeit, funktionale und anatomische Informationen des Gehirns, die auf 
unterschiedliche Modalitäten beruhen, zu erfassen. Daher war das Ziel dieser Arbeit, 
den Fluch der Dimensionalität in Verbindung mit hochdimensionalen Voxel-Level-
Informationen durch die Optimierung und Bewertung verschiedener Methoden auf der 
Basis von funktionellen und strukturellen MRT-Daten zu untersuchen. In diesem 
Rahmen wurden besonders die Aspekte der Reliabilität und Interpretierbarkeit 
betrachtet. Der erste Teil des Projekts konzentrierte sich auf die Untersuchung der 
Effekte von verschiedenen Verfahren zur Beseitigung von konfundierten Variablen 
auf die Test-Retest Reliabilität der funktionalen Konnektivitätsschätzungen von a 
priori definierten funktionalen Netzwerken. Im Allgemeinen liefert eine voxelbasierte 
Berechnung der funktionalen Konnektivität des gesamten Gehirns eine Vielzahl von 
Konnektivitätsmaßen (z.B. 300000 x 300000). Dabei sind jedoch für eine gegebene 
interessierende Variable nur wenige dieser Verbindungen in der multivariaten 
Merkmalsanalyse informativ. Aufgrund dessen sind a priori definierte seed-basierte 
FC Messungen rechnerisch weniger aufwendig und informativer. Die beste Strategie 
zum Extrahieren der Konnektivitätsmatrizen aus a priori Netzwerken bleibt jedoch 
immer noch ungeklärt. Daher konzentriert sich Studie 1 hauptsächlich auf das 
Erreichen zuverlässiger funktionaler Konnektivitätsmaße. Weiterhin untersuchten wir 
unsere Annahmen in Studie 2 und 3 mit funktionellen MRT-Daten, indem wir die 
Merkmalsreduktion auf Grundlage von Fachwissen (d.h. a priori definierte meta-
analytische Netzwerke) und unter der Anwendung der multivariaten Merkmalsanalyse 
implementierten. Der letzte Teil des Projekts zielte darauf ab, eine alternative 
Dimensionsreduktionmethode zu implementieren, nämlich die nicht-negative 
Matrixfaktorisierung (NNMF). Im Gegensatz zu der häufig verwendeten 
Hauptkomponentenanalysemethode erhöht die neue Methode die Qualität der 
Interpretierbarkeit der Niedrigrang-Approximation. Hauptsächlich wurde NNMF auf 
die voxelbasierte morphometrische (VBM) Messung angewendet, die aus 
anatomischen MRT Daten berechnet wurde. In diesem zweiten Teil des Projekts 
wurde die NNMF-basierte Reduktion von VBM-Daten zur Vorhersage des Alters 
evaluiert. Darüber hinaus ermittelten wir die Eigenschaften der Gehirnregionen, die in 
die Vorhersageanalyse eingeflossen sind.  
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Zusammenfassend wurde in Studie 1 überprüft, welchen Einfluss verschiedene 
Confound-Entfernungsverfahren und Signalextraktionsansätze auf die Reliabilität von 
funktionalen Konnektivitätswerten in a priori definierten kanonischen Netzwerken 
haben. Die drei folgenden Arbeiten bewerteten verschiedene 
Merkmalsreduktionsstrategien in auf Machine Learning basierenden Studien, die 
entweder funktionelle oder strukturelle MRT-Daten verwendeten. Die Ergebnisse 
dieser Studien veranschaulichen effiziente und zuverlässige Strategien, wie der 
hochdimensionale Merkmalsraum in biologisch plausibel abgegrenzte Merkmale für 
die Analyse von Gehirn-Verhalten oder Gehirn-Phänotyp reduziert werden kann.  
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Abstract 
 
Multivariate approaches have been increasingly applied in the field of neuroscience, 
to relate neuroimaging pattern to various phenotypical or behavioral measures. In this 
context, high-dimensional voxel wise neuroimaging data lead to multiple issues such 
as heavy computational demand, as well as poor signal to noise ratio. In addition, 
(Magnetic resonance imaging) MRI based neuroimaging offers the opportunity of 
capturing the functional and anatomical information of the brain based on different 
modalities. Therefore, in this project, we aimed to address the curse of dimensionality 
associated with high-dimensional voxel level information by optimizing and 
evaluating various methods used within either functional or structural MRI data, 
giving particular attention to reliability and interpretability. The first part of the 
project focused on investigating the effects of various confounds removal approaches 
on the test-retest reliability of functional connectivity estimates of a-prior defined 
functional networks. In general, voxel-wise whole brain functional connectivity 
computation provides a multitude of connectivity measures (i.e., 300000 x 300000), 
while only few of these connections are informative during the multivariate 
approaches for a given variable of interest. In turn, a priori defined seed based FC 
measures are computationally more tractable and more informative. However, the best 
strategy to extract the connectivity matrices from a priori networks still remains as a 
question. Hence, study 1 mainly focuses on achieving reliable functional connectivity 
measures. Study 2 and study 3 then further examined our assumptions by 
implementing the feature reduction based on domain knowledge (i.e., a priori defined 
meta-analytic networks) during the investigation of the multivariate approaches 
implicated to the given target function using the functional MRI data. The last part of 
the project aimed to implement an alternative dimensionality reduction method 
namely, non-negative matrix factorization, which promotes the quality of 
interpretability of the low-rank approximations in contrast to the frequently used 
principal component analysis method. Mainly, Non-negative matrix factorization 
(NNMF) was applied to voxel based morphometric (VBM) measure computed from 
anatomical MRI data. In this second part of the project, NNMF based reduction of 
VBM data has been evaluated for prediction of age. Furthermore, we investigated the 
patterns of brain regions contributed in the prediction analysis. In sum, study 1 has 
been dedicated to investigate the influence of various confound removal procedures 
and signal extraction approaches on the reliability of the functional connectivity 
scores in a priori defined canonical networks. The three following studies assessed 
various feature reduction strategies in machine learning based studies using either 
functional or structural MRI data. These results of these studies demonstrated efficient 
and reliable strategies to reduce the high dimensional feature space into biologically 
plausible confined features for brain-behavior/phenotype relationship analyses.   
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General Introduction 
 
1 Basics of the concepts and techniques implemented in the study 
 
Here in this section, the fundamentals of the concepts and techniques used within the 
thesis are explained. However, a detailed explanation of the rationale of the study is 
presented in the next section. In this section, first the basics of Magnetic resonance 
imaging are introduced. Later a brief introduction of data reduction and multivariate 
approaches implemented in this thesis are presented.  
 
1.1 The Physics of Magnetic Resonance Imaging  
Magnetic resonance imaging (MRI) relies on the signal acquired from the nuclear 
resonance properties of hydrogen atoms present in the water molecules of the tissues 
(Brown et al. 2004; Weishaupt et al. 2007). In the presence of an external magnetic 
field, hydrogen atoms are aligned either in the direction or opposite direction to the 
magnetic field. In addition, nucleus present in an atom consists of a property known as 
precession, which means the atom is constantly spinning about an axis at a constant 
rate. The frequency of precession is proportional to the strength of the magnetic field 
as expressed in the Larmor equation.  
 

!! =  !!! 2! 
 
where !!  is the Larmor frequency, !!  is the magnetic field strength and !  is a 
constant, known as gyromagnetic ratio. In order to activate the protons into higher 
energy state, a radio frequency pulse is applied in the perpendicular direction to the 
magnetic field. Thus, the hydrogen atom experiences a flip away from direction of the 
magnetic field. Proton in the excited state returns into the equilibrium state by 
emitting the excess energy into the surrounding. MRI is based on this energy 
generated by the proton, known as MR signal (Brown et al. 2004). The MR signal can 
be measured based on processes known as spin-lattice interaction and spin-spin 
interaction triggering T1 relaxation and T2 relaxation, respectively.  
 
T1: Longitudinal Relaxation: 
 
After switching off the radio frequency, the proton flipped away from the magnetic 
field returns into the normal condition. The time constant for the recovery of the 
longitudinal component (i.e., longitudinal relaxation) is called T1. This process is 
called as spin-lattice interaction as the excess energy is released into the surroundings.  
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T1 relaxation. Re-growth of longitudinal magnetization requires an exchange of 
energy. Mxy is the longitudinal component of the magnetization and Mz is the 
transversal component of the magnetization (Weishaupt et al. 2007). 
 
T2/T2*: Transverse Relaxation:  
 
Initially, all the neighboring atoms exhibit coherent precession (i.e., to spin in phase 
with others) in the direction of the external magnetic field. However, immediately 
after excitation, the atoms experience a flip into the transversal plane (i.e., 
perpendicular to the external field direction), however, preserve the phase coherence. 
The interaction that all atoms eventually have with each other, generates a loss of the 
phase coherence due to the local variation in their magnetic field environment. Hence, 
magnetization in the transverse plane is lost. The time constant for the decay of this 
transverse component (i.e., transversal relaxation) is called T2. Besides, it is also 
possible to define a time constant for the decay of transverse component occurred due 
to the inhomogeneities induced by the local magnetic field, called T2*. This process is 
called spin-spin interaction as the exceeding energy from one proton is transferred to 
the neighboring proton.  
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T2 and T2* relaxation. Lose phase coherence resulting in the loss of transverse 
magnetization without energy dissipation. Mxy is the longitudinal component of the 
magnetization (Weishaupt et al. 2007). 
 
1.2 Signal contrast and voxel-wise measurement in structural and functional 
modalities of MRI 
 
MRI based neuroimaging offers the opportunity of capturing the anatomical and 
functional information of the brain based on different modalities. These modalities 
allow us to examine the most fundamental question of the neuroscience community. 
The former modality answers how does the spatial representation of the brain 
characterize the structural information, the latter allows us to understand how does 
brain function and further understand how this information alters over time.  
 
First, Structural magnetic resonance imaging (sMRI) is a technique, which identifies 
differences among tissues of the brain and further measures the density of each tissue 
(Symms et al. 2004). Variation in the water content among tissue types originates 
differences in the relaxation timings. Thereby, different relaxation rates produce 
substantial signal contrast among tissues to achieve significant morphological 
representation (Brown et al. 2004; Weishaupt et al. 2007). For instance, cerebrospinal 
fluid with more water content has a longer T2 compared to grey matter. Thus, 
differentiation of various tissue types based on T1 or T2 weighted imaging is rather 
evident (for example, on a T1-weighted image the cortex appear brighter than 
ventricles) to measure the structural changes of the brain. Usually, sMRI is used to 
explore the anatomy of the brain, measured based on T1-weighted imaging. Here, 
each voxel of the brain image contains the volume of grey matter at that spatial 
location. Voxel based morphometry (VBM) is one of the most commonly used 
methods to measure grey matter volume (Good et al. 2001). It provides structural 
measures, which convey biologically meaningful information and capture brain 
changes related to age and pathology, as well as brain plasticity (Good et al. 2001; 
Tisserand et al. 2002; May 2011). Structural MRI data was preprocessed with the 
VBM8 toolbox (http://www.neuro.uni-jena.de/vbm8) to derive voxel-wise grey matter 
volumes for each subject. A detailed explanation of this procedure is explained in the 
section 2.2 of study 4.  
 
Furthermore, Functional magnetic resonance imaging (fMRI) is a technique of brain 
imaging, which relies on identification of the blood oxygenation fluctuations 
associated with the neural activity (Buxton 2002; Scott A. Huettel; Allen W. Song; 
Gregory McCarthy et al. 2004). fMRI is widely used to study alterations in brain 
functions between healthy and clinical disordered subjects In the absence of oxygen, 
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the field inhomogeneities are enhanced due to the paramagnetic property of the 
hemoglobin (Ogawa et al. 1992). Therefore, deoxygenated hemoglobin exhibits faster 
decay of T2* due to the increased de-phasing of the water molecules.  When a 
particular region is functionally active, brain tissue in that region encounters an 
increase in the flow of oxygenated blood and further leads to a longer T2*. Thus, 
fMRI measures the brain activity based on the concentration of the oxygenated blood 
(also known as Blood Oxygenation Level Dependent (BOLD) signal), which is 
sensitive to T2* and further investigates how this activity (i.e., BOLD signal) 
fluctuates over time (Schölvinck et al. 2010). To note, several confounding factors 
(such as system noise, thermal noise and noise induced by non-neuronal physiological 
processes) may impact the BOLD signal and hence apparently brain activity. 
Therefore, fMRI data was preprocessed using SPM8, (www.fil.ion.ucl.ac.uk/spm) to 
derive voxel-wise BOLD signal over time for each subject. The functional 
connectivity between two regions (or voxels) was then computed as the correlation 
coefficient between these time series, which were transformed to Fisher’s Z scores to 
render them normally distributed. A detailed explanation of this procedure is 
explained in the section 2.2.2 of study 1. 
 
1.3 Fundamentals of various techniques used in this thesis  
 
Univariate analysis has been the classical approach applied at voxel level, to 
investigate the group differences in the brain (Bandettini et al. 1992; Friston et al. 
1994; Friston 1997; Mukamel et al. 2005). Despite the approach proved to effectively 
provide inferences about the brain regions associated with a given task, the results are 
merely specific to the type of research question examined (i.e., univariate analysis is 
generally used for hypothesis-driven study while multivariate analysis is generally 
more exploratory). In addition, univariate voxel-wise analysis infers on identical 
information from several single voxels (Gonsalves and Cohen 2010) and thus fails to 
explicate patterns based on integrated information from multiple voxels, even when 
the voxels share non-identical variance (i.e., univariate analysis fails to identify 
complex relationships between different regions). In contrast, multivariate analyses 
aim to estimate a given phenotypical or behavioral measure by capitalizing on the 
spatially distributed patterns over a set of voxels (Haxby et al. 2001; Kamitani and 
Tong 2005; Pereira et al. 2009). Given the advantage of multivariate analysis 
exploiting information from several voxels with different properties, the results 
obtained with these approaches remain more stable and can be analyzed in several 
directions (O’Toole et al. 2007; Yoon et al. 2008; Habeck 2010). Thus, multivariate 
approaches have been increasingly applied in the field of neuroscience, to investigate 
neuroimaging patterns associated with various phenotypical or behavioral measures 
(Cox and Savoy 2003; Craddock et al. 2009; Franke et al. 2010; Davatzikos et al. 
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2011). However, the efficiency of the multivariate approaches greatly relies on 
multiple dimensions of the neuroimaging data. Briefly, there are three dimensions of 
the neuroimaging data: number of variables (number of voxels), number of 
observations (sample size), and multitude of modalities (data from different 
modalities). The current study attempted to address the challenges associated with 
these dimensions, in particular to provide solutions to meaningfully reduce the 
dimensionality associated with the number of voxels, in the context of multivariate 
approaches. Thus, a brief introduction is presented below about the different data 
reduction techniques with different multivariate approaches used in this dissertation.  
 
1.3.1 Dimensionality reduction techniques 
 
1.3.1.1 Coordinate-based meta-analysis 
 
Coordinate-based meta-analysis (CBMA) yields a quantitative summary of brain 
regions identified to answer a certain research question, exploiting the reported results 
(such as, coordinates of the activated regions) across neuroimaging literature. 
Therefore, networks derived using a coordinate-based meta-analysis technique have 
been used as the ground truth to investigate the reliability of the connectivity measure 
using different preprocessing methods in study 1. Furthermore, coordinate-based 
meta-analysis technique has been mainly used to reduce the features based on existing 
‘domain knowledge’ in study 2 and study 3.  
 
In order to obtain CBMA networks, revised activation likelihood estimation (ALE) 
algorithm is performed (Turkeltaub et al. 2002; Laird et al. 2005; Eickhoff et al. 2009; 
Yarkoni et al. 2011; Eickhoff et al. 2012) employing MATLAB packages. Normally, 
ALE aims to capture the uncertainty in spatial location related to each of the reported 
coordinate, by modeling an isotropic Gaussian probability distribution around the 
reported foci. Moreover, the size of the Gaussian kernel is modeled by accounting the 
spatial uncertainty (estimated by computing the Euclidean distance) of both between-
template variance (i.e., bias initiated by different normalization strategies) and 
between-subject variance (i.e., smaller sample sizes based bias). These empirical 
estimates can be described by the Maxwell-Boltzmann distribution, which exhibits 
isotropic normal distribution. The underlying isotropic normal distribution (i.e., 
displacement in X, Y, Z directions) has zero-mean and standard deviation (denoted as 
α) based on the Maxwell-Boltzmann distribution, where α-parameter resembles the 
standard deviation of the underlying Gaussians displacement (i.e., desired kernel size, 
denoted as σ). The point-estimate (µ) of Maxwell-Boltzmann distribution is replaced 
by the Euclidean distance computed from our data, and derived the α-parameter 
(hence the σ of the Gaussian displacement) by solving the following equation.  
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σ!"# = α!"# =  ED!"#
2 ∗  2

π
  

 

σ!"#$ = α!"#$ =  ED!"#$
2 ∗  2

π
  

 
Here, !!!"# is the mean Euclidean Distance between corresponding foci of different 
subjects and !!!"#$is the mean Euclidean Distance between corresponding maxima 
as observed in the different group-analyses (due to the different normalization 
strategies). 
 
The corresponding Full width at half maximum (FWHM)) parameter is assessed as 
following, using the σ of a Gaussian distribution. 
 

!"#$!"# =   !!"# ∗  8 ∗ log (2) 
 

!"#$!"#$ =   !!"#$ ∗  8 ∗ log (2) 
 
Influence of the inter-subject variability on the spatial uncertainty in a group of N 
subjects can be measured as 
 

!"#$!"# (!""!#$%&!) =  !"#$!"#
!!"#$%&'!

   

 
Subsequently, the uncertainty of the spatial location of a given coordinate is modeled 
by combining the empirical estimations of the between-template and between-subjects 
variance outlined above. 
 

!"#$!""!#$%&! =  !"#$!"#$
! +  !"#$!"#

!!"#$%&'!

!
 

 
Thus, for a given study, modeled activation map is computed by integrating the 
probabilities associated to all the foci of that particular study (specific to one) (i.e., 

1 − 1 − ! !!!"#$
! , Here, ! !  is the probability of ith focus at a given voxel. 

Finally, combining these MA maps across studies reveals convergence of results from 
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multiple studies at a particular brain location. Thus, the most probable regions 
associated to the given research question is achieved.  
 
1.3.1.2. Principal component analysis 
 
Principal component analysis (PCA) is one of the most commonly used methods with 
multiple applications. For instance, in this dissertation, PCA is used as de-noising 
strategy in study 1, and as dimensionality reduction technique in study 4. Typically, 
PCA aims to achieve reduced representation with uncorrelated features explaining 
highest variation in the dataset, which are linear combinations of the original 
correlated features (Jolliffe 2005; Mourão-Miranda et al. 2005; Mourão-Miranda et al. 
2012). PCA thus decomposes the entire original representation into low rank 
approximations with a combination of positive and negative weights, which does not 
promote spatially localized components. PCA decomposition captures the component 
with highest variance as the most dominant principal component, followed by 
maximum fit of the remaining variance by the successive components (Jolliffe 2002).  

Principal components (!!) are a linear combination of the original parameters: 

 

!! =  !!"!!
!!"!

!!!
 

 

Where -1 < !!" < 1 are the coefficients of the linear transformation, !! are the original 
features and !!"! is the number of original features. In other words, PCA minimizes 
the following optimization problem: 

 

min
!,!

∥ ! −!" ∥!!  

!"#$%&' !" ! =  !!! 
!!! = ! 

 
Here, W indicates the component space and H represents the loading coefficients of 
the components. The original features (V) are decomposed using singular value 
decomposition (SVD) into eigenvalues of the covariance matrix. Capitalizing on the 
sample size of the data, most relevant components are computed and denoted as 
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principal components. However, the signed components within the PCA 
decomposition engage complex cancellations during the reconstruction of the original 
representation. Therefore, the use of PCA-based dimensionality reduction on brain 
voxels results in hardly interpretable components, which can in turn prevent the 
interpretation of a predictive model based on PCA-derived components.  
 
1.3.1.3. Non-negative matrix factorization 
 
Non-negative matrix factorization (NNMF) has recently been suggested as a plausible 
factorization of high-dimensional VBM data. Non-negativity and sparsity the 
components trend to reflect distinct, anatomically interpretable “building blocks” 
rather than whole-brain patterns of positive and negative values obtained from, e.g., 
PCA, (Lee and Seung 1999). Therefore, in study 4, we use the same orthonormal 
projective non-negative matrix factorization (OPNMF) approach as described by 
(Sotiras et al. 2015) that reduces computation time and yields deterministic solutions 
(Yang et al. 2007; Yang and Oja 2010a) OPNMF factorized the data ‘X’ into two non-
negative sub matrices (W and H) representing the sparse components (the dictionary) 
and the subject-specific loading coefficients in the ensuing low-rank space by solving 
the following optimization problem through minimization of the squared Frobenius 
norm (i.e., reducing the reconstruction error).  
 

min
!!!,!!!

∥ ! −!" ∥!!  

!"#$%&' !" ! =  !!! 
!!! = ! 

 
As stated, OPNMF is an extended framework of the standard NNMF. The constraint 
! =  !!!, was one of the extended constraint (i.e., the projective basis function). 
The loading coefficient matrix was estimated by projecting the input matrix onto the 
estimated component matrix. Estimating H using projection basis function would 
provide more localized representation, as well as decline the overlap between the 
estimated components (i.e., reduce the risk of overcomplete low rank representation 
without exceeding the dimensionality of the input, which allows us to accurately 
reconstruct the original representation (Yang et al., 2007)). In addition, this constraint 
has improved the representation by inducing the sparsity into the component matrix 
‘W’ (Yang et al., 2007, Yang and Oja, 2010). In addition, !!! = ! promotes the 
orthogonality which allows the components to be independent of each other. Yang and 
Oja 2010 mathematically demonstrated that the addition of orthonormal constraint 
reduced computational complexity.  
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In order to find the solution, NNMF employed multiplicative update rule, which 
facilitates the non-negativity into the solutions. However, the multiplicative update 
rule has been modified as reported by Yang and Oja 2010, in order to satisfy the 
additional constraints of orthonormal projection basis function. The following update 
rule has been iteratively applied until it converges to achieve an optimal solution. 
 

!!"
! =  !!"

!!!! !"
!!!!!!! !"

 

 
Where, i = 1…Number of voxels, j = 1…Number of components. Prior to the 
optimization scheme, a dual initialization step termed as non-negative double singular 
decomposition (NNSVD) has been implemented (Boutsidis and Gallopoulos 2008). 
This initialization step aimed to provide a good approximation by reducing the 
residual error relatively faster, as well as to enable reproducible final solutions. 
Furthermore, initialized sparse components ensure the final sparsity. Lastly, NNSVD 
initialization attempts to enable reproducible solutions across several runs. 
 
To summarize the factorization process, W is first initialized through non-negative 
double singular value decomposition. Later, W is iteratively updated with the 
multiplicative update rule, until it converges to an optimal solution. Finally, projecting 
X onto W to obtain a solution that minimizes the reconstruction error yields H. 
 
1.3.2 Multivariate approaches for prediction or classification 
 
1.3.2.1 Support Vector Machine 

Support Vector Machines (SVM) are a popular machine learning method for 
classification (Vapnik 1998). In study 2, we implemented classification-based 
machine learning approach to classify patients and healthy controls into separate 
groups. Hence, we implemented SVM in this study 2.  In study 2, non-sparse linear 
two-class SVMs were computed using LibSVM (Chang and Lin 2011) [Chang and 
Lin, 2011] (https://www.csie.ntu.edu.tw/~cjlin/ libsvm). When the training dataset of 
n points are given in the form, !!,!! … (!!,!!), where !!  ! 1,−1 , indicating the 
class each point !! belongs. SVM solves the following optimization problem, which 
aims to find a hyper plane that divides the two groups.  

 

min
!,!,!

1
2!

!! + ! !!
!

!!!
 

!"#$%&' !"     !! !!Φ !! + ! ≥ 1 − !! 
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!!  ≥ 0, ! = 1,…  ! 
 
Where !  is the normal vector to the hyperplane; Φ !!  maps !!  into a higher 
dimensional space and ! > 0 gives the regularization factor. Usually, the following 
dual optimization problem is solved, given the high dimensionality of the hyperplane 
vector (w). 
 

min
!
1
2!

!!" − !!! 

!"#$!"# !"    !!! = 0 
0 ≤ !!  ≤ !, ! = 1,…  ! 

 
where e = 1,… , 1 !is the vector of all ones, Q is a positive semidefinite matrix with 
entries !!" =  !!!!! !! , !! , and the kernal functions are ! !! , !!  ≡ Φ !! !Φ !! . 
After solving the aforementioned dual optimization problem, using the primal-dual 
relationship, the optimal w satisfies 
 

! =  !!!!Φ !!
!

!!!
 

 
Finally the decision function is 
 

!"#$ w!Φ !! + ! = !"#$ !!!!! !! , !
!

!!!
+ !  

 
In the model for prediction or classification, the following parameters are saved, 
!! ,!! ,! !! , !  (!. !. , !"#$"% !"#"$%&%#'), !, support vectors and label names. 
 
1.3.2.2 Relevance Vector Machine 
 
The Relevance Vector Machine (RVM) is another machine learning approach, which 
was developed from support vector machine, but provides solutions employing 
probabilistic Bayesian learning (Tipping 2001; Tipping and Faul 2003a). Most 
importantly, in contrast to SVM, RVM induces sparsity into the regression model, 
which ultimately overcomes the over fitting issue for high dimensional data. 
Therefore, RVM is implemented as the sparse regression model to predict various 
personality traits in Study 3. For doing so, statistical learning of the sparse regression 
model employing RVM was implemented using the SparseBayes package 
(http://www.miketipping.com/index.htm). When the training dataset of n points are 
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considered in the form !!,!! … (!!,!!) . The following generalized linear model is 
trained on the training dataset.  
 

! ! =  !!! !, !!
!

!!!
+  ! 

 
where ! = !! ,… , !! !, ! !, !!  is a bivariate kernel function centered on each of the 
training data points, ! = !! ,… ,!! !  are the regression coefficients and !  is the 
noise. Here, the output is assumed to follow a Gaussian distribution with mean y(xi) 
and uniform variance !!  of the noise ! , so ! ! ! = ! ! ! ! ,!! . Conditional 
probability of the target variables following those assumptions is expressed as 
 

! ! !,!! =  2!!! !!/! !"# − 1
2!! ! −Φ! !  

 
Here, the kernel function matrix Φ  represents all the pairs 
Φ!,! = ! !! , !! , !, ! ! [1, . . ,!]. In order to induce the sparsity, an additional vector of 
hyper parameters (!!) is introduced to parametrize the width of the normal prior 
distribution.  
 

! !! !! = !!
2! !"# − 12!!!!

!  

 
The goal of the RVM is to iteratively solve (the following steps) the type II 
maximization of the marginal likelihood ! ! !,!!  with respect to ! and !!, which 
reduces the dimensionality of the problems when any of the !! is larger than the 
defined threshold. Finally, the algorithm stops, when there is no further improvement 
in the likelihood ! ! !,!!  (Tipping 2001). 
 

!!!"# =  1 − !!Σ!!!!!
 

!! !"# =  ! − !" !

! −  1 − !!Σ!!!
!!!

 

 
The unknowns are computed as following, where, ! = !!!!!"!  and A = ! =
!"#$ !!,!!…!! . 
 

Σ =  !!!" +  ! !! 
! =  Σ!!!" 
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1.3.2.3 Regularized (sparse) regression model 
 
As an alternative approach to RVM, LASSO (least absolute shrinkage and selection 
operator) has been the most commonly implemented sparse regression model in the 
machine learning studies. LASSO is known to perform both variable selection and 
regularization to improve the precision and interpretability of the prediction model 
(Tibshirani 1996). Regularization, in general, is to introduce an additional penalty 
term, which can improve the generalizability of the learning model. Therefore, in 
study 4, we performed an additional comparison between LASSO and RVM 
regression models, given that both the methods induce sparsity into the learning 
model. However, in study 4, LASSO for learning a (sparse) linear regression model 
predicting the subjects’ age is implemented as in the ‘glmnet’ package, 
https://www.jstatsoft.org/article/view/v033i01 (Tibshirani 1996). To note, elastic net 
regularization based framework is employed within the ‘glmnet’ package, which can 
easily be adapt into purely LASSO regularized framework. The mathematical 
definition of Elastic net is explained below. Elastic net regularization is alternative 
regularization and variable selection model with sparsity of representation similar to 
LASSO (Zou and Hastie 2005).  
 
When the training dataset of n points are considered in the form !!,!! ,… , (!!,!!)  
the response y is predicted as following using a regular linear regression model.  
 

! =  !! + !!!! +⋯+  !!!! 
 
In the model fitting procedure using ordinary least square (OLS), a vector of 
coefficients (! = (!!…!!)) is estimated by minimizing the residual sum of squares 
(where, k is the number of features). However, to improve the prediction accuracy and 
interpretation of the learning model, penalized least square techniques have been 
introduced (Tibshirani 1996; Zou and Hastie 2005), which introduces a regularization 
term to the ordinary least square estimations (such as L1 and L2 norm regularization 
(Horn, R. A. and Johnson 1973)). The elastic net regularization framework that 
linearly combines the L1 and L2 norm regularizations, calculated the vector of 
coefficients by minimizing the following penalized least square function (Zou and 
Hastie 2005; Bunea et al. 2011). 
 

min
!!,!

! − !! − ! ⋅ ! ! +  ! 1 − !
2 ! !! + ! ! !  

 
!"#$%&' !"  !  ≤ ! 
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Where,  
 

! ! = !1 !"#$%&' !"#$ =  !!
!

!!!
 

! !! =  !2 !"#$%&' !"#$ =  !!!
!

!!!
 

 
Here, ! ≥ 0 is a tuning parameter, which controls the amount of shrinkage applied to 
the estimates (i.e., some coefficients be equal to zero) and ! ≥ 0  is the hyper 
parameter defining the amount of penalty, which controls the complexity of the 
regression model (i.e., balance between sparsity and high prediction accuracy). The 
elastic net parameter is 0 ≤ ! ≤ 1, further defined as LASSO when ! = 1 and ridge 
when ! = 0. To note, sparsity of the solution is encouraged by L1 penalty term and 
stability of the solution is promoted by L2 penalty term (Hastie et al. 2009; Friedman 
et al. 2010).  
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2 Rationale of the study 
 
Until recently, most of the multivariate and also univariate analysis were applied on 
smaller sample sizes, which have been shown to be prone to false positives (i.e., 
reduced chance of the effect being biologically plausible) (Button et al. 2013; Button 
2014). Analysis performed on smaller sample size allows only a confined set of 
outcomes, which are specific to the given sample. To note, any minor methodological 
manipulation could easily deviate the results in such underpowered sample-sized 
analysis. In addition, taking the highly variant inter-individual difference into account, 
systematic examination of the pattern within brain regions can only be achieved by 
increasing the sample size. Thus, one needs to implement the multivariate approaches 
on very large sample size i.e., for thousands of subjects, to enhance the stability of the 
outcomes. Even though, recent studies began to investigate the pattern of the brain 
regions on relatively larger sample size datasets, yet, the sample size hasn’t been more 
than 6000 subjects (Miller et al. 2016a). In contrast, the voxel-wise data contains more 
than 300000 voxels. Therefore, even with the recent experimental settings, the 
dimensionality associated with voxel-wise data has greatly exceeded the sample size 
(Guyon and Elisseeff 2003; Schrouff et al. 2013; Mwangi et al. 2014). Such high-
dimensional voxel wise neuroimaging data lead to multiple issues such as heavy 
computational demand, as well as poor signal to noise ratio. Normally, voxel wise 
data is a mixture of noise, redundant, and information of interest with multivariate 
properties. Therefore, voxel-wise representation could potentially fit several 
multivariate models for the same data, (i.e. voxel-wise representation goes with ‘risk 
of overfitting’ (Guyon and Elisseeff 2003; Hua et al. 2009)). To avoid the risk of 
overfitting and improve the signal to noise ratio, a dimensionality reduction technique 
is crucially needed. Given the aim of dimensionality reduction technique is to 
eliminate the influence of the noisy and redundant features, the pattern of brain 
regions identified after data reduction are expected to offer a deeper interpretation of 
the research question. Therefore, the dimensionality reduction has to transform the 
high-dimensional data into low rank approximations, while still retaining the most 
influential structure of the original data (Guyon and Elisseeff 2003; Fan et al. 2007; 
Mwangi et al. 2014). Hence, the inevitability of data reduction associated with high 
dimensional voxel wise data motivated our study to evaluate different methods 
addressing this particular issue (i.e., dimensionality related to the number of variables 
The major objectives of these dimensionality reduction techniques are: 1) 
improvement in the accuracy of the multivariate approaches 2) reduction of the 
computational demand issue 3) offering a deeper and better understanding of the 
underlying processes (Mwangi et al. 2014). Most of the previous studies had focused 
on improving the first and second objectives (Hua et al. 2009; Franke et al. 2010; 
Wang et al. 2010; Chu et al. 2012). Until recently, there has been no detailed 
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investigation on the third objective. Thus, our project intended to improve the third 
objective without making any detrimental impact on the first and second objectives.  
 
Recently, neuroimaging based studies focus greatly on multimodal setups. Through 
multimodal data analysis, integration of the complimentary information derived from 
different magnetic resonance imaging (MRI) measurements is possible, (Rykhlevskaia 
et al. 2008; Ritter et al. 2015; Miller et al. 2016; Liem et al. 2017). In this framework, 
implementation of the multivariate approaches on a multimodal setup improves the 
sensitivity and specificity of the outcomes, as multimodal data provide a more 
comprehensive representation of the brain than individual modalities (Erus et al. 2015; 
Davatzikos 2016; Liem et al. 2017). However, practical concatenation of multimodal 
data has to deal with several methodological limitations. Thus, the modern neuro-
scientific community has spurred improvements within computation of multimodal 
neuroimaging, including pre-processing, feature extraction and fusion of the data. 
Given the dependency of the data fusion on the prior steps, our project is mainly 
dedicated for those prior steps, i.e. pre-processing and feature extraction (partly 
referring to the dimensionality reduction) at the individual modality level. Even 
though the information and the source of information differ between the modalities, 
some communal information is most likely shared among the modalities (Groves et al. 
2012; Liu et al. 2015). Therefore, it is crucial to examine the latent dimensions of the 
data for each modality individually, prior to the investigation of patterns among the 
multimodal data obtained by linking different modalities together. In this framework, 
the, most frequently acquired modalities in big MRI data samples available for the 
research community are resting state functional MRI data and T1 based structural 
MRI data. Therefore, our studies focus on the influence of various data reduction 
techniques used in functional and structural MRI data. 
 
Altogether, in this project, we mainly aimed to address the curse of dimensionality 
associated with high-dimensional voxel wise information by optimizing and 
evaluating various methods used in functional and structural MRI data separately, 
which can provide reliable and interpretable solutions. First part of the dissertation 
focused on functional MRI based data reduction methods, giving particular attention 
on reliability of the functional connectivity measures. Second part of the dissertation 
intended to examine the latent dimensionality of the structural MRI data, which 
predominantly improves the interpretability of the outcomes. 
 
2.1 Reliability of the functional connectivity measures 
 
When performing a multivariate approaches using functional MRI data, functional 
connectivity (FC) measure between different regions of the brain is considered to be 
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the dimensionality of variables. Nevertheless, voxel-wise whole brain functional 
connectivity profile provides a multitude of connectivity measures (i.e., 300000 x 
300000), while only few of these connections are informative during the multivariate 
analysis of a given variable of interest (Wang 2011; Mwangi et al. 2014). In turn, a 
priori defined canonical networks yield considerably less connections, which in fact 
eliminate the influence of irrelevant features and retain the relevant ones for a given 
variable. Hence, a priori defined seed based FC measures are computationally more 
tractable and more informative.  Therefore, our study 1 focused on region-to-region 
connectivity within a priori meta-analytically-defined networks (Wager et al. 2007; 
Schilbach et al. 2014).  
 
Coordinates-based meta-analysis techniques are intended to reduce the features based 
on existing ‘domain knowledge’ (Dukart et al. 2013; Tench et al. 2013; Mwangi et al. 
2014). The strength of this technique is to provide robust, functionally specific regions 
of interest (ROI) by integrating the outcomes from several different studies, which 
overcomes the limitation of false-positives ensuing due the low statistical power (i.e., 
smaller sample size) within a single study (Rottschy et al. 2012; Hardwick et al. 2013; 
Tench et al. 2013). Therefore, feature reduction based on meta-analysis techniques 
avoids the potentially poor reliability limitation encounter when selecting feature 
based on individual sample size study. However, the best strategy to extract the 
connectivity matrices from a priori networks still remains as a question. Impediment 
of the true measurement of neuronal activity from functional MRI signals caused by 
various nuisance signals leads to an unstable assessment of functional connectivity 
(Fox et al. 2005; Bright et al. 2017). Furthermore, the reliability of the functional 
connectivity might also be influenced based on different procedures of signal 
extraction from an ROI.  Given the crucial importance of reliability for the 
development of clinical applications, study 1 aimed to identify the combination of 
signal extraction and confound removal approaches that yields the highest test-retest 
reliability when assessing resting-state functional connectivity in meta-analytically 
defined networks, using standard acquisitions as feasible in clinical practice. In study 
1, we even investigated reliability from the two different but complementary 
perspectives that is, reliability at the subject level (RoSO) and reliability at the 
connection level (RoCO). 
 
2.2 Feature reduction and feature selection 
 
After addressing the best strategies to reliably extract the connectivity measures, the 
focus of our project is shifted towards evaluation of dimensionality reduction methods 
with a particular interest in reducing the high-dimensional feature space into 
biologically plausible reduced features. Feature reduction and feature selection are 
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two closely related terms in the context of multivariate approaches. As previously 
described, transformation of high dimensional voxel wise data into low rank 
approximations is considered as dimensionality reduction, also commonly known as 
feature reduction. In the feature reduction process, entire representation of the data is 
compressed into reduced number of features/components. The categorization of the 
data-driven feature reduction happens by inferring a hidden pattern of the data across 
the observations, which is also called as generative modeling or unsupervised learning 
of the data (Fukunaga 1990; Van Der Maaten et al. 2009). Nevertheless, inspite of an 
optimistically efficient feature reduction using data-driven methods, there still might 
be irrelevant or redundant features among the reduced set of features, influencing the 
performance of a multivariate approaches of a particular target variable. Hence, 
further selection of features that are relevant for that particular target variable is 
expected to diminish the influence of irrelevant or noisy features on the performance 
(Tipping and Faul 2003b; Hastie et al. 2015). This procedure of curbing the features 
contributed in the analysis is named as feature selection. With the recent 
developments in the field, sparse regression models allow us to perform a feature 
selection by learning the data in a supervised fashion or descriptive modeling. 
Therefore, second part of this dissertation (i.e., study 3 and study 4) was designed to 
evaluate the combination of sparse feature reduction procedure with a sparse 
supervised algorithm (to implement feature selection), aiming to provide solutions 
which can better interpret the patterns of brain regions contributed in the multivariate 
analysis. This is also called as Generative-descriptive method (Chu et al. 2012; 
Davatzikos 2016).  
 
As introduced in the previous section, feature reduction technique depending on the 
existing domain knowledge (such as meta analytically derived networks) is an 
alternative procedure commonly employed for reducing the functional MRI data 
(Yarkoni et al. 2011; Dukart et al. 2013; Schilbach et al. 2014). Here, each node 
within a network is defined by consolidated evidence from multiple task-based fMRI 
studies. Thus, spatial correspondence of each node within the entire network reflects 
consistently co-activated brain region pertaining to the specific target behavioral 
condition across individuals (Laird 2009; Eickhoff et al. 2011). A priori defined meta 
analytical networks presumably indirectly induce sparsity to yield considerably less 
features among the whole brain connectivity by retaining the relevant features for the 
given target variable. Hence, study 2 and 3 attempted to implement the feature 
reduction based on domain knowledge during the investigation of the pattern 
implicated to the given variable using the functional MRI data. Here, study 2 aimed to 
examine the results obtained by employing an indirect sparse feature reduction 
procedure (i.e., meta analytically derived networks) to classify different 
neuropsychological disorders among each other’s and also with the healthy controls 
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using a classical non-sparse regression model (i.e., support vector machine). In 
addition, study 3 focused on investigating the prediction performance of various meta 
analytically derived networks, when implementing a sparse regression model (which 
enforces feature selection procedure, i.e., relevance vector machine) to predict various 
personality traits.  
 
Importantly, activations-based meta-analytic data representations are assumed to 
optimally summarize functional MRI data. In contrast, such representation might not 
be optimal for structural MRI data. Thus, in study 4 using structural MRI data, we 
investigate data representation based on structural modality. More concretely, study 4 
strictly focused on evaluating data-driven techniques involved in reducing the 
dimensionality associated with the variables (i.e., voxel number) derived from voxel 
based morphometric (VBM) measure computed from anatomical MRI data. 
Importantly, while the results obtained from study 4 have been analyzed from an 
anatomical perspective of the brain, this technique may be applicable to other 
modalities. To note, our study 4 was performed on considerably large sample sizes to 
tackle the limitations associated with the statistical power of observations (between 
700 to 1000 subjects). Given the interest for deeper understanding of the outcomes, 
study 4 attempted to implement an alternative dimensionality reduction method 
namely, non-negative matrix factorization (NNMF), which improves the quality of 
interpretability of the low-rank approximations in contrast to the frequently used 
principal component analysis method (Sotiras et al. 2015). NNMF based reduction of 
VBM data has been evaluated for prediction of age, using a sparse regression model 
(i.e., LASSO regularization model). To address the issue of computational demand, 
we examined the transferability of the NNMF between two independent datasets with 
different age distribution and acquisition protocols. Lastly but most importantly, as 
our project aimed to focus on the interpretability of the underlying processes, we 
investigated the association of the pattern of brain regions (i.e., reduced interpretable 
features) contributed in the regression analyses with the phenotype or behavioral score 
examined in each of the last three studies. 
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Abstract Resting-state functional connectivity analysis
has become a widely used method for the investigation of

human brain connectivity and pathology. The measurement

of neuronal activity by functional MRI, however, is
impeded by various nuisance signals that reduce the sta-

bility of functional connectivity. Several methods exist to

address this predicament, but little consensus has yet been
reached on the most appropriate approach. Given the cru-

cial importance of reliability for the development of clin-

ical applications, we here investigated the effect of various
confound removal approaches on the test–retest reliability

of functional-connectivity estimates in two previously

defined functional brain networks. Our results showed that
gray matter masking improved the reliability of connec-

tivity estimates, whereas denoising based on principal

components analysis reduced it. We additionally observed
that refraining from using any correction for global signals

provided the best test–retest reliability, but failed to

reproduce anti-correlations between what have been pre-
viously described as antagonistic networks. This suggests

that improved reliability can come at the expense of

potentially poorer biological validity. Consistent with this,
we observed that reliability was proportional to the retained

variance, which presumably included structured noise, such

as reliable nuisance signals (for instance, noise induced by
cardiac processes). We conclude that compromises are

necessary between maximizing test–retest reliability and

removing variance that may be attributable to non-neuronal
sources.

Keywords Test–retest ! fMRI ! Resting-state functional

connectivity ! Reliability ! Confound removal

Introduction

Functional magnetic resonance imaging (fMRI) relies on

the measurement of changes in blood oxygenation (i.e.,
BOLD) and plays a vital role in understanding normal and

abnormal brain functioning. For instance, functional con-

nectivity of distant brain regions can be investigated
through the statistical analysis of coherent low-frequency

BOLD fluctuations. Synchronized signal fluctuations can

be observed even when the subject is at rest, without per-
forming any task, and the analysis of resting-state data has

become a popular means of studying ongoing brain acti-
vations and functional connectivity between brain regions

(Biswal et al. 1995; Fox and Raichle 2007). There are both

indirect (from comparison with task co-activation patterns,
(Kwong et al. 1992; Hinke et al. 1993; Buckner et al. 1996;

Huettel et al. 2004; Barch et al. 2013)) and direct (from

invasive recordings (He et al. 1999; Lai et al. 2011; Lu
et al. 2014) supports toward this notion. Several con-

founding effects, including system noise, thermal noise,

and noise induced by non-neuronal physiological pro-
cesses, may influence the measured signal and hence
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apparent brain activity. Therefore, interpretation of brain

activity depends on the ability to mitigate their influences
(Fox et al. 2009).

Participant-induced artifacts, such as motion and phys-

iologically induced artifacts (i.e., due to respiration and
cardiac processes), comprise the largest component of

noise affecting the BOLD signal (Windischberger et al.

2002). Motion artifacts have been shown to produce spu-
rious correlations in a systematic way (Van Dijk et al.

2012; Power et al. 2012; Satterthwaite et al. 2013),
implying that the removal of motion related artifacts is a

prerequisite for further analysis. Various approaches have

been proposed for dealing with noise effects post hoc, i.e.,
after the data have been acquired (Behzadi et al. 2007; Fox

et al. 2009; Murphy et al. 2009; Chai et al. 2012; Griffanti

et al. 2014; Patriat et al. 2015; Power et al. 2015; Soltysik
et al. 2015; Wong et al. 2016). In addition to motion-re-

lated artifacts, one particular aspect that has received a lot

of attention is the use of nuisance regressors reflecting
global signals, derived either from the whole brain or from

specific tissue types, such as white-matter or cerebrospinal

fluid. However, removal of various global nuisance
regressors alters the variance of the residual signal and has

been shown to modify the correlational structure (Fox et al.

2009). In line with it, Friston (2011) showed that changing
the signal-to-noise ratio can change the correlation coeffi-

cient, which indicates that the level of observable noise

influences the correlation coefficient.
Both the definition of the ROI from which BOLD sig-

nals are extracted and the means by which voxel-wise

signals are summarized across a given ROI are critical
considerations in a functional connectivity analysis. An

ROI can be derived through various approaches, including

(most simply) a single voxel or sphere of a fixed radius
around a voxel, histological parcellation in standard space

(Eickhoff et al. 2005), clustering approaches based on

functional or structural connectivity estimates (Eickhoff
et al. 2015), thresholded statistical maps, or meta-analytic

approaches such as ALE (Eickhoff et al. 2009, 2012). In

this study, we focused on region-to-region connectivity
within a priori meta-analytically defined networks (Schil-

bach et al. 2014; Schilbach 2016). This approach has

several advantages. In particular, meta-analyses provide
robust, functionally specific ROIs based on observations

across many studies. Analyzing functional connectivity on

this network combines its functional specificity with the
advantages of task-free imaging, i.e., an acquisition that

poses little demands on the subjects and is not confounded

by a specific task paradigm. Similarly, the extraction of a
summary signal across an ROI can be performed in various

ways that may impact the reliability of connectivity esti-

mates. In particular, the exclusion of voxels based on their
gray matter probabilities may help improve signal to noise

by removing signal not originating in the gray matter tissue

of interest. In this study, we compared three signal
extraction approaches using different gray matter masking

techniques.

Many clinical studies currently rely on functional con-
nectivity measures in understanding normal and abnormal

brain functioning. The appeal for resting-state functional

connectivity analyses in clinical applications lies in the fact
that such data are easy to acquire without any specific

setup, do not require active participation by the subjects,
and in contrast to task-based data, are less influenced by

compliance and performance. Nevertheless, several con-

cerns have been raised regarding the reproducibility and
statistical power of classical neuroimaging studies (Button

et al. 2013a, b). Clinical application, however, can only be

useful if the analyses yield reliable measures. Various
studies have also been performed to test the reliability of

functional or effective connectivity measures using differ-

ent modalities (such as fMRI or diffusion MRI) and
reported moderate to high test–retest reliability of con-

nectivity measures across moderate to long-term scans.

(Chen et al. 2015; Frässle et al. 2016; Song et al. 2016;
Zhong et al. 2015). Shehzad et al. (2009) investigated the

test–retest reliability of global connectivity patterns using

resting-state fMRI and observed that significant connec-
tivity scores are more reliable than non-significant con-

nectivity scores. Wang et al. (2011) evaluated short-term

(less than 1 h apart) and long-term (more than 5 months
apart) test–retest reliability for topological metrics of

functional networks and observed that long-term scans had

better reliability than short-term scans. Later, Raemaekers
et al. (2012) analyzed the reliability of BOLD activation

and reported that patterns of BOLD activation were rela-

tively stable across sessions, while the amplitude of the
activations is more variable. Gorgolewski et al. (2013)

studied the test–retest reliability of confound removal at the

subject level (by focusing on the single subject reliability)
and showed that subject motion can detrimentally impact

reliability. Yan et al. (2013b) investigated the influence of

post-acquisition standardization techniques on traditional
fMRI measures, test–retest reliability, and phenotypic

relationships, as well as nuisance variables (mainly mean

global signal) and reported that global signal regression is
identical to gray matter regression and both should be

avoided. Subsequently, Birn et al. (2014) evaluated the

influence of various physiological noise correction methods
on test–retest reliability and found that it was reduced by

physiological noise correction, as it reduced the variability

between subjects as well as within the subject. Shirer et al.
(2015) investigated various means of confound removal

across multiple outcome measures and demonstrated that

noisiness, reliability, and heterogeneity of the data varies
based on the preprocessing parameter chosen. In turn, the
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influence of various gray matter masking approaches on the

reliability has not been addressed in any of the previous
test–retest studies. Therefore, using meta-analytically

derived networks, we assessed the influence of different

signal extraction and noise regression approaches on the
reliability of the resting-state functional connectivity

measures.

In this study, we evaluated test–retest reliability of
resting-state functional connectivity in a cohort of 42

subjects scanned twice with a between-scan interval of
175 ± 75 days. We assessed two networks: the extended

socio-affective default mode network (eSAD) (Amft et al.

2015); and the working-memory network (WMN) (Rotts-
chy et al. 2012). Both networks were derived from previous

meta-analytic studies, which used anatomical likelihood

estimation (ALE; (Eickhoff et al. 2009, 2012)) to identify
regions that are robustly activated across studies, for

specific task paradigms. Both networks have been

hypothesized to anti-correlate with each other (Fox et al.
2005; Reid et al. 2016). Thus, the reliability of connectivity

estimates within, as well as between, the specified meta-

analytically derived networks was evaluated.

A literature survey was conducted, to investigate the

popularity of various methods for confound removal in
recent fMRI studies. Using PubMed database, all the arti-

cles with the terms ‘‘fMRI,’’ ‘‘resting-state,’’ and ‘‘seed-

based,’’ published from the beginning of 2014 until the
time of this study (June 2016) were identified, reflecting the

recent work most in line with the focus of our work on

seed-based analyses. A total number of 239 studies were
identified. Among them, 33 studies had to be excluded,

because the articles were either not relevant to the study
(such as studies on animals) or not accessible. Therefore, a

total number of 206 studies were investigated. We then

computed the percentage of studies using the different
confounds removal methods, which is shown in Fig. 1. The

frequency of studies when using a certain confound has

been demonstrated separately (in the categories of ‘Only’)
and in combination with the other confounds in the Fig. 1.

Based on this literature examination, we assessed the

effects of the most commonly used confound removal
approaches in resting state fMRI studies; namely, global

and tissue-class specific (either only WM and CSF or in

addition also GM) mean signal regression, as well as

Fig. 1 Percentage of studies using a certain confound removal
method [i.e., white matter and cerebral spinal fluid signal regression
(WMCSF), global signal regression (GSR), principle component
analysis-based corrections (PCA), tissue signal regression (TSR),
physiological recordings-based corrections (physiological correction),
independent component analysis-based corrections (ICA), and other
correction methods such as ANATICOR or gray matter atrophy
regression (others)]. The colors represent the interactions of each
method with other methods. The first fraction of section which is

consistent over the approaches, represented with the word ‘‘Only’’ (in
blue) shows the percentage of studies performing only a certain
confound removal without any interactions. Additional colors
assigned to the other confound removal appears only when there is
an interaction. Of note, the interactions of motion regression with
other methods are not explicitly shown in this figure. However,
almost all the studies involved in this literature survey have removed
the motion effects along with the other confound removal approaches
demonstrated in the figure
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principal components analysis (PCA) denoising. We also

examined three approaches for extracting the regional
time-series based on different methods for gray matter

masking. Above mentioned approaches were assessed

separately and in combination with each other. To observe
the consequences of the interactions, the approaches were

evaluated in combinations (cf. ‘‘Assessed (combinations

of) signal processing steps’’). We note that physiological
noise regression (i.e., elimination of artifacts induced by

respiration and cardiac processes) requires recordings of
parameters, such as heartbeat and breathing. Such physio-

logical recordings, however, are rarely acquired in standard

(clinical) resting-state acquisitions and were hence not
considered in the current investigation. Independent com-

ponent analysis (ICA)-based denoising is another emerging

approach to confound removal (Griffanti et al. 2014; Sal-
imi-Khorshidi et al. 2014; Pruim et al. 2015a, b). However,

ICA-based denoising approaches (excluding the ICA-

AROMA, as the pre-defined spatial features included
within in the package itself) require effective individual

segmentation from high-resolution T1 images, which were

not available for the current data. Acknowledging the
future potential of ICA-based denoising, we thus focused

our work on the evaluation of the presently most widely

used approaches.
Another common application of ICA is the examination

of the functional connectivity networks. Recently, such

ICA method followed with the dual regression is used to
assess the functional connectivity for group comparisons,

instead of seed-based functional connectivity. Zuo et al.

(2010) reported moderate-to-high test–retest reliability.
Furthermore, Smith et al. (2014) claimed that ICA fol-

lowed with the dual regression performs better than the

seed-based connectivity measures. Even though, such
methods may lead to higher reliability. Zuo et al. (2010)

reported moderate-to-high test–retest reliability, while

computing the functional connectivity networks using ICA
combined with the dual regression. Furthermore, Smith

et al. (2014) investigated that ICA followed with the dual

regression performs better than the seed-based connectivity
measures. Even though such methods may lead to higher

reliability (Zuo et al. 2010), seed-based functional con-

nectivity is still very widely used for the examination of a
priori hypotheses in both basic and clinical studies (Smith

et al. 2014). Thus, we here focused on the test–retest

reliability of the seed-based functional connectivity
measures.

Importantly, reliability can be examined from two per-

spectives: at the subject level and at the connection level.
One the one hand, meaningful group comparisons largely

depend on reliability at the subject level, i.e., over scans the

order of subjects should remain as similar as possible for any
given connection. One the other hand, network modeling

capitalizing on within-subject connectivity requires relia-

bility at the connection level (cf. ‘‘Indices of reliability’’),
i.e., for any given subjects, the order of connectivity

strengths should remain as similar as possible over scans.

Therefore, in this study, we investigated reliability from the
two different but complementary perspectives, that is, reli-

ability at the subject level (RoSO) and reliability at the

connection level (RoCO). To sum up, this study aimed to
identify the combination of signal extraction and confound

removal approaches that yield the highest test–retest relia-
bility when assessing resting-state functional connectivity in

meta-analytically defined networks, using standard acquisi-

tions as feasible in clinical practice. In other words, this
study aims to provide a ranking of methods in terms of their

potential to yield stable connectivity patterns over time.

Materials and methods

Networks of interest

The influence of different processing steps on the test–
retest reliability of resting-state functional connectivity

analyses was assessed in two canonical networks related to

cognitive and socio-affective processing. In particular, the
two networks were defined by large-scale synthesis of

neuroimaging findings using coordinate-based meta-anal-

yses (Fox et al. 2014). As a prototypical ‘‘task-positive’’
cognitive network (regions exhibiting increase in activity

during task performance), we assessed the core working

memory network (WMN) described by Rottschy et al.
(2012), consisting of nine bilateral fronto-parietal regions

(Fig. 2a; Table 1). As a ‘‘task-negative’’ network (regions

exhibiting decrease in activity during task performance),
we included the extended socio-affective default mode

(eSAD) network identified by Amft et al. (2015), which

extended a previous meta-analytical definition of the
default mode (Schilbach et al. 2012) and comprised 12

regions mainly corresponding to cortical midline structures

(Fig. 2b; Table 1). Importantly, both of these networks
have shown a strong positive coupling among their

respective nodes but were anti-correlated with each other.

They may thus be considered as robustly a priori defined
network models for the often-proposed large-scale anti-

correlated systems in the human brain (Fox et al. 2005).

Sample characteristics, preprocessing and RS-FC
computation

Images acquisition

Resting-state fMRI data of 42 healthy subjects including 19
females with an average age of 42 ± 20 (mean ± std)
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years were obtained in two sessions with an average time

interval of 175 ± 75 (mean ± std) days. In each session,

250 resting state EPI images were obtained on a Siemens
3T Scanner (Scanning parameters: TR 2200 ms, TE 30 ms,

flip angle 90!, 36 slices, a voxel size 3.1 mm isotropic)

corresponding to a scanning time of 9.2 min, which stays

well in line with the reliable intersession scanning time of
8–12 min suggested by Birn et al. (2013). High-resolution

Fig. 2 Nodes of meta-analytically derived networks used for the reliability assessment. a The core working memory network (Rottschy et al.
2012). b The extended socio-affective default mode network (Amft et al. 2015)

Table 1 Coordinate details and cluster size (k) of the regions, within the WMN and eSAD involved in this study

Macro-anatomical labels Abbreviation Side k (voxels of size
3.1 mm isotropic)

MNI coordinates in standard RAS orientation

X Y Z

Working memory network (WMN) nodes

1 Anterior insula aINS L 276 32 22 -4

2 R 182 34 28 -2

3 Dorsolateral prefrontal cortex DLPFC L 1331 50 12 22

4 R 1032 44 34 32

5 Pre-supplementary motor area preSMA 1035 2 20 50

6 Intraparietal sulcus IPS L 543 30 56 48

7 R 310 36 48 44

8 Dorsal premotor cortex dPMC L 190 28 0 58

9 R 243 30 2 56

Extended socio-affective default mode (eSAD) network nodes

10 Pregenual anterior cingulate cortex ACC 180 0 36 10

11 Anterior middle temporal sulcus aMTS L 468 54 10 -20

12 Amygdala/hippocampus Amy/hippo L 86 24.0 10 -20

13 R 141 24 -8.0 -22.0

14 Basal ganglia BG L 146 -6 10 -8

15 R 188 6 10 -8

16 Dorsomedial prefrontal cortex dmPFC 204 -2 52 14

17 Precuneus PrC 145 -2 52 26

18 Subgenual anterior cingulate cortex sACC 244 -2 32 -8

19 Temporo-parietal junction TPJ L 251 46 66 18

20 R 373 50 60 18

21 Ventromedial prefrontal cortex vmPFC 114 -2 50 -10
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T1-weighted structural images were not acquired for the

data set used in this study. The original study protocol of
the data used here has been approved by the local ethics

committees of the university hospital Aachen, and

informed consent was obtained by all the participants prior
to the examination. The current data were analyzed

anonymously.

Images preprocessing

Prior to further processing (using SPM8, http://www.fil.

ion.ucl.ac.uk/spm), the first four images were discarded

allowing for magnetic field saturation. The EPI images
were corrected for head movement by affine registration

using a two-pass procedure. In a two-pass procedure, all

the EPI images were aligned to the first EPI image. Then, a
mean over the aligned EPI images was computed. Finally,

all the EPI images were again aligned to the first pass mean

EPI image. The mean EPI image for each subject was non-
linearly normalized to the MNI152 non-linear template

space template using the ‘‘unified segmentation’’ approach

(Ashburner and Friston 2005). The ensuing deformation
field was applied to the individual EPI volumes and

smoothed with a 5-mm FWHM Gaussian kernel. Prepro-

cessed images were visually checked for any processing
artifacts.

Each node of the assessed functionally defined networks

(cf. ‘‘Networks of interest’’) available in the same space
was represented by its peak’s coordinate. The time series

for all voxels within a priori meta-analytically derived

clusters were then extracted. Following gray matter
masking if applicable (cf. ‘‘Assessed (combinations of)

signal processing steps’’), we then employed a multiple

regression approach to control for different confounds in
the EPI time series. While the choices for dealing with

global signals were outlined below, we always included the

six motion parameters derived from the image realignment
as well as their derivative as the first-order (linear) and

second-order (quadratic) terms as evaluated by (Satterth-

waite et al. 2013). That is, in addition to the approach-
specific confounds, these 24 movement regressors were

used in all analyses. Following the removal of any variance

in the individual voxels’ time series that could be explained
by the respective confounds, the data were band pass fil-

tered preserving BOLD frequencies between 0.01 and

0.08 Hz (Biswal et al. 1995; Fox and Raichle 2007). We
computed the frame-to-frame differences from the six

motion parameters derived from the image realignment to

assess frame-wise displacements (FD). An FD threshold of
0.5 mm was used to discard potentially motion-contami-

nated images, before bandpass filtering (Power et al. 2012;

Yan et al. 2013a). Finally, the characteristic time series of
each seed was computed as the first eigenvariate of the

preprocessed time series for the individual voxels within

that seed. The functional connectivity between every pair
of nodes was then computed as the correlation coefficient

between these time series, which were transformed to

Fischer’s Z scores to render them normally distributed
(Fig. 3). Here, in this study, tissue class segmentation is

performed on a mean EPI volume due to the lack of high-

resolution T1 structural scans. Nevertheless, the registra-
tion of EPI images to T1 structural scans may fail to detect

the non-linear distortions of the EPI images, especially in
the absence of the field maps or such relevant images.

However, partial volume effects may exist in the mean EPI

volume based segmentation. To avoid such partial volume
effects, gray matter masking along with a median-split

approach, which extracts the signal only from 50 % of the

voxels with high gray matter probability, has been imple-
mented and evaluated in this study. In addition, median-

split approach has an advantage of accounting similar

number of voxels while extracting the signal, particularly
when using meta-analytically derived clusters.

Assessed (combinations of) signal processing steps

As the key aim of this study was to assess the impact of

different commonly used processing steps on the reliability
of RS-FC measurements, we focused on three different

domains as follows.

(I) Extraction of time series: Evidently, meaningful
signal should mainly be found in gray matter (GM). Hence,

the voxels within 5 mm of the seed’s coordinate might be

anatomically constrained based on tissue class segmenta-
tion as provided by SPM (Ashburner and Friston 2005).

Here, we evaluated three options:

No gray matter mask (NoGM) All voxels within 5 mm
of the seed coordinate were included, processed by con-

found removal and temporal filtering, and summarized by

their first eigenvariate. No gray matter masking is the most
commonly used approach in RS-FC analysis. Conceptually,

NoGM considered the influence of cortical anatomy as

minor relative to the spread of BOLD data and spatial
smoothing.

Individual gray matter mask (IndGM) The GM proba-

bility as estimated by the unified segmentation for that
particular subject was extracted for each voxel within

5 mm of the seed coordinate and a median-split approach

was then performed retaining those 50 % of voxels with
highest GM probabilities. This approach was based on the

argument that the individual anatomy should be most

important for tissue classification.
Group gray matter mask (GrpGM) The tissue class

segmentations of all individual subjects were first averaged

and a median-split approach of the voxels was then per-
formed based on these average GM probabilities. In this
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method, the focus on GM was retained but rather than

basing the masking on the (prominently noisy) individual
segmentation, group data (considered as more robust) were

used. For reader’s information, the overlap between the

IndGM and GrpGM was computed and is shown in Fig. 4.
(II) PCA denoising: It has been suggested (Behzadi et al.

2007; Soltysik et al. 2015) that computing a principal

component analysis (PCA) decomposition across the WM
and CSF regions of the brain and removing variance

associated with the most dominant five components might

remove many sources of artificial and confounding signals
and hence increase the specificity of RS-FC results. We

thus performed all analyses both with (PCA) and without

(NoPCA) PCA denoising.
(III) Global signal removal: As removing the global

signal had received a lot of attention in recent discussions

(Murphy et al. 2009; Chai et al. 2012; Saad et al. 2012; Fox

et al. 2013), we assessed seven different methods for this

particular aspect. In that context, tissue class-specific glo-
bal signals were computed based on the SPM8 segmenta-

tion of the (mean) EPI into GM, WM, and CSF regions,

then averaged the signal time series of the voxels specific
to each tissue class.

Global signal regression (GSR) Removes all variance

explained by the first-order effects of the global (average
across all voxels at each time point) signal.

Tissue signal regression (TSR) Removes variance

explained by the first-order effects of the mean GM, WM,
and CSF signals.

WM and CSF signal regression (WMCSF) The mean

signals of the WM and CSF were removed, i.e., only the
first-order effects.

No global signal regression (NoGSR) No removal of any

global signal.

Fig. 3 Pipeline of the entire
preprocessing steps until the
RS-FC computation: the
assessed combinations (inside
the red dotted box) indicate the
signal processing methods for
which the reliability is evaluated
in three different domains
((I) extraction of time series, (II)
PCA denoising, (III) global
signal removal)
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Importantly, the different choices for each of the three
main factors may be implemented independently of the

other factors, allowing for a full permutation of the dif-

ferent analyses options and hence 42 (3 9 2 9 7) different
combinations for signal extraction and confound removal.

We, therefore, performed reliability analysis for all of these

42 combinations, i.e., analytical approaches.

Indices of reliability

To quantify the test–retest reliability of the 42 different

approaches, we used two complementary measures that

were each applied from two different perspectives. Test–
retest reliabilities are quite often assessed using intra-class

correlations (ICC), which takes into account inter-subjects
variability in relation with the intra-subject variability. The

intention of our study, however, was to examine one effect

at a time, i.e., to evaluate inter-subject variability (i.e.,
RoSO) separately from intra-subject variability (i.e.,

RoCO). Therefore, reliability was tested using two mea-

sures. The first employed measure was Kendall’s rank
correlation (to quantify the consistency in relative order;

Zang et al. 2004; Shehzad et al. 2009; Guo et al. 2011;

Thomason et al. 2011; Li et al. 2012; Patriat et al. 2013)
between the functional connectivity scores obtained at the

first and second sessions, which quantifies the degree to

which the order of observations is similar across both
sessions. Modifications in the signal extraction and con-

found removal methods alter the residual signal fluctua-

tions, which lead to variation in the connectivity measures.
Thus, the stability of the relative orders when comparing

different connections/subjects was measured using Ken-

dall’s correlations. Complementing this index, we com-
puted the absolute difference between functional

connectivity scores to probe the numerical test–retest

reliability. This index should be less sensitive to single
outliers, in comparison with other alternatives like sum of

squared measures. Thus, numerical differences when

comparing different connections/subjects were measured
using mean absolute differences.

These indices were computed from two different per-
spectives, reflecting the reliability at the subject level and

at the connection level, respectively. In that context, reli-

ability at the connection level (RoCO) addresses the
question ‘‘are, for a given subject, the connections in the

same order across sessions?’’ which was a prerequisite for

any within-subject network modeling. We thus computed
for each subject the correlation (across connections)

between the first and second sessions (Fig. 5a) as well as

the absolute difference between the two sessions by aver-
aging them over connections (Fig. 5c). This perspective

thus yields for every approach as many data points as there

were subjects’ within/between the two networks. Relia-
bility at the subject level (RoSO) addresses the question

‘‘are, for a given connection, the subjects in the same order

across sessions?’’ which was a prerequisite for group
comparisons. Here, we computed for each connection the

correlation (across subjects) between the first and second

sessions (Fig. 5b) as well as the absolute differences
between the two sessions by averaging them over subjects

(Fig. 5d). This perspective thus yields, for every approach,

the same number of data points, as there are connections in
the respective network.

Finally, we computed two further important parameters

in addition to these indices of reliability. First, the amount
of variance within the extracted time series at the two time

points was computed for each combination of methods to

quantify the influence of confound removal on the variance
of the residual resting-state signal (Fig. 5e). Second, for

every approach, we computed percentage of positive con-

nectivity scores among within-network (i.e., within eSAD
and WMN regions) and between-network connections (i.e.,

between eSAD and WMN regions).

Aggregation and evaluation

The 42 different approaches defined by the combination of
different masking/confound removal approaches were

compared using a non-parametric Friedman ANOVA for

each of the assessed parameters (correlations and absolute
differences, each assessed at subject and connection level

(Supplementary figures S5–S7), as well as residual vari-

ance in the time series). To aggregate these findings, the
individual approaches were ranked according to their

Fig. 4 Percentage of voxels that overlap between the individual and
group masks, relative to the GrpGM for each of the 21 seed regions
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reliability scores for each parameter. Subsequently, these

reliability ranks were added over the different perspectives

to obtain an overall reliability ranking. The overall relia-
bility ranks allowed to identify reliable combination of

different confound removal approaches at different

perspectives.

Supplementary analysis

Given that the focus of our study was to investigate, which

(combination of) analytical choices result in the best test–

retest reliability functional connectivity estimates for meta-
analytically defined networks, the main analyses used the

entire significant clusters of the previously defined eSAD

and WM networks as regions of interest (ROIs).

Acknowledging the alternative strategy of representing

these ROIs by spheres around their center coordinates, we
then repeated all analyses using spherical ROIs of 5 mm

radius.

Results

The setup of our study allows us to perform a large number

of different analyses. We first provide an overview on the

test–retest reliability as reflected by the two different
measures, i.e., rank-correlations and absolute differences.

Here, the rankings based on the reliability of subject order

Fig. 5 Indices of the reliability: the four indices of reliability used
here are shown. a, b Functional connectivity at two time points (a) at
connection level, i.e., for all connections within a given subject (b) at
subject level, i.e., for all the subjects within a given connection [here
between left and right anterior insula (LaIns–RaIns)]. c, d Absolute
differences of functional connectivity scores between the two sessions
(c) at the connection level, i.e., the mean of the absolute differences

over subjects for the 210 connections, and d at the subject level, i.e.,
the mean of the absolute differences over connections for the 42
subjects. e The variance within the BOLD signal time series of the left
anterior Insula for two different combinations of signal processing
methods [‘‘GrpGM NoPCA NoGSR’’ (black), ‘‘NoGM PCA TSR’’
(red)]
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(RoSO) and those based on the reliability of connection

order (RoCO) are combined. Next, we present an overview
on the reliability from either perspective, combining the

two measures. Finally, we provide the overall summary

together with the ranking based on the residual variance in
the time series as well as the information on the proportion

of positive vs. negative connections. The individual test

retest rankings by the two different methods and different
perspectives are presented in the supplementary results (cf.

Supplementary figures S1–S4).
In addition, we would like to note that we present

findings for ‘‘within-network’’ and ‘‘between-network’’

connectivity. The former represents a summary of the
rankings obtained for the extended socio-affective default

mode as well as the working memory network, each

showing strong, positive coupling among their respective
nodes. The latter represents the connections between all

possible pairs of nodes from either of these two major

networks that are often conceptualized as being antago-
nistic to each other.

Reliability using different indices

The combined ranks, based on Kendall’s rank correlations
as the measure of subject- and connection-order, are shown

in Fig. 6. The approaches are ordered such that the most

reliable method is placed on the top, the least reliable on
the bottom. It may be noted that for both within- and

between-network connections, PCA denoising seems to

have a rather detrimental effect on test–retest reliability, as
most combinations including PCA denoising rank in the

lower half and none is found in the top 10. On the other

hand, gray matter masking, which is part of more than half
of the ten most reliable approaches, seems to improve

reliability. In particular, individual gray matter masking for

within-network connections and group gray matter mask-
ing for between-network connections provide a better

reliability. Global signal removal seems to have detri-

mental effect on the overall pattern for both within- and
between-network connections. No removal again provided

the most reliable correlation values for between-network

Fig. 6 Combined rankings of the test–retest reliability at the subject
and connection level for Kendall’s correlations and absolute differ-
ences. The ‘‘within networks’’ ranking refers to intra-network

connections of the working memory and the default mode network
and the ‘‘between networks’’ to inter-network connections. The gray
bar represents the summed ranks for the respective categories
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connections. Nevertheless, the rank-order stability of

within-network connections was improved by removal of
WM and CSF signals (WMCSF).

The assessment of reliability, by measuring absolute

differences rather than measuring Kendall’s correlations,
corroborated most of these observations. In particular, we

again found that using gray matter masking and refraining

from PCA denoising yielded more reliable estimates of
functional connectivity. While this pattern is not as clear-

cut as for the correlation-based measure, it again held true
for both within- and between-network connections. There

is, however, a striking change in the overall pattern with

respect to the effects of global signal removal. No removal
again provided the most reliable absolute values for within-

network connections. Nevertheless, the numerical stability

of between-network connections was clearly improved by
removing the global signal in all three-tissue classes (TSR).

Reliability from the subject and connection
perspective

As noted in the methods, RoSO assesses how well the
relative differentiation between subjects is reproduced at a

second time point and is hence of particular relevance for

between-subject analyses, e.g., in clinical application. In

contrast, RoCO assesses how well the relative differentia-
tion between connections in a particular subject is repro-

duced and is hence of particular relevance for within-

subject analyses, e.g., in connectome modeling.
Several major trends of reliability noted in the previous

section are again well observable in this analysis (Fig. 7).

In particular, we again found that PCA denoising has a
rather detrimental effect on reliability. In contrast, when

considering within-network RoCO, PCA denoising has
improved the reliability, namely, in the absence of global

signal regression. Moreover, gray matter masking, in par-

ticular when using the mean tissue probabilities across the
entire group, generally yields more reliable estimates of

functional connectivity, although individual gray matter

masking is more prominent when considering within-net-
work connections, especially RoCO. With respect to the

influence of global signal removal, we again found a more

heterogeneous pattern with a clear distinction between
within-network and between-network connections. With

respect to the former, both RoSO and RoCO are highest

when no global signal removal is performed, followed by
approaches involving the removal of WM and CSF signals

(WMCSF). For between-network connections, linear

Fig. 7 Summary rankings for RoSO and RoCO. Reliability for within network (WMN and eSAD) and between networks is shown separately
each combining Kendall’s correlations and absolute difference. The gray bar represents the summed ranks for the respective categories
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removal of the global signal for all three-tissue classes

(TSR) yields the highest RoSO and RoCO, but for RoCO,
neither removing any global signal nor performing a PCA

denoising yields the highest reliability with no gray matter

masking.

Summary of reliability ranking

The summary ranking across both indices (Kendall’s cor-

relations and absolute differences) and both perspectives
(RoSO and RoCO) of reliability reflects the major patterns

noted in the individual analyses (Fig. 8). Gray matter

masking improves reliability. PCA denoising leads to
lower test–retest reliability. Within-network connections

are most reliably estimated when using no global signal

regression and with removing the global WM and CSF
signal representing the next-best approach. In contrast,

between-network connections are most reliably measured

by linear and second-order removal of global signals of all
three-tissue classes.

Proportion of positive vs. negative connectivity
scores and residual variance in the time series

Addressing the issue of anti-correlations, we assessed the

proportion of positive vs. negative connections, i.e., con-

nections with r (and hence Z-scores) below zero (Fig. 9).
As expected, within-network connections are predomi-

nantly positive. It is, moreover, interesting to note that the

least reliable approaches, i.e., those at the bottom of the
list, also featured (somewhat) less consistent positive

connections. The more striking observation, however,

relates to the between-network connections. These are
consistently negative when any form of global signal

regression is used. If neither global signal regression nor

PCA denoising are used, however, all connections are
positive. Finally, when PCA denoising but no global signal

regression is used, roughly half of the connections are

positive.
Assessment of residual variance in the extracted time

series expectedly reveals that refraining from PCA

Fig. 8 Summary rankings of reliability across Kendall’s correlations and absolute differences as well as RoSO and RoCO, separately for within
(WMN and eSAD) and between networks. The gray bar represents the summed ranks for the respective categories
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denoising and using no global signal regression retained

more variance. Gray matter masking also seemed to

perform well with regard to this measure.

Supplementary analysis

The results of the supplementary analysis conducted

using spherical ROIs of 5 mm radius rather than the

actual cluster volumes are detailed in the supplementary
material. The summary ranking across both indices

(Kendall’s correlations and absolute differences) and

both perspectives (RoSO and RoCO) of reliability
reflect the major patterns noticed in the main analysis,

except for the gray matter masking. The supplementary

results associated with the PCA denoising and the mean
global signal regression remain the same as in the main

analysis. In turn, the supplementary results illustrate

that using spherical ROI of 5 mm radius (i.e., smaller
VOIs) favor No GM masking (cf. Supplementary

figure S7).

Discussion

The key idea behind resting-state fMRI analyses is to

estimate functional connectivity between distant brain

regions based on the correlation of their BOLD time series
(Biswal et al. 1995, 1997). The fundamental assumption

behind this conceptualization is that the extracted time

series reflect the effects of ongoing neuronal computation
through hemodynamic coupling, such that correlated signal

changes reflect inter-regional synchronization. However,
systematic sources of non-neuronal fluctuations in EPI

signals likely influence these functional connectivity esti-

mates (Biswal et al. 1995; Friston et al. 1996; Fox and
Raichle 2007; Buckner 2010; Cole et al. 2010). Addressing

these non-neuronal signals is, therefore, a critical consid-

eration in any functional connectivity approach. In this
study, we investigated the influence of various prepro-

cessing approaches meant to deal with this issue, including

gray matter masking, PCA denoising, and global signal
regression. Our findings are based on investigating two a

Fig. 9 The variance left within the time series (far left column) and
the percentage of positive correlations (columns on the far right) for
both within and between networks arranged by the overall ranking of
the reliability. The plots on the right side exemplify the difference of

the distribution of the connectivity scores at different combinations
[‘‘GrpGM NoPCA NoGSR’’ (top), ‘‘GrpGM NoPCA WMCSF’’
(bottom)]
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priori defined networks (the extended socio-affective

default mode network and the working-memory network)
in a sample of 42 subjects scanned twice, with an average

retest-delay of 175 days. We found that gray matter

masking based on group-average GM probabilities
improved reliability, while confound removal approaches

(either PCA denoising or global signal regression) reduced

it. However, the study has yielded some mixed results that
will be discussed in this section.

Recently, Shirer et al. (2015) investigated a confound
removal pipeline that optimizes resting state fMRI data,

which is comparable to our study. They performed a reli-

ability study dealing with confound removal combined
with various bandpass filter selections. In contrast, in this

study, the focus is mainly on seed region time-series

extraction methods based on different methods for gray-
matter masking, combined with various confound removal

techniques. There are several additional differences

between both studies. Shirer et al. (2015) used ten com-
ponents for the PCA model (5 from WM and 5 from CSF)

and computed WM and CSF signals using a 3-mm radius

spherical ROI centered on (arbitrary) WM and CSF
regions. In contrast, we here used a five components PCA

model, noting that five dominant principle components

have been shown to effectively remove the relevant noise
(Chai et al. 2012). Moreover, the mean WM and CSF

signal was computed using the entire segmented WM and

CSF regions in our study, assuming that signal from small
regions may not model the appropriate noise term. In

addition, they performed reliability analyses to evaluate the

motion parameters, whereas we included them in the
standard pre-processing given convincing previous evi-

dence for using a 24-parameter motion regression model

(Power et al. 2015; Satterthwaite et al. 2013) and bandpass
filtered frequencies between 0.01 and 0.08 Hz (Biswal

et al. 1995; Cordes et al. 2001; Fox et al. 2005; Zou et al.

2008; Van Dijk et al. 2012; Tsvetanov et al. 2015).
Therefore, both studies deal with similar issues but address

complementary aspects.

Different perspectives

Reliability of subjects (RoSO) and reliability of connec-
tions (RoCO) represent two fundamentally different views

on reliability of resting-state measurements (Gorgolewski

et al. 2013). Conceptually, assessing the RoSO allows us to
identify which combinations of processing steps that yield

a reproducible relationship between subjects for each

connection, while RoCO identifies the combinations that
yield the relationship between different connections in the

same subject. RoSO is fundamental for any analysis

focusing on between-subject differences. Example appli-
cations would include brain-phenotype associations, e.g.,

the correlation of connectivity estimates with neuropsy-

chological or other behavioral measures (Müller et al.
2014), including clinical analyses comparing patients to

healthy control subjects (Zhang and Raichle 2010; Hopt-

man et al. 2012; Müller et al. 2013). In contrast, RoCO is
most relevant when performing any within-subject mod-

eling, either as a primary goal, e.g., when performing

connectivity-based parcellation, or to compute derivative
measures characterizing the individual connectome (Eick-

hoff et al. 2011; Bzdok et al. 2013; Clos et al. 2013).
Examples of the latter include graph-theory-based analyses

that compute characteristic network measures from the

individual connectome (Shen et al. 2010; Wang et al. 2011;
Reid and Evans 2013). In other words, the results from the

RoSO are particularly pertinent, when the focus is on group

comparison or across-subject associations, whereas the
results from the RoCO are relevant when the focus is on the

structure of an individual subject’s connectivity matrix.

Assessed (combinations of) signal processing steps

Here, we addressed the effects of gray-matter masking
during the ROI time-series extraction (which has received

rather little attention up to now), the influence of PCA

denoising (which has at times been suggested but is not
commonly used), and global signal regression (which is

still highly controversial). The extracted ROI time series

characterizes the temporal dynamics of the selected region
as captured by the evoked BOLD response. While ROI

time-series extraction plays a key role when studying the

regional specific BOLD signal, the respective methods are
rarely discussed even though it may affect reliability of

subsequent analyses. For example, gray-matter masking is

frequently used to restrict signal extraction to gray matter
as much as possible, even though the benefits of doing so

have not been explicitly demonstrated. In this study, we

thus investigated this issue by examining the reliability of
various gray-matter masking approaches.

Probably, the best-investigated source of spurious vari-

ance in RS time series is head motion (Van Dijk et al.
2012; Satterthwaite et al. 2013; Griffanti et al. 2014; Patriat

et al. 2015; Power et al. 2015; Wong et al. 2016). Sat-

terthwaite et al. (2013), using a 24-parameter motion
regression approach, found that the first derivative as well

as the quadratic effects of both realignment parameters and

derivatives could account for these effects. In addition, in
this study, the residual signal after removal of the variance

associated with confounds variables is band pass filtered

between 0.01 and 0.08 Hz, which is unfortunately known
to be influenced by various noise components (Birn et al.

2006). Niazy et al. (2011) indicated that resting-state net-

works show temporal correlations across a wide frequency
range, even though the resting-state networks are
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dominated by low frequencies of the BOLD signal. How-

ever, there is ample evidence that the BOLD signal which
is measured by fMRI and from which functional connec-

tivity maps are derived is dominated by low-frequency

fluctuations (Biswal et al. 1995; Cordes et al. 2001). Thus,
to stay in line with standard applications, we followed the

well-established standard of bandpass filtering and motion

regression (Satterthwaite et al. 2013). Furthermore, it has
been argued that global signal regression may be beneficial

to deal with motion effects (Murphy et al. 2009; Power
et al. 2012). In contrast, previous studies addressing the

influence of global signal removal (Weissenbacher et al.

2009; Chai et al. 2012; Chen et al. 2012) and those
assessing test–retest reliability (Shehzad et al. 2009; Gor-

golewski et al. 2013; Birn et al. 2014) used less extensive

motion regression protocols. Acknowledging new approa-
ches based on automatically classifying and removing

noise components have recently emerged (Behzadi et al.

2007), we here focused on three steps commonly used in
settings in which physiological noise recording is not

available and data quality is not sufficient for reliable

estimation of noise components in individual subjects.
Therefore, the paper aims to study the reliability and

reproducibility of functional connectivity patterns in

‘‘clinical quality’’ data rather than in optimal datasets with
low spatial and temporal resolution as well as physiological

recordings.

Gray matter masking during time-series extraction

The time series extracted from an ROI represents the time-
varying BOLD fluctuations within that region. Using one

of the common approaches (Friston et al. 2006), we com-

puted the first eigenvariate to obtain the characteristic time
series for each ROI that accounts for the largest proportion

of the variance in the set of voxel-wise time series. In

general, voxels comprising the ROI may extend into the
WM or CSF region, especially for a priori meta-analyti-

cally defined clusters, which usually do not respect the

tissue class locations of the subjects under study. However,
signals obtained from either WM or CSF voxels are not of

interest in the functional connectivity analysis, as they

should be of non-neuronal origin. One approach to reduce
the influence of these unwanted signals and locally opti-

mize the time-series extraction toward the biologically

relevant voxels is to use gray matter masking. In that
context, however, a fixed threshold for GM segmentation

seems inappropriate, given that it could lead to exclusion of

entire regions as well as having no effect in others. Our
results indicates that using gray-matter masking when

extracting the time series, i.e., considering only those

voxels in the ROI that are above the median GM proba-
bility, yield more reliable connectivity scores.

Since there are no previous investigations into the effect

of performing local optimization of ROIs toward gray-
matter voxels, we here investigated two different approa-

ches (median split based on the individual and group-av-

eraged GM probabilities) and compared them to the
‘‘baseline’’ approach of using the entire ROI volume

without masking. Factors like head motion could influence

the outcome of various GM masks used for time-series
extraction investigated in this study. Subjects with higher

head motion may benefit either less (due to reduced fit) or
more (due to poor individual segmentation) from the

group-level GM masking. Therefore, the rationale for

evaluating both approaches is that individual GM proba-
bilities should best reflect a particular subject’s anatomy

after spatial normalization, but comes at the disadvantage

of being potentially noisier given that they are based on a
single scan. In contrast, group-level GM probabilities

should be less specific but more robust. Our results are

particularly true when the mean tissue probabilities across
the entire group were used. In our view, this not only

indicates the beneficial effects of gray matter masking and

hence supports the aforementioned motivation to perform a
local optimization, but also suggests that group-level

masking, albeit potentially less specific, may be the

preferable choice due to increased robustness. In addition,
individual GM probabilities produce reliable results for

within subject studies. Nevertheless, the segmentations and

spatial normalization of the EPI images might be less
precise as compared to that of high-resolution T1 images,

due to the lower resolution and poorer contrast. This may

entail somewhat higher registration inaccuracies, which, in
turn, may have had some influence on the results. A

straightforward and more traditional approach for gray

matter masking would be to use a population-based a priori
tissue mask (e.g., ICBM gray matter map). However, the

use of such mask to define gray matter in the ROI may be

more sensitive to (systematic) registration errors stemming,
e.g., from differences in the studied population to the

population that was used to construct the a priori tissue

masks. In summary, we would thus recommend the use of a
study specific group gray matter mask when dealing with

large clusters such as derived from neuroimaging meta-

analyses.
Interestingly, a somewhat different pattern emerges

when representing the regions of interest not by the full

highly threshold clusters derived from the meta-analyses
(cf. Table 1) but rather by spheres of 5 mm radius around

their peak coordinate (cf. Supplementary figures S5–S7).

These definitions differ from those used in the main anal-
ysis in several aspects. In particular, these spherical ROIs

contain a more uniform (compared to the cluster-based

ones) and smaller number of voxels. In analyzing the effect
of gray matter masking on these spherical ROIs, we found
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that no masking yielded the best reliability and would

propose two possible explanations (cf. Supplementary fig-
ures S5–S7). First, the smaller extent of these spherical

ROIs most likely yielded a lower proportion of voxels

located in WM and CSF, as indicated by a higher mean
GM probability, although this is not a criterion for their

definition. Second, given the smaller size of the spherical

ROIs, the performed median split may have resulted in a
critical further reduction of available voxels that renders

the results unstable due to session-to-session misalignment,
noise, or other factors. As a conclusion, it is advisable to

implement gray matter masking for larger, a priori defined

clusters based on the group-averaged GM probabilities to
improve the reliability. In turn, when using smaller,

spherical ROIs, no gray matter masking seems preferable.

PCA denoising

Cleaning the data with PCA denoising has been introduced
by Behzadi et al. (2007) and frequently used since (e.g.,

Kellermann et al. 2013). In this study, we performed PCA

denoising using the time course of the five most dominant
principal components as confound regressors, effectively

removing signal correlated with these. In an evaluation

study, Chai et al. (2012) reported that removing principal
components derived from WM and CSF regions is advis-

able to reduce the influence of physiologically induced

artifacts, as components derived from WM and CSF
regions are unlikely to include neural activity. In particular,

it has been argued that physiologically induced artifacts

should be particularly present within WM, ventricles, and
large vessels (Chang et al. 2009). In addition, PCA

denoising should remove effects that are widely distributed

over the brain, including again variance related to physi-
ological sources (Chai et al. 2012). Finally, it is worth

mentioning that the first principle component is closely

related to the global mean signal.
Our results focusing on test–retest reliability from two

different perspectives (RoSO and RoCO), however, indi-

cate that PCA denoising is not beneficial under either
perspective, irrespectively of the remaining settings. These

findings thus replicate the findings by Power et al. (2014)

that PCA denoising does not yield encouraging results. In
addition, Shirer et al. (2015) observed a decrease in test–

retest reliability with PCA denoising. We note that, fol-

lowing the proposed method by Behzadi et al. (2007), the
main analysis presented here obtain the principal compo-

nents from the segmented white matter and CSF masks. As

an alternative approach, principle components may also be
computed from the whole brain mask, i.e., GM, WM, and

CSF. We thus performed an additional analysis using PCA

components derived from the entire brain, but observed
similar results to those obtained from using WM/CSF

derived components (cf. Supplementary figures S8–S10).

These results converge with those of Soltysik et al. (2015),
which reveal that PCA extracted from whole brain yield

similar results to those obtained from using WM and CSF

regions. In summary, we would thus argue that PCA
denoising has no beneficial effect on the test–retest relia-

bility of RS-FC estimates, at least within the settings

evaluated in this study. When investigating resting-state
functional connectivity between a priori specified regions

of interest refraining from PCA denoising should hence
provide the more reliable results.

Global signal regression

Global signal regression, i.e., the removal of variance in the

individual voxels’ time series that can be explained by the
average (global) signal across the entire brain, has become

a controversial topic recently. Historically, it was based on

the global scaling approaches utilized in the early (func-
tional) PET studies, which were necessary to allow infer-

ence on localized and hence specific changes in blood flow.

The key idea behind this approach has been retained in
virtually all MRI-based neuroimaging studies, rendering

global signal regression a common feature for both task-

and resting-state fMRI. Similar to its origins in PET, the
purpose is again to facilitate the detection of localized

neuronal effects. Using GSR assumes that meaningful

effects (reflecting activations or functional connectivity)
are based on local variations in neuronal activity. Conse-

quently, global signals, which are thought to mainly orig-

inate from physiological rather than neuronal sources,
should be treated as a confounding influence. In line with

this view, Power et al. (2014) observed that global signal

regression is also an effective means of reducing motion-
related effects in resting-state fMRI data.

Following the outlined logic, global signal removal has

been the standard approach for many years until, more
recently, it has been argued (Murphy et al. 2009; Weis-

senbacher et al. 2009; Saad et al. 2012) that GSR might

introduce artificial anti-correlations. In addition, Chen et al.
(2012) quantified the global noise levels, and based on the

noise level within the data set, they advised to determine

whether to include or exclude the global signal regressors
based on this information. Ultimately, the issue of whether

GSR should be employed or not remains contentious.

Likewise, the effects of removing global vs. tissue-class
specific mean signals, in particular only those for WM and

CSF are still unclear. In this study, we thus investigated

seven different variants of global signal removal involving
global, mean tissue class and mean WM/CSF signal

removal at the first or second order as well as no GSR.

Regarding the effects of global signal removal on test–
retest reliability, our investigation yields somewhat mixed
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results. Overall, we found that without any mean signal

regression yields the highest reliability over both subjects
and connections. However, when looking at the results in

more detail, it may be noted that these overall findings are

strongly driven by the within-network analyses. Here, not
removing any GSR clearly yields the most reliable mea-

sures of functional connectivity. In turn, estimates for

functional connectivity between the two assessed networks
(WMN and eSAD) are most reliable when mean signal

time courses for all three-tissue classes were removed from
the data. Finally, we noted that removing the mean WM

and CSF signal seems to provide a good compromise, as

this approach yields reliable estimates of within- and
between-network connections, although it is not the best

approach in either case. Furthermore, Yan et al. (2013b)

suggested that global signal regression is nearly identical to
gray matter regression. Thus, both the results from Yan

et al. (2013b) and our present data argue for using only the

mean WM and CSF signal (but not the mean gray matter)
for nuisance signal regression.

The issue of global signal regression is strongly tied to

the question of (spurious or induced) anti-correlations. This
is also evident in our data. Without any global signal

removal, both within- and between-network connections

correlate positively. This indicates that global fluctuations
override any potential local anti-correlations. Yet, when

variance explained by the global signal or the mean WM

and CSF is removed, between-network connections
become predominantly negative. That is, only when global

changes in the BOLD signal are removed, do the estimated

functional connectivity values reflect the repeatedly advo-
cated anti-correlated structure of ‘‘task-positive’’ and

‘‘task-negative’’ networks. Should these thus be considered

spurious? One argument against this rather critical view
comes from task-based fMRI studies (Greicius et al. 2003;

Greicius and Menon 2004), which have clearly shown that

regions such as the eSAD reduce their activity during
cognitive tasks, which in order recruit fronto-parietal net-

works such as the working-memory network investigated

here. However, global signal removal or, more commonly,
scaling is also a standard approach also in task-fMRI

(Macey et al. 2004). Another possibility is that global

signal may be comprised primarily of non-neuronal sour-
ces, rendering the positive correlation between any two

parts of the brain in the absence of global signal regression

spurious (Murphy et al. 2009). We would, therefore, argue
that global (positive) correlation and between-network

anti-correlations might be considered as two aspects of a

more complex situation. In particular, it seems that anti-
correlative structures between large-scale networks are

superimposed on larger waves of global signal changes,

which may be non-neuronal in origin (Fox et al. 2009).
Nevertheless, more recently, Schölvinck et al. (2013)

suggested that the global signal is tightly coupled to the

neuronal signal. In addition, Pisauro et al. 2016 showed
that global components in mice are coupled to pupil dila-

tion as a measure of sympathetic function. Thus, they may

be partially neuronal and non-neuronal in origin. In such
case, removal of global signals likewise acts as a focus on

(smaller) local effects of anti-correlated nature while

ignoring the large-scale synchronization of BOLD patterns.
In turn, not removing any global signal would preserve the

latter and hence bring the positive relation between all
time-series that is present in the acquired data into focus.

General discussion

When assessing the test–retest reliability of resting-state

fMRI connectivity estimates, one unlikely but still impor-
tant caveat must be considered. It is possible that increased

reliability, i.e., higher correlation and lower absolute dif-

ference, will be caused by excessive removal of variance.
In the extreme case, when the time series would be reduced

to a flat line, test–retest reliability would be perfect.

However, beyond this hypothetical extreme case, the
relationship between reliability and variance is interesting;

as it sheds light on the question to what extent our methods

remove noise (in that case residual variance and reliability
would be positively related) or relevant signal (which

would render the relationship negative). In our assessment,

we found that methods providing results that are more
reliable also feature higher residual variance within the

extracted time series (Fig. 9, the correlation between

residual variance and reliability scores is 0.87) Therefore,
reliability seems proportional to the retained variance,

reinforcing the observations by Birn et al. (2014) and Yan

et al. (2013a).
Another point to consider is the relationship between

reliability and validity. The underlying idea of all prepro-

cessing approaches is to remove variance in the data that
may be attributable to noise or, more generally, non-neu-

ronal sources. This naively assumes that more aggressive

confound removal should increase the biological validity of
the obtained results. However, this assumption has been

challenged, most notably with respect to global signal

regression. Here, it has been argued that removing global
signal as a confound may actually introduce a bias in the

analysis (Murphy et al. 2009; Weissenbacher et al. 2009;

Saad et al. 2012), that may lead to reduction in validity.
Conversely, the argument has been made that global signal

regression is the most effective approach to remove the

effect of motion-related variance (Power et al. 2014) and
hence should increase validity. This already illustrates that

the relationship between data preprocessing, and in par-

ticular confound removal, and validity is not trivial. The
present results add another layer of complexity by showing
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that refraining from using global signal regression and PCA

denoising, i.e., using less confounds removal, actually lead
to better test–retest reliability. In other words, removing

variance that is related to potentially confounding factors

reduces reliability, pointing to the possibility that struc-
tured noise may be beneficial for test–retest reliability. In

addition, indeed, it may be assumed that vascular of

physiological factors remain largely stable between ses-
sions and hence help to increase reliability, even though

their removal should, in theory, improve the validity of the
results. Maximizing (test–retest) reliability and biological

specificity/validity may hence represent (partially) con-

flicting aims.
The functional connectivity strength (i.e., correlation

coefficients) between regions might vary with changes in

the level of observation noise (Friston 2011). In this study,
two resting-state networks (eSAD and WMN), which may

be considered as robustly a priori defined resting state

networks has been chosen, with prior assumptions such as
strong positive coupling among them and anti-correlated

with each other (Fox et al. 2005). When there is not any

change in the observational noise, then the functional
connectivity strength (i.e., correlation coefficients) is

expected to be stable (Friston 2011). Therefore, instead of

quantifying the connectivity strengths, we mainly focused
on reproducibility of the connectivity strength with a cer-

tain confound removal within a subject from one session to

another session. Furthermore, following the current stan-
dard in the field, our study quantified functional connec-

tivity by the Pearson correlations between the time series of

two regions. Consequently, other regions within or outside
the network could influence such correlations. Such influ-

ences, however, were not specifically investigated, given

that they should be likewise present in both sessions and,
most importantly, the focus of our work is to provide an

assessment of how the reproducibility of the widely used

time-series correlation measures are based on different
approaches to confound removal. That is, we here

addressed the pragmatic question, which confound removal

strategy yields the highest reliability for a standard analysis
approach, rather than addressing which analysis approach

may yield the most appropriate representation of a network.

Evidently, more investigations are needed to better
understand the sources of both noise and signal in resting-

state fMRI data, a question that is complicated by a lack of

ground truth. Nevertheless, the current results thus point to
a potential tradeoff between reliability (which may benefit

from structured noise) and biological validity (which

should be optimal if all non-neuronal variance is removed
(Huettel et al. 2004; Chang et al. 2009; Kim and Ogawa

2012). Based on the present results, we would thus tenta-

tively propose that in cases in which reliability should be of
particular importance, for example, in clinical applications,

it may be advisable to refrain from global signal regression

and PCA denoising to maximize the reliability albeit
potentially through the influence of structured noise.

ICA-based denoising is one of the recently emerging

confound removal approaches. A recent study showed that
it can effectively remove the artifacts coupled with motion

(Pruim et al. 2015b) and potential other sources of noise

(Griffanti et al. 2014). The entire resting-state scan is
decomposed into independent components (IC) (using FSL

melodic, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC).
ICs coupled with various artifacts were identified with the

help of a classifier. ICs classified as noise is then regressed

out of the raw fMRI time series. Thus, ICA-based
denoising aims to automatically classify and remove the

components representing mostly noise rather than neuronal

signal (Salimi-Khorshidi et al. 2014; Pruim et al. 2015b).
The effectiveness of the strategies mainly depends on the

feature selection and the sensitivity of the classifier, as

these parameters play a major role in identifying the arti-
factual signals. In recent evaluation studies, ICA-based

denoising strategies resulted in an increase of the between

subjects reproducibility (Griffanti et al. 2014; Pruim et al.
2015a). In this study, however, we did not address ICA-

based denoising approaches, as we mainly focused on the

currently most widely used approaches. In turn, ICA-based
denoising is a very promising but yet emerging approach as

also demonstrated in our survey. Therefore, further inves-

tigations are needed to address the reliability of ICA-based
approach both in comparison to and in combination with

conventional confound removal strategies. Along with it,

there are methods that mainly address local and global
artifacts induced by the hardware and partial volume

effects (such as: ANATICOR (Jo et al. 2010, 2013)). As

the current study mainly studied the influences of biolog-
ically induced artifacts, methods like ANATICOR were not

addressed here. Furthermore, it has been observed from the

literature survey (Fig. 1) that ANATICOR (which has been
reported in the categories named ‘others’) is not a standard

method and poorly used in the recent studies.

In this study, the connectivity measures were obtained
with standard Pearson correlations. Other approaches have

also been applied to this computation, with partial corre-

lation becoming an increasingly advocated alternative
(Cole et al. 2010). Partial correlation computes the corre-

lations between two ROIs after regressing out the shared

variance of all other ROI time series in the model. How-
ever, we are here concerned with testing the effects of

several widely used analysis-choices on the reliability of

the most common approach. Therefore, given that the
overwhelming majority of all resting-state analyses employ

full correlations, we here performed a practical evaluation

of the impact of currently debated analyses choices on the
estimation of functional connectivity by Pearson
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correlations. Nevertheless, testing the test–retest reliability

using partial correlation could be one perspective study of
the current one. Furthermore, the subjects were instructed

to close their eyes during the resting state session, to reduce

the external (visual) stimulation and eye movements. All
the subjects included in this study had confirmed to be

awake while debriefing. The condition of eyes closed (EC)

may be considered as a limitation of the study, as Patriat
et al. (2013) showed higher reliability with eyes open (EO)

condition rather than eyes closed (EC) condition. However,
Patriat et al. (2013) also reported that the connectivity

strengths are not sensitive to the global noise variations.

Therefore, further investigations of reliability of EO and
EC with and without global noise regression are needed to

provide recommendations regarding this parameter.

Finally, it has to be noted that the recommendations in this
paper may not necessarily apply to brain-behavior analysis

examining the relationship between behavioral measures

and functional connectivity measures. That is, we here
focused on a priori defined meta-analytical networks and

their (known) relationships to each other as large-scale

anti-correlated systems in the human brain (Fox et al.
2005). What remains to be assessed using a dedicated

sample for which test–retest data not only of imaging

measures, but also behavioral information is available is
this, whether the methods yielding the best reliability in our

analysis also provide the most reliable brain-behavior

relationships. Likewise, it remains to be tested, whether the
identified recommendations also hold for multivariate

analyses, e.g., in the context of group classification.

Conclusions

This study assessed test–retest reliability of resting-state

fMRI analyses based on a priori ROIs using methods that

are applicable without direct recordings of physiological
signals (heartbeat, breathing), as is common in clinical and

neuro-scientific practice. In particular, our results showed

that, when using the larger clusters as regions of interest,
gray matter masking based on the group-average GM

probabilities is advisable. However, In addition, PCA

denoising reduces the reliability of connectivity estimates.
Finally, with respect to global signal regression, we

observed that refraining from this approach enhances test–

retest reliability but comes at the expense of potentially
poorer biological validity, including missing anti-correla-

tions between what has been previously described as

antagonistic networks. Here, removal of global white
matter and CSF signals seems to provide a good compro-

mise, as this approach yielded more reliable and potentially

meaningful estimates of within- and between-network
connections. Importantly, we note that reliability is

proportional to the retained variance, presumably including

structured noise. Consequently, a compromise exists
between maximizing the test–retest reliability and remov-

ing variance that may be attributable to non-neuronal

sources.
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Supplementary material: 

Supplementary figure S1: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on connection level are shown for Spearman correlations of the main 
analysis conducted using meta-analytically derived cluster volumes. 
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Supplementary figure S2: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on subject level are shown for Spearman correlations of the main 
analysis conducted using meta-analytically derived cluster volumes. 
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 Supplementary figure S3: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on connection level are shown for absolute differences of the main 
analysis conducted using meta-analytically derived cluster volumes. 
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 Supplementary figure S4: Individual rankings using a non-parametric Friedman ANOVA of 
the test-retest reliability on subject level are shown for absolute differences of the main 
analysis conducted using meta-analytically derived cluster volumes. 
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Supplementary figure S5: Combined rankings of the test-retest reliability on subject and 
connection level are shown for Spearman correlations and absolute differences of the 
analysis conducted using spherical ROIs of 5 mm radius rather than the actual cluster 
volumes  
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 Supplementary figure S6: Combined rankings of the test-retest reliability on subject and 
connection level are shown for RoSO and RoCO of the analysis conducted using spherical 
ROIs of 5 mm radius rather than the actual cluster volumes 
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 Supplementary figure S7: Summary rankings of reliability across Spearman correlations and 
absolute differences as well as RoSO and RoCO are shown separately for WMN and eSAD 
networks for the analyses that defined the volume of interest A) by using spherical ROIs of 5 
mm radius and B) by using the actual cluster volumes 
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 Supplementary figure S8: Combined rankings of the test-retest reliability on subject and 
connection level are shown for Spearman correlations and absolute differences of the 
analysis conducted using 5 components of PCA derived from the whole brain rather than 
only the WM and CSF regions. 
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 Supplementary figure S9: Combined rankings of the test-retest reliability on subject and 
connection level are shown for RoSO and RoCO of the analysis conducted using 5 
components of PCA derived from the whole brain rather than only the WM and CSF regions. 
 
 



	 59	

Supplementary figure S10: Summary rankings of reliability across Spearman correlations 
and absolute differences as well as RoSO and RoCO are shown separately for within (WMN 
& eSAD) and between networks for the analyses A) PCA components derived from the 
entire brain and B) PCA components derived from the WM & CSF regions.  
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Abstract: Previous whole-brain functional connectivity studies achieved successful classifications of
patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we
examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Par-
kinson’s disease (PD), or normal aging equally translate into high classification accuracies for these
conditions. We compared classification performance between pre-defined networks for each group
and, for any given network, between groups. Separate support vector machine classifications of 86
SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls,
respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined net-
works using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of
the various networks clearly differed between conditions, as those networks that best classified one
disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy,
and cognitive action control networks distinguished patients most accurately from controls. For PD,
but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-
of-mind cognition yielded the best classifications. In contrast, young–old classification was excellent
based on all networks and outperformed both clinical classifications. Our pattern-classification
approach captured associations between clinical and developmental conditions and functional network
integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our
results support resting-state connectivity as a marker of functional dysregulation in specific networks
known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more
global way. Hum Brain Mapp 38:5845–5858, 2017. VC 2017 Wiley Periodicals, Inc.

Key words: schizophrenia; Parkinson’s disease; normal aging; support vector machine; resting-state
fMRI; functional connectivity; brain networks; machine learning
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INTRODUCTION

Schizophrenia (SCZ) and Parkinson’s disease (PD) are
two of the most prevalent and socio-economically relevant
brain diseases [Andlin-Sobocki et al., 2005]. Although SCZ
onset typically emerges during adolescence and early adult-
hood [H€afner et al., 2013], PD is characterized by an onset
during late adulthood [Hughes et al., 1992; Poewe et al.,
2017] and has been associated with premature aging, that is,
earlier and more rapid neurodegeneration as compared
with the course of normal aging (NA) [Rodriguez et al.,
2015]. Both SCZ and PD are characterized by disease-
specific pathophysiological changes of the dopaminergic
system [Jankovic, 2008; Toda and Abi-Dargham, 2007], con-
trasting with a more global dopamine decline in NA
[B€ackman et al., 2006]. However, it has been proposed that
dopaminergic dysfunction in SCZ arises as a secondary
effect due to alterations of the glutaminergic system [Lar-
uelle et al., 2003]. In contrast, in PD dopaminergic deficiency
represents the primary cause leading to pathophysiological

upstream dysregulations of different neural systems [Obeso
et al., 2008]. These neurobiological features of SCZ, PD and
NA [B€ackman et al., 2006; Jankovic, 2008; Laruelle et al.,
2003; Obeso et al., 2008; Rodriguez et al., 2015; Toda and
Abi-Dargham, 2007] may manifest themselves in functional
connectivity alterations at the level of large-scale brain net-
works [Cole et al., 2013; Kelly et al., 2009; Narr and Leaver,
2015; Prodoehl et al., 2014; Sala-Llonch et al., 2015]. How-
ever, some putative commonalities (neurodegeneration,
dopaminergic dysregulations, and altered connectivity)
need to be juxtaposed with the prominent phenotypical dif-
ferences between SCZ, PD, and NA [B€ackman et al., 2006;
Jankovic, 2008; Narr and Leaver, 2015; Prodoehl et al., 2014;
Sala-Llonch et al., 2015; Toda and Abi-Dargham, 2007] and
the fact that the clinical presentations of SCZ and PD are
very different [Eaton et al., 1995; Jankovic, 2008; Kalia and
Lang, 2015; van Os and Kapur, 2009], raising the question
whether various functional systems are differentially
affected in the three conditions. Rather than assessing
altered activations in different functional systems by
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conducting task-based functional magnetic resonance imag-
ing (fMRI) studies, we examined altered functional connec-
tivity within various functional networks robustly defined
by meta-analyses of task-based neuroimaging studies in a
comparative fashion [cf. New et al., 2015; Schilbach et al.,
2016]. This has the practicable advantage of using easily
accessible, short and standardized resting-state (RS) data
while at the same time incorporating the consolidated
knowledge based on task-based imaging into the analysis.
We argue that such an approach is particularly relevant
given that in contrast to RS imaging, task-based assessments
will rarely be feasible in a routine clinical setting.

Alterations in functional network integrity patterns in
SCZ, PD or older adults (compared with respective
healthy/young controls) can be captured by using
machine learning-based classification. For extracting a
diagnostically relevant marker that allows the classification
of individual subjects based on the connectivity in func-
tional brain networks, multivariate decoding algorithms
like support vector machine (SVM) should provide the
most appropriate approach for this endeavor. Rather than
testing each connection independently for group differ-
ences, SVMs are trained on part of the data by weighting
all connections in order to separate the known clinical sta-
tus from healthy controls (HCs). Classification accuracy
can then be determined by assessing the ability to predict
group membership of previously unseen subjects. Applied
to (whole-brain) connectivity data, this approach has pre-
viously been found to distinguish SCZ patients [cf. Arbab-
shirani et al., 2016; Kambeitz et al., 2015; Wolfers et al.,
2015] or PD patients [cf. Chen et al., 2015; Long et al.,
2012] from HCs, as well as aged from young subjects (NA)
[cf. Meier et al., 2012; Vergun et al., 2013].

Previous pattern-classification studies aimed at providing
the best possible classification performance on whole-brain
connectivity. In contrast, the aim of this work was to assess
whether specific functionally defined networks are altered in
SCZ, PD, and NA. Although previous studies mainly used
Independent Component Analysis (ICA) based data-driven
methods to extract major RS networks [Damoiseaux et al.,
2006; Smith et al., 2009], our work is based on a priori meta-
analytically defined networks associated with specific sets of
behavioral functions such as working memory [Rottschy
et al., 2012] or emotional processing [Sabatinelli et al., 2011].
In contrast to well-established RS networks, these networks
represent the consolidated information from hundreds of
task-based fMRI studies and hence those locations in the
brain that are reliably activated when subjects perform tasks
pertaining to a particular mental function. We thus argue
that these nodes define robust functional networks in the
brain related to specific mental domains. In turn, the func-
tions associated with RS networks are usually derived from
a reverse inference approach, as these lack any direct rela-
tionship to mental functions [Poldrack, 2011]. We suggest
that this more direct relationship between the network-
nodes and actual task-demands is an important advantage
of our approach. Moreover, the employed strategy results in

an a priori, unbiased definition of the respective networks,
whereas ICA-based networks are usually defined from the
current data [Cole et al., 2010]. Our meta-analytically derived
network model approach thus offers the potential to investi-
gate functional connectivity within robust a priori brain net-
works that are implicated in processing a specific mental
process.

Therefore, this study aimed to examine whether the
known impairment of different functions in SCZ, PD, or
aging, respectively, would equally translate into a high
classification accuracy for a given network in the respec-
tive group, based on the connectivity pattern within this
network. As a “proof-of-principle” approach we therefore
intended to investigate whether various a priori networks
based on task-activation findings carry differential disease-
related information assessable by RS imaging. To this end,
we examined two diseases which are clinically very dispa-
rate but well studied in the previous neuroimaging litera-
ture. The findings were then juxtaposed to findings on
age-related effects in the same networks. Thereby, we
could evaluate whether the respective networks carry dif-
ferential information related to the different conditions or,
conversely, whether the different networks carry differen-
tial information related to a particular condition. Given
some putative commonalities and especially phenotypical
differences, the aim was to examine the possibility for dif-
ferential classification of SCZ, PD, und age, rather than to
primarily study the specific diseases and their clinical sep-
aration from each other or aging per se. In our investiga-
tion, these three groups thereby serve as examples to
evaluate this approach. For example, we assume that con-
nectivity in the reward (Rew) network will be potent in
differentiating SCZ patiens from matched HCs, as several
studies have shown impairments related to reward learn-
ing in SCZ, and the neurobiology of this network has been
linked to psychosis [Deserno et al., 2013; Heinz and Schla-
genhauf, 2010; Radua et al., 2015]. Likewise, we would
expect a good classification accuracy for PD patients based
on FC in the motor network, given that motor impair-
ments represent the core feature of this disease [Jankovic,
2008], and motor circuits in the brains of PD patients are
altered during motor tasks and at rest [Herz et al., 2014;
Prodoehl et al., 2014; Tessitore et al., 2014]. Finally, NA is
accompanied by cognitive decline in various domains
[Glisky, 2007], such as deterioration in working memory
function [Braver and West, 2008]. For the latter, age-
related neural changes have repeatedly been shown at task
[Dennis and Cabeza, 2008; Rajah and D’Esposito, 2005]
and rest [Keller et al., 2015]. Accordingly, we assume that
the working memory (WM) network allows a clear distinc-
tion between old and young adults.

In an explorative manner, we furthermore assessed a
broad set of networks associated with different behaviou-
ral domains (cognitive, social-affective, motivational, and
motor-related) since all three conditions (PD, SCZ, and
NA) show alterations in various functional domains on the
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behavioral and neural level [Barch, 2005; Duncan et al.,
2013; Seidler et al., 2010]. Importantly, in our approach, we
reasoned that classification performance may be interpreted
as an indication for the amount of information contained in
a given network regarding a particular disease or age sta-
tus, and thus of the degree of change observed in the integ-
rity of particular networks under these conditions.

We assume that classification performance will be best for
connectivity in those networks that subserve mental func-
tions known to be affected in SCZ and PD. SCZ is character-
ized by prominent social-affective/motivational alterations
[Brunet-Gouet and Decety, 2006; Deserno et al., 2013; Heinz
and Schlagenhauf, 2010; Kring and Elis, 2013; Radua et al.,
2015], whereas in PD motor impairments are most affected
[Herz et al., 2014; Rowe and Siebner, 2012; Tessitore et al.,
2014]. We, therefore, hypothesized that social-affective/moti-
vational and motor-related networks provide a superior clas-
sification of SCZ and PD patients, respectively. As both
diseases are accompanied by cognitive impairments as well,
we assumed that cognitive networks may also be predictive
to some degree [Barch, 2005; Duncan et al., 2013; Elgh et al.,
2009; Nieoullon, 2002]. As NA is associated with a broad
spectrum of decline affecting various functional systems
(albeit to a varying degree) [Hedden, 2007; Mather, 2016;
Seidler et al., 2010], we expected that most networks allowed
for an accurate discrimination of old from young adults.

MATERIALS AND METHODS

Samples

Schizophrenia

RS fMRI data and phenotypical information of 86 SCZ
patients and 84 HCs obtained from the COBRE sample
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html)
and the University Hospital of G€ottingen, Germany, were
included in the analysis. SCZ diagnosis was assigned as
assessed by the DSM-IV-TR based on the structured clinical
interview (SCID-P) and the International Classification of
Diseases (ICD-10), respectively. SCZ symptom severity was
assed using the Positive and Negative Symptom Scale
(PANSS) [Kay et al., 1987] evaluating the severity of positive
and negative symptoms as well as the general psychopa-
thology. Patients received their regular medication therapy
with considerable variability in the exact compounds used
and a high prevalence of combination drug therapy (medi-
cated patients but exact medication and dose unknown for
Olanzapine equivalent dose [Gardner et al., 2010]: COBRE:
50.9%; G€ottingen: 25.8%; medication status unknown:
COBRE: 1 SCZ patient; G€ottingen: 2 SCZ patients).

Parkinson’s disease

RS fMRI data of 80 PD patients and 84 HCs obtained from
the RWTH Aachen University Hospital and the University
Hospital D€usseldorf, Germany, were included in the

analysis. Diagnosis of PD was assigned by consultant neu-
rologists with longstanding expertise in movement disor-
ders based on clinical examination and review of the
medical history. Included PD patients fulfilled the standard
UK Brain Bank criteria for PD and had on average a mild
cognitive impairment as confirmed by the Montreal Cogni-
tive Assessment (MoCA) but no major depression symp-
toms [Hoops et al., 2009; Hughes et al., 1992; Nasreddine
et al., 2005].

To assess PD symptom severity and evaluate motor
impairments the Unified Parkinson’s Disease Rating
Scale Part III [Movement Disorder Society Task Force on
Rating Scales for Parkinson’s Disease, 2003] (UPDRS)
and Hoehn and Yahr Scale (H & Y Scale) [Hoehn and
Yahr, 1967] were applied. All patients were medicated
with their regular individual PD-related treatment (medi-
cation and dose unknown for Levodopa equivalent daily
dose [Tomlinson et al., 2010]: Aachen: 28.1%; D€usseldorf:
12.5%).

Healthy controls

RS fMRI data of HC (HCSCZ and HCPD) were obtained
from the four different sites as respective clinical subjects
(SCZ and PD), and were without any record of neurologi-
cal or psychiatric disorders as confirmed via structured
clinical screening.

Normal aging

RS fMRI data of 95 old (age range: 55–70 years) and 93
young (age range: 20–35 years) participants with an age
range of 15 years in each group were obtained from the
population-based 1000BRAINS study [Caspers et al., 2014]
and another separate study at the Research Centre J€ulich,
Germany. This relative small age-range aims to enhance
the subsample homogeneity. “NA” in old participants
refers to the absence of neurodegenerative diseases. Older
adults showed cognitive performance adequate for their
age (DemTect> 13) as assessed by the Mild Cognitive
Impairment and Early Dementia Detection (DemTect)
assessment [Kalbe et al., 2004] and all participants did not
exhibit clinically relevant symptoms for depression (BDI-
II< 13) as evaluated via the Beck Depression Inventory-II
[Beck et al., 1996].

Importantly, target and control groups (i.e., patients vs.
HCs, old vs. young adults) of all three samples (PD, SCZ,
NA) represent subsamples from larger samples that were
post-hoc matched for gender, within-scanner movement
and (only for the clinical samples) age (cf. Table I for sam-
ple and group matching characteristics). Written informed
consent from all subjects and approval by the local ethics
committees was obtained from all sites. Joint reanalysis of
the anonymized data was approved by the ethics commit-
tee of the Heinrich Heine University D€usseldorf.
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RS fMRI Data Acquisition, Preprocessing, and
Analysis

During image acquisition (see Supporting Information
Table SI for fMRI parameters), participants were instructed
to lie still, let their mind wander and not fall asleep (con-
firmed at debriefing). SPM8 (www.fil.ion.ucl.ac.uk/spm)
was used for image realignment, spatial normalization to
the MNI-152 template using the unified segmentation
approach [Ashburner and Friston, 2005], and smoothing
“5-mm full-width at half-maximum Gaussian kernel”.

We investigated 12 functional networks, robustly defined
by previous quantitative meta-analyses, to reflect neural
correlates of a broad set of cognitive, social-affective/

motivational and motor functions (see Table II for an over-
view and Supporting Information Table SII for detailed net-
work coordinates and corresponding brain regions). Only
meta-analytic networks with a minimum of 10 nodes were
included, since a lower number of features are uninforma-
tive for robust classification. RS functional connectivity
(RSFC) within each network was computed per subject by
first extracting the time-series for each node within 6 mm of
the meta-analytic peaks. To reduce spurious correlations,
variance explained by the six movement parameters and
their derivatives (modeled as first and second order effects)
as well as the mean white-matter and cerebrospinal fluid
signal time-courses was removed from the time series [Sat-
terthwaite et al., 2013; Varikuti et al., 2016]. Subsequently,

TABLE I. Sample and group matching characteristics

Sample n (males)
Age

(years)

Head
movement
(DVARS)

Age at
onset

(years)

Illness
duration
(years)

Antipsychotic/
dopaminergic

medication
Neuropsychology and

psychopathology

SCZ sample OZP-equivalent PANSS: Total/PS/NS/GEN
COBRE

SCZ patients 55 (46) 38 6 14 1.66 6 0.55* 20 6 8 17 6 14 13 6 8 58 6 14/14 6 5/14 6 5/29 6 8
HCscz 55 (42) 38 6 12 1.44 6 0.41

G€ottingen
SCZ patients 31 (25) 32 6 10 1.47 6 0.30* 25 6 8 7 6 8 14 6 9 52 6 11/12 6 3/13 6 4/28 6 6
HCscz 29 (22) 32 6 9 1.31 6 0.23

Total
SCZ patients 86 (71) 36 6 13 1.59 6 0.48*
HCscz 84 (64) 36 6 11 1.39 6 0.36

PD sample LEDD H & Y Scale UPDRS-III MoCA
Aachen

PD patients 32 (21) 64 6 9 0.51 6 0.16 59 6 8 6 6 5 449 6 238 2 6 1 23 6 12 27 6 2
HCPD 33 (20) 63 6 6 0.62 6 0.29

D€usseldorf
PD patients 48 (30) 59 6 9 0.69 6 0.26 51 6 9 8 6 6 1029 6 416 2.5 6 1 16 6 8 24 6 4
HCPD 51 (30) 57 6 9 0.68 6 0.22

Total
PD patients 80 (51) 61 6 9 0.62 6 0.24
HCPD 84 (50) 59 6 8 0.66 6 0.25

NA sample DemTect BDI-II
J€ulich

Old 48 (26) 61 6 5 1.58 6 0.41* 16 6 2 5 6 5
Young 52 (26) 26 6 3 1.24 6 0.24 5 6 4

1000BRAINS J€ulich
Old 47 (25) 64 6 4 1.79 6 0.43* 15 6 2 6 6 5
Young 41 (23) 28 6 4 1.28 6 0.26 4 6 4

Total
Old 95 (51) 63 6 5 1.68 6 0.43*
Young 93 (49) 27 6 4 1.26 6 0.25

SCZ, schizophrenia; HCSCZ, matched healthy controls (HCs) of SCZ sample; PD, Parkinson’s disease; HCPD, matched HCs of PD sam-
ple; NA, normal aging; characteristic values in mean 6 standard deviation; DVARS, derivative of root mean squared variance over vox-
els (head movement parameter) [Power et al., 2012]; significant difference in age (clinical samples), gender and movement are marked
with * for P< 0.05; SCZ: OZP-equivalent [Gardner et al., 2010], Olanzapine equivalent dose; PANSS, Positive and Negative Symptom
Scale, (PS, Positive Symptoms Scale/NS, Negative Symptoms Scale/GEN, General Psychopathology Scale); PD: LEDD [Tomlinson et al.,
2010], Levodopa equivalent daily dose; H & Y Scale, Hoehn and Yahr Scale; UPDRS-III, Unified Parkinson’s Disease Rating Scale Part
III; MoCA, Montreal Cognitive Assessment; NA: DemTect, Mild Cognitive Impairment and Early Dementia Detection, BDI-II, Beck
Depression Inventory II.
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time series were high-pass filtered retaining frequencies
above 0.01 Hz. Connectivity was computed as the Fisher’s
Z-transformed Pearson correlation between the time series
of each network’s nodes; connectivity values were adjusted
for effects of acquisition site, gender, movement, total brain
volume, and (only for the clinical samples) age [cf. Schilbach
et al., 2014, 2016] to avoid classification based on spurious
between-subject effects.

SVM Features and Classification

To examine whether the RSFC pattern of a network con-
tains predictive information on the respective groups (SCZ
vs. HCSCZ, PD vs. HCPD, old vs. young) non-sparse linear
two-class SVMs were computed using LibSVM [Chang
and Lin, 2011] (https://www.csie.ntu.edu.tw/~cjlin/
libsvm). SVMs’ were trained separately for each of all
three analyses (PD, SCZ, NA) and each of the functional
networks. Of note, we did not attempt between-patient
classification (i.e., PD vs. SCZ), as the different groups
were closely matched to their respective controls but sub-
stantially different from each other with respect to age,
gender, and movement. The input variables (features) to
the SVM consisted of edge-wise RSFC between all nodes
of a given network. Each SVM was trained and tested by a
nested 10-fold cross-validation scheme for each individual
group (see e.g., Fig. 1 [Xia et al., 2013]) [cf. Lemm et al.,
2011]. The inner loop used a 10-fold cross-validation
within the training group to optimize the soft-margin slack
parameter. For each fold of the outer loop, the left-out
(unseen) 10% were then classified using the SVM trained
on the (entire) training-set using the optimized parameter.
This nested scheme ensured that classifier optimization
and evaluation was performed independent of each other
[Kriegeskorte et al., 2009]. Classification performance was
evaluated based on accuracy (Acc.) balanced accuracy
(bAcc.), sensitivity (Sens.), and specificity (Spec.) as well as
two measures derived from signal-detection theory: the
area under the receiver operating characteristics (ROC)
curve (AUC) [Fawcett, 2004] and d’. Acc. denotes the over-
all proportion of subjects correctly classified as patients
(PD, SCZ) or advanced age versus healthy or younger age,
respectively. The bAcc. is calculated as the average pro-
portion of subjects correctly classified as patients (PD,
SCZ) or advanced age versus healthy or younger age,
respectively. Sens. indicates the percentage of patients
(SCZ or PD) correctly classified as ill or subjects correctly
classified as old in the aging sample (true positives). Spec.
in turn represents the fraction of HCs correctly classified
as healthy or subjects correctly identified as young in the
aging sample (true negatives). AUC refers to the area
under the ROC curve. An ROC curve depicts the relation-
ship between true positive rate and false positive rate, and
its AUC value indicates the sensitivity of the diagnostic
process independent of any specific decision criterion.
Finally, we assessed d’, an alternative index of diagnostic
sensitivity independent of the decision criterion, calculated
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as z(true positive rate) – z(false positive rate). To increase
robustness, the entire procedure was repeated 25 times,
and each performance measures was averaged across repe-
titions. To examine significant differences in classification
performance between networks within each group, pair-
wise t-tests were performed for each of the 12 networks
based on the accuracies obtained from the 25 cross-
validation outer loop replications of the separate SVMs
(significance threshold of P< 0.05, Bonferroni-corrected for
the number of pairwise network comparisons).

To compare the separately conducted classifications for
SCZ versus HCSCZ and PD versus HCPD subgroups, accu-
racies obtained for each individual analysis for every net-
work were converted to standardized z-scores by reference
to the binomial distribution reflecting chance level and
corrected for multiple comparisons by the amount of
networks-based classifications. Log-likelihood ratios were
estimated to identify networks showing better classifica-
tion performance for one patient group than the other. To

investigate significant differences in classification perfor-
mance between the groups, t-tests were calculated based
on the 25 accuracies obtained from the cross-validation
outer loop replications of the separate SVMs performed in
each group (SCZ, PD, NA) for each of the 12 networks
(significance threshold of P< 0.05, Bonferroni-corrected for
the number of groups and networks).

RESULTS

As expected, SCZ patients could be distinguished above
chance from matched HCs based on RSFC in the Rew net-
work (Acc. 5 68%; AUC 50.73). In turn, PD patients were
distinguished above chance from their matched HCs based
on RSFC in the motor network (Motor; Acc. 5 70%;
AUC 5 0.77). Finally, old and young subjects were differ-
entiated very well from each other based on RSFC in the
WM network (Acc. 5 79%; AUC 5 0.84). Results are

Figure 1.

Linear two-class SVM nested 10-fold cross-validation scheme.
Illustration of a SVM example for classification of the SCZ sample
based on the EmoSF network. As input variables (DATA) (5 fea-
tures) served the subjects’ RSFCs of all edges of every network.
The inner loop was performed in a 10-fold manner with 10 repeti-
tions conducted as parameter setting optimization on a training
sample. The outer loop was performed in a 10-fold manner with

25 repetitions conducted as classification accuracy testing on an
unseen test set. Classification performance measures are com-
puted based on the confusion matrix. Acc., accuracy; Sens., sensi-
tivity; Spec., specificity; AUC, area under the ROC curve and d’
(see “Materials and Methods” section for explanation). [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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summarized as follows: Figure 2A for polar plot of group
classification accuracies, Table III for Acc., Sens., Spec. and
AUC, Supporting Information Table SIII for bAcc., Sup-
porting Information Table SIV for d’, Supporting Informa-
tion Figure S1 for z-standardized accuracies of all groups
and Supporting Information Figure S2 for variance of
accuracies.

Considering the performance of all functional networks
in distinguishing SCZ and PD patients from their respec-
tive HCs, a clear differentiation between networks

becomes evident, even though only 2 (SCZ) and 1 (PD)
out of 12 networks, respectively, did not significantly
exceed chance accuracy (Fig. 2B). The following results
and discussion are focused on networks with superior
classification performance for the respective disorders. In
this context, we would like to re-iterate that we did not
attempt to train any classifier to distinguish SCZ from PD
patients, since the two samples differed substantially from
each other in various confounding factors such as age,
gender distribution, and within-scanner movement.

Figure 2.

Group classification results of the SVM. (A) Polar plot of group
classification accuracies based on all 12 networks for SCZ (in
green), PD (in blue) and NA (in yellow). Accuracy refers to the
proportion of subjects correctly classified as patients (PD, SCZ)
or older age and subjects correctly classified as being HCs or
younger age. (B) Polar plot of z-standardized accuracies

(corrected for multiple comparisons) of patients classification
for SCZ (in green) and PD (in blue). (C) Log-likelihood ratios of
classification performance for networks showing higher classifi-
cation for one patient group vs. the other. [Color figure can be
viewed at wileyonlinelibrary.com]

TABLE III. Classification results of the SVM of all groups based on specific networks

Network (Abbr.)
SCZ vs. HCSCZ

Acc. (Sens./Spec.) AUC
PD vs. HCPD

Acc. (Sens./Spec.) AUC
Old vs. Young

Acc. (Sens./Spec.) AUC

EmoSF 72% (77%/68%) 0.79 63% (64%/63%) 0.68 88% (89%/86%) 0.93
ER 71% (77%/65%) 0.76 69% (74%/64%) 0.74 78% (79%/76%) 0.86
ToM 61% (74%/46%) 0.62a 67% (70%/64%) 0.71 78% (77%/80%) 0.84
Empathy 71% (73%/69%) 0.78 63% (61%/65%) 0.69 78% (80%/75%) 0.83
Rew 68% (73%/62%) 0.73 66% (70%/63%) 0.71 87% (85%/88%) 0.93
AM 62% (67%/57%) 0.71 75% (78%/73%) 0.76 80% (80%/80%) 0.89
SM 61% (67%/54%) 0.68a 69% (65%/73%) 0.75 84% (85%/83%) 0.90
WM 62% (65%/60%) 0.66 65% (68%/63%) 0.71 79% (80%/77%) 0.84
CogAC 68% (73%/63%) 0.69 62% (66%/57%) 0.67 73% (73%/74%) 0.83
VigAtt 68% (72%/63%) 0.72 65% (68%/63%) 0.67 80% (78%/83%) 0.89
MNS 64% (65%/63%) 0.73 57% (64%/51%) 0.53a 84% (83%/84%) 0.91
Motor 61% (72%/50%) 0.61 70% (68%/73%) 0.77 80% (79%/81%) 0.90

Abbreviations: Acc., Accuracy (in %)/Sens., sensitivity (in %)/Spec., specificity (in %)/AUC, area under the ROC curve.
aNetwork with no significant classification result.
Acc. refers to the proportion of subjects correctly classified as patients (PD, SCZ) or older age and subjects correctly classified as being
healthy or younger age (mean of sensitivity and specificity). Sensitivity relates to the percentage of patients (SCZ or PD) correctly classified
as being ill or else subjects correctly identified as old in the aging sample (true positives). Specificity relates to the percentage of healthy sub-
jects correctly classified as being healthy or else subjects correctly identified as young in the aging sample (true negatives). AUC refers to
the area under the ROCs curve. The ROC curve depicts the relationship between true positive rate and false positive rate.
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For SCZ, the emotional scene and face processing
(EmoSF) network (Acc. 5 72%; AUC 5 0.79) as well as the
networks for empathic processing (Empathy; Acc. 5 71%;
AUC 5 0.78) and cognitive action control (CogAC;
Acc. 5 68%; AUC 5 0.69) distinguished patients most accu-
rately from their HCs. Hence these networks’ connectivity
patterns may be considered to contain the highest level of
information with respect to SCZ. The EmoSF network was
significantly better in the SCZ classification compared with
all other networks (P< 0.001). For PD, the networks sub-
serving autobiographical memory (AM; Acc. 5 75%;
AUC 5 0.76), motor execution (Motor; Acc. 5 70%;
AUC 5 0.77), semantic memory (SM; Acc. 5 69%;
AUC 5 0.75), and theory-of-mind cognition (ToM;
Acc. 5 67%; AUC 5 0.71) yielded the highest classification
accuracies, that is, contained the most informative PD-
related differences in RSFC. The AM network was signifi-
cantly better in the PD classification compared with all
other networks (P< 0.001). All network comparison results
within the patient groups are summarized in Supporting
Information Tables SV and SVI.

The between-network comparison of classification per-
formance with respect to SCZ and PD revealed that the
networks discriminating either disorder from their respec-
tive controls were highly specific (Fig. 2B,C), indicating
that these networks carry differential amounts of informa-
tion regarding SCZ and PD, respectively. In particular,
both EmoSF and Empathy networks showed the best per-
formance at distinguishing SCZ patients from HCs
(EmoSF: z 5 5.9; Empathy: z 5 5.5) but were notably worse
at discriminating PD patients from their HCs (EmoSF:
z 5 3.2; Empathy: z 5 3.2). Similarly, the CogAC network
exhibited high accuracy at classifying SCZ patients and
their respective HCs (z 5 4.7) but inferior performance at
distinguishing PD patients from their HCs (z 5 2.7).

In turn, the motor network very well classified PD
patients and their HCs (z 5 5) but was remarkably ineffec-
tive at classifying SCZ patients and their HCs (z 5 2.9).
Likewise, the AM and SM networks achieved high accura-
cies in classifying PD patients and controls (AM: z 5 6.3;
SM: z 5 4.5) but performed much less well when classify-
ing SCZ patients and controls (AM: z 5 3.2; SM: z 5 2.5).
Networks which were most accurate in distinguishing SCZ
from HCs (EmoSF, Empathy, and CogAC) exhibited signif-
icant better classification performance in the SCZ group
compared to the PD group (EmoSF: P< 0.001; Empathy:
P< 0.001; CogAC: P< 0.001; Supporting Information Table
SVII). Likewise, networks which performed best at dis-
criminating PD patients from HCs (AM, Motor, SM, and
ToM) showed significant better classification performance
in the PD group compared with the SCZ group (AM:
P< 0.001; Motor: P< 0.001; SM: P< 0.001; ToM: P< 0.001;
Supporting Information Table SVII).

This differential picture markedly contrasted with the
results obtained for the classification between old and
young subjects. In the aging sample, each network yielded

accuracies! 73% (see Supporting Information Table SVIII
for network comparison results within NA), significantly
outperforming every classification obtained in the SCZ or
PD samples (P< 0.001; see Fig. 2A, Supporting Information
Figure S1, Table III, Supporting Information Tables SIX
and SX).

In particular, for each network the accuracy for classify-
ing a previously unseen participant as young or old was
about 10% higher than any clinical classification based on
the same network. Additionally, the comparison of all
three separate group classifications revealed that the vari-
ance of the classification accuracies over the 25 replications
of the outer loop was distinctively lower for the classifica-
tion of age, as compared with classifying the clinical status
(Supporting Information Fig. S2).

DISCUSSION

We assessed whether RSFC patterns in a diverse set of
functionally defined brain networks allowed for a classifi-
cation of patients with SCZ or PD or healthy older adults
on the one hand, and their respective healthy or young
controls on the other. Thereby, we evaluated which func-
tional system was most informative for a given condition
(i.e., SCZ, PD, or higher age). Conversely, our analysis also
assessed the amount of information on each condition
found in a given network. Our results show in a proof-of-
principle manner that networks pertaining to functions
known to be affected by SCZ, PD, or aging indeed exhib-
ited good classification performance for the respective con-
dition. Furthermore, each network’s young–old
classification outperformed any disease-related classifica-
tion. This indicates that specific networks are affected by
and associated with the diseases, whereas for healthy
older adults RSFC appears to be altered rather globally.

Conceptual Considerations

Our study demonstrates that machine-learning techni-
ques can be successfully used to assess whether RSFC in
functional systems known to be affected in SCZ, PD, or
advanced age exhibits high classification capacity for the
respective condition. Further, our approach compared the
classification capacity of RSFC patterns between different
functional networks and between several clinical and
physiological states. Of note, for each classification, target
and control groups (i.e., SCZ vs. HCscz, PD vs. HCPD, old
vs. young) were well matched with respect to gender and
(for the clinical samples) age. In addition, RSFC variance
attributable to these confounding factors or within-scanner
movement was regressed out of the data before the SVM
analyses. Therefore, these confounds were evidently het-
erogeneous across the three groups (SCZ, PD, NA) but
should not have influenced classification accuracy within
each condition. In spite of proper matching and state-of-
the-art removal of variance related to motion [cf. Power
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et al., 2012; Satterthwaite et al., 2013], residual effects that
only manifest in the multivariate pattern cannot be fully
ruled out. However, one factor worth noting is that, for
example, we observed differential classification perfor-
mance across networks in the SCZ sample, largely ruling
out a dominant general effect of head motion.

Given that both groups were assessed under their regular
medication, differences in classification performance may
be influenced by pharmacological treatment. In particular,
we cannot exclude that classification results of networks
modulated via dopaminergic transmission (e.g., reward or
motor system) might originate from interactions between
disease condition and medication. Unfortunately, however,
we could not perform a more detailed assessment of the
influence of medication, as the compounds, duration of
treatment and doses varied considerably between subjects,
with many receiving a combination of drugs.

When comparing classification performance to previous
work based on whole-brain functional connectomes [cf.
Chen et al., 2015; Long et al., 2012; Meier et al., 2012; Su
et al., 2013; Tang et al., 2012; Vergun et al., 2013; Yu et al.,
2013], we note that our approach yielded higher functional
specificity, allowing inference on the amount of disease-
specific information in well-defined functional systems.
We acknowledge that even though most of the classifica-
tions well exceeded chance level, the achieved network-
based classification accuracies are not strong enough for
successful connectivity-based single-subject diagnosis. Still,
our “sparse” approach achieved classification accuracies
comparable to those reported in previous whole-brain
studies, whose feature space obviously was substantially
larger than ours. This is particularly noteworthy given that
two further aspects besides feature space could be
expected to decrease classifier performance in our study
[Arbabshirani et al., 2016; Haller et al., 2014; Kambeitz
et al., 2015; Schnack and Kahn, 2016; Varoquaux et al.,
2016]: First, all of our three groups were based on rela-
tively large samples that were combined from two differ-
ent measurement sites and hence should be more
heterogeneous than usual. Second, we used replicated 10-
fold cross-validation, rather than the more optimistic
leave-one-out approach [Varoquaux et al., 2016]. We thus
argue that the chosen combination of examining robustly
defined functional networks and optimized analysis
through replicated and nested 10-fold cross-validation
may provide valuable new insights into the pathophysiol-
ogy of brain disorders that is not attainable through global
analyses of the entire functional connectome.

Classification of SCZ Patients and Controls

We found that the networks subserving EmoSF,
empathic processing as well as CogAC yielded the best
performance. Aberrant processing of emotional stimuli
[Takahashi et al., 2004] and impaired abilities to relate to
others’ affective states [Benedetti et al., 2009; Derntl et al.,

2012; Harvey et al., 2012] are features of SCZ and mirrored
in the degree of SCZ-related information that is contained
in the EmoSF (AUC 5 0.79) and Empathy (AUC 5 0.78)
networks. Further, the good classification performance of
the CogAC network resonates well with alterations in cog-
nitive control processes as a core deficit in SCZ [cf. Lesh
et al., 2011].

Somewhat surprisingly, the Rew network did not differ-
entiate SCZ from HCs with high accuracy, given the prom-
inent role of the dopaminergic system [Toda and Abi-
Dargham, 2007] and aberrant salience processing in psy-
chosis [Heinz and Schlagenhauf, 2010; Radua et al., 2015]
and the association with the reward system in this disor-
der. We conjecture that this lack of predictive information
could arise from the fact that in contrast to task-activation
data, RSFC analyses primarily capture the tonic rather
than phasic state of these networks [Schultz et al., 1997].

Classification of PD Patients and Controls

The superior classification performance observed for the
motor execution network (AUC 5 0.77) is hardly surpris-
ing, since motor impairments represent a key clinical fea-
ture of PD, and differences in action-related brain circuitry
are well established in this disorder [Herz et al., 2014;
Rowe and Siebner, 2012; Tessitore et al., 2014]. The finding
that the AM (AUC 5 0.76) and SM (AUC 5 0.75) networks
also achieved a very good differentiation of PD patients
from HCs was rather surprising, though. Although PD is a
neurodegenerative disorder and dementia is common in
PD patients [Aarsland et al., 2001, 2003], several patients
showed evidence for mild cognitive impairment, using the
MoCA for screening. We can hence only speculate that the
RSFC differences in AM and SM networks may pick up
these deficits as revealed by standard behavioral screening
instruments.

Finally, the good classification performance achieved by
the ToM network (AUC 5 0.71) was unexpected but
matches a growing literature of impaired social cognition
in PD patients [Bora et al., 2015; Poletti et al., 2011; D!ıez-
Cirarda et al., 2015].

Age Group Classification

One of the most striking observations from this study
was that every single network achieved a better classifica-
tion with respect to age group than with respect to SCZ or
PD. While we hypothesized that the broad spectrum of
age-related changes in various mental functions [Craik
and Salthouse, 2011; Glisky, 2007; Seidler et al., 2010]
would be reflected by changes in several networks [Craik
and Salthouse, 2011; Hedden, 2007; Mather, 2016; Seidler
et al., 2010], the consistency (across both networks and
replications) of high classification accuracies is intriguing.
It stands to reason that the mechanisms underlying the
discriminative changes in functional connectivity patterns
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may be diverse. In particular, they should include neuro-
degeneration (cognitive networks [Hedden, 2007]), neuro-
chemical changes (Rew networks [B€ackman et al., 2006]),
altered affective processing (social-affective networks
[Mather, 2016]) and use-dependent plasticity (motor net-
works [Demirakca et al., 2016]). In addition, it may be
argued that in spite of all inter-individual variability age-
related changes represent a more homogeneous change of
the neuro-functional architecture [Ferreira et al., 2016;
Meier et al., 2012] relative to the inevitable heterogeneity
among clinical populations.

Given that connectivity patterns of all systems differenti-
ated very well between young and old participants, we
acknowledge the possibility that the relevant drivers may
be of non-neural origin. In particular, despite of our opti-
mized confound removal [Power et al., 2012; Satterthwaite
et al., 2013; Varikuti et al., 2016], we cannot exclude that
residual effects related to motion or brain atrophy as well
as physiological effects such as macro- and microvascular
changes and their cumulative impact on hemodynamic
signals [D’Esposito et al., 2003] may have contributed to
our findings.

Although the contributions of neural and non-neural
effects outlined in this section certainly warrant further
investigation, one of the most critical conclusions that
should be taken from the high classification accuracy
between younger and older participants is the danger of
obtaining spuriously high accuracies in clinical classifica-
tion studies if patients and HCs are not carefully matched
for age.

Conclusions and Outlook

We investigated the potential of RS connectivity patterns
in a wide variety of functional networks to distinguish
SCZ and PD patients from matched HCs as well as old
from young adults. We showed that networks defined by
robust activation due to mental operations known to be
affected in the respective condition indeed contained infor-
mation on the respective condition that is captured by our
pattern-classification approach and translates into good
classification accuracies. Classification accuracies obtained
through replicated, nested 10-fold cross-validation were
not only generally comparable to those obtained from
whole-brain analyses but also revealed a differentiated pic-
ture for both disorders in comparisons. Both SCZ and PD
were specifically well predicted by distinct networks that
resonate well with known clinical and pathophysiological
features. The presented approach thus opens an avenue
toward robust and more specific assessments of clinical
and developmental differences in functional systems than
previous whole-brain analyses. One of the most striking
findings of this work was the fact that integrity in all net-
works was much better at identifying participants with
advanced age than with any of the two disorders. While
the most likely heterogeneous mechanisms behind this

phenomenon certainly need to be addressed in more
detail, the current findings highlight the importance of
considering age-related effects as a potential source of bias
in clinical classification studies.
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Table SI: Functional magnetic resonance imaging parameters 

Acquisition Site Measurement Parameters: 
Scanner/volumes/TR/TE/FA/voxel size 

Schizophrenia Sample  
Mind Research Network, Center for 
Biomedical Research Excellence (COBRE), 
The University of New Mexico, Albuquerque, 
NM, USA 

3 T/300/2000/29/75°/3 x 3 x 4 mm3 

University Hospital Göttingen, Germany 3 T/156/2000/30/70°/3 x 3 x 3 mm3 

Parkinson’s Disease Sample  
RWTH, University Hospital Aachen, 
Germany 

3 T/165/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

HHU, University Hospital Düsseldorf, 
Germany 

3 T/300/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

Normal Aging Sample  
Research Centre Jülich, Germany 3 T/200/2200/30/80°/3.1 x 3.1 x 3.1 mm3 
1000BRAINS [Caspers et al., 2014],  
Research Centre Jülich, Germany 

3 T/300/2200/30/90°/3.1 x 3.1 x 3.1 mm3 

Measurement parameters:   

Scanner: magnetic field strength of the scanner/ number of acquired volumes/TR: repetition 
time (in ms)/TE: echo time (in ms)/ FA: flip angle/ voxel size. 
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Table SII: Network coordinates and corresponding brain regions 
 

Emotional Scene / Face Processing (EmoSF) 
[Sabatinelli et al., 2011] 

x y z Macroanatomical Region 

4 47 7 R Anterior Cingulate Cortex 

42 25 3 
R Inferior Frontal Gyrus (p. 

Triangularis) 

-42 25 3 
L Inferior Frontal Gyrus (p. 

Triangularis) 

48 17 29 
R Inferior Frontal Gyrus (p. 

Opercularis) 

-42 13 27 
L Inferior Frontal Gyrus (p. 

Triangularis) 
-2 8 59 L Posterior Medial Frontal 
20 -4 -15 R Amygdala 
-20 -6 -15 L Amygdala 
-20 -33 -4 L Hippocampus 
14 -33 -7 R Lingual Gyrus 
53 -50 4 R Middle Temporal Gyrus 
38 -55 -20 R Anterior Fusiform Gyrus 
-40 -55 -22 L Anterior Fusiform Gyrus 
38 -76 -16 R Posterior Fusiform Gyrus 
-40 -78 -21 L Cerebellum 
-4 52 31 L Superior Medial Gyrus 
36 25 -3 R Anterior Insula 
-38 25 -8 L Inferior Frontal Gyrus (p. Orbitalis) 
2 19 25 R Anterior Cingulate Cortex 
0 -15 10 Thalamus 
-2 -31 -7 Superior Colliculus 

-28 -70 -14 L Fusiform Gyrus 
46 -68 -4 R Inferior Temporal Gyrus 
-48 -72 -4 L Inferior Occipital Gyrus 

 
Cognitive Emotion Regulation (ER) 

[Buhle et al., 2014] 

x y z Macroanatomical Region 

48 24 9 
R Inferior Frontal Gyrus (p. 

Triangularis) 
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42 21 45 R Middle Frontal Gyrus 
9 30 39 R Superior Medial Gyrus 
0 -9 63 L Posterior Medial Frontal 
-3 24 30 L Anterior Cingulate Cortex 

-33 3 54 L Middle Frontal Gyrus 
-36 21 -3 L Anterior Insula 
-42 45 -6 L Inferior Frontal Gyrus (p. Orbitalis) 
63 -51 39 R Inferior Parietal Lobule 
-42 -66 42 L Angular Gyrus 
-63 -51 -21 L Inferior Temporal Gyrus 
-51 -39 3 L Middle Temporal Gyrus 
30 -3 -15 R Amygdala 
-18 -3 -15 L Amygdala 

 
Theory-of-Mind Cognition (ToM) 

[Bzdok et al., 2012] 

x y z Macroanatomical Region 

0 52 -12 R Mid Orbital Gyrus 
2 58 12 R Superior Medial Gyrus 
-8 56 30 L Superior Medial Gyrus 
2 -56 30 L Precuneus 

56 -50 18 R Superior Temporal Gyrus 
-48 -56 24 L Angular Gyrus 
54 -2 -20 R Anterior Middle Temporal Gyrus 
-54 -2 -24 L Anterior Middle Temporal Gyrus 
52 -18 -12 R Middle Temporal Gyrus 
-54 -28 -4 L Middle Temporal Gyrus 
50 -34 0 R Posterior Superior Temporal Sulcus 
-58 -44 4 L Posterior Superior Temporal Sulcus 

54 28 6 
R Inferior Frontal Gyrus (p. 

Triangularis) 
-48 30 -12 L Inferior Frontal Gyrus (p. Orbitalis) 
48 -72 8 R Occipital Lobe (V5/MT) 

 
Empathic Processing (Empathy) 

[Bzdok et al., 2012] 

x y z Macroanatomical Region 

2 56 18 L Superior Medial Gyrus 
36 22 -8 R Inferior Frontal Gyrus (p. Orbitalis) 
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-30 20 4 L Anterior Insula 
50 12 -8 R Anterior Insula 
-44 24 -6 L Inferior Frontal Gyrus (p. Orbitalis) 
-4 18 50 L Posterior Medial Frontal 
-2 28 20 L Anterior Cingulate Cortex 
-4 42 18 L Anterior Cingulate Cortex 
-2 -32 28 Posterior Cingulate Cortex 
52 -58 22 R Posterior Superior Temporal Gyrus 
-56 -58 22 L Posterior Superior Temporal Gyrus 
22 -2 -16 R Amygdala 
54 -8 -16 R Middle Temporal Gyrus 
52 -36 2 R Posterior Superior Temporal Sulcus 
-12 -4 12 L Anterior Thalamus 
6 -32 2 R Posterior Thalamus 

26 -26 -12 R Hippocampus 
2 -20 -12 Midbrain 

14 4 0 R Globus Pallidum 
 

Reward-related Decision Making (Rew) 
 [Liu et al., 2011] 

x y z Macroanatomical Region 

12 10 -6 R Nucleus Caudate 
-10 8 -4 L Pallidum 
36 20 -6 R Anterior Insula 
-32 20 -4 L Anterior Insula 
0 24 40 L Superior Medial Gyrus 
0 54 -8 L Mid Orbital Gyrus 

24 -2 -16 R Amygdala 
6 -14 8 R Thalamus 
-6 -16 8 L Thalamus 
0 8 48 L Posterior Medial Frontal Gyrus 
8 -18 -10 R Brainstem 
-6 -18 -10 L Brainstem 
2 44 20 L Anterior Cingulate Cortex 

-24 2 52 L Middle Frontal Gyrus 
-38 -4 6 L Insula  
24 40 -14 R Superior Orbital Gyrus 
-16 42 -14 L Superior Orbital Gyrus 
40 32 32 R Middle Frontal Gyrus 
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-28 -56 48 L Inferior Parietal Lobule 
28 -58 50 R Superior Parietal Lobule 
0 -32 32 L Posterior Cingulate Cortex 

-36 50 10 L Middle Frontal Gyrus 
-46 42 -4 L Inferior Frontal Gyrus (p. Orbitalis) 
30 4 50 R Middle Frontal Gyrus 
-22 30 48 L Superior Frontal Gyrus 

 
Autobiographical Memory (AM) 

[Spreng et al., 2009] 

x y z Macroanatomical Region 

-1 -53 21 L Precuneus 
-26 -28 -17 L Parahippocampal Gyrus 
-49 -61 31 L Angular Gyrus 
-2 51 -11 L Mid Orbital Gyrus 

-60 -9 -18 L Middle Temporal Gyrus 
-50 27 -12 L Inferior Frontal Gyrus (p. Orbitalis) 
26 -33 -15 R Fusiform Gyrus 
-1 20 57 L Posterior Medial Frontal 
55 -58 30 R Angular Gyrus 
-47 9 46 L Precentral Gyrus 
-42 53 7 L Middle Frontal Gyrus 
26 -14 -23 R Parahippocampal Gyrus 
54 -5 -20 R Middle Temporal Gyrus 
-39 13 -41 L Inferior Temporal Gyrus 
-38 -82 38 L Middle Occipital Gyrus 

-48 29 17 
L Inferior Frontal Gyrus (p. 

Triangularis) 
-11 62 9 L Superior Medial Gyrus 
4 -8 2 Thalamus 
-4 39 16 L Anterior Cingulate Cortex 
-5 -34 36 L Midcingulate Cortex 

-29 16 51 L Middle Frontal Gyrus 
31 1 -26 R Amygdala 

 
Semantic Memory (SM) 

[Binder et al., 2009] 

x y z Macroanatomical Region 

-46 -69 28 L Angular Gyrus 
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-50 -56 31 L Angular Gyrus 
-64 -44 -4 L Posterior Middle Temporal Gyrus 
-47 -24 -17 L Middle Temporal Gyrus 
-40 -12 -30 L Inferior Temporal Gyrus 
-8 -57 17 L Precuneus 

-20 36 44 L Superior Frontal Gyrus 
-53 27 -4 L Inferior Frontal Gyrus (p. Orbitalis) 
54 -59 30 R Angular Gyrus 
43 -72 31 R Middle Occipital Gyrus 
-1 51 -7 L Mid Orbital Gyrus 
-5 56 24 L Superior Medial Gyrus 

-31 -34 -16 L Fusiform Gyrus 
-8 29 -10 L Anterior Cingulate Cortex 

-46 25 23 
L Inferior Frontal Gyrus (p. 

Triangularis) 
64 -41 -2 R Posterior Middle Temporal Gyrus 
-43 -53 55 L Inferior Parietal Lobule 
-1 -18 40 L Midcingulate Cortex 
-2 -56 46 L Precuneus 

51 20 26 
R Inferior Frontal Gyrus (p. 

Triangularis) 
64 -38 32 R Supramarginal Gyrus 
-23 26 -16 L Inferior Frontal Gyrus (p. Orbitalis) 
-5 -39 40 L Midcingulate Cortex 

 
Working Memory (WM) 

[Rottschy et al., 2012] 

x y z Macroanatomical Region 

-32 22 -2 L Anterior Insula  

-48 10 26 
L Inferior Frontal Gyrus (p. 

Opercularis) 

-46 26 24 
L Inferior Frontal Gyrus (p. 

Triangularis) 
-38 50 10 L Anterior Middle Frontal Gyrus 
36 22 -6 R Anterior Insula  

50 14 24 
R Inferior Frontal Gyrus (p. 

Triangularis) 
44 34 32 R Middle Frontal Gyrus 
38 54 6 R Anterior Middle Frontal Gyrus 
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2 18 48 L Posterior Medial Frontal 
-28 0 56 L Posterior Middle Frontal Gyrus 
30 2 56 R Posterior Middle Frontal Gyrus 

-42 -42 46 
L Inferior Parietal Lobule/Intraparietal 

Sulcus 

-34 -52 48 
L Inferior Parietal Lobule/Intraparietal 

Sulcus  
-24 -66 54 L Superior Parietal Lobule 

42 -44 44 
R Inferior Parietal Lobule/Intraparietal 

Sulcus 
32 -58 48 R Angular Gyrus/Intraparietal Sulcus 
16 -66 56 R Superior Parietal Lobule 
-12 -12 12 L Thalamus 
-16 2 14 L Nucleus Caudate 
-16 0 2 L Globus Pallidum 
12 -10 10 R Thalamus 
-34 -66 -20 L Cerebelum/Fusiform Gyrus 
32 -64 -18 R Cerebelum/Fusiform Gyrus 

 
Cognitive Action Control (CogAC) 

[Cieslik et al., 2015] 

x y z Macroanatomical Region 

36 22 -4 R Anterior Insula 
2 16 48 L Posterior Medial Frontal 

48 12 30 
R Inferior Frontal Gyrus (p. 

Opercularis) 
36 2 54 R Middle Frontal Gyrus 

48 30 24 
R Inferior Frontal Gyrus (p. 

Triangularis) 

-38 -44 46 
L Inferior Parietal Lobule/Intraparietal 

Sulcus 
-24 -66 48 L Superior Parietal Lobule 

40 -46 46 
R Inferior Parietal Lobule/Intraparietal 

Sulcus 
60 -44 24 R Supramarginal Gyrus 
30 -62 52 R Superior Parietal Lobule 
-44 10 30 L Precentral Gyrus 
-34 20 -4 L Anterior Insula  
-26 2 52 L Middle Frontal Gyrus 
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6 -18 -2 R Thalamus 
-40 -66 -10 L Inferior Occipital Gyrus 

48 19 6 
R Inferior Frontal Gyrus (p. 

Opercularis) 
8 29 30 R Midcingulate Cortex 

-45 27 30 
L Inferior Frontal Gyrus (p. 

Triangularis) 
11 7 7 R Nucleus Caudate 

 
Vigilant Attention (VigAtt) 
[Langner and Eickhoff, 2013] 

x y z Macroanatomical Region 

-2 8 50 L Posterior Medial Frontal 
8 32 46 R Superior Medial Gyrus 
0 26 34 L Midcingulate Cortex 

50 8 32 R Precentral Gyrus 
40 22 -4 R Anterior Insula  
46 36 20 R Anterior Middle Frontal Gyrus 
-40 -12 60 L Precentral Gyrus 
-46 -68 -6 L Inferior Occipital Gyrus 
-48 8 30 L Precentral Gyrus 
62 -38 17 R Inferior Parietal Lobe 
8 -12 6 R Thalamus 

32 -90 4 R Middle Occipital Gyrus 
-42 12 -2 L Anterior Insula 
-10 -14 6 L Thalamus 
6 -58 -18 Cerebellar Vermis 

44 -44 46 R Inferior Parietal Lobule 
 

Mirror Neuron System (MNS) 
[Caspers et al., 2010] 

x y z Macroanatomical Region 

-56 8 28 L Precentral Gyrus 
-54 6 40 L Precentral Gyrus 

58 16 10 
R Inferior Frontal Gyrus (p. 

Opercularis) 
44 -54 -20 R Fusiform Gyrus 

-38 -40 50 
L Inferior Parietal Lobule/Intraparietal 

Sulcus 
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51 -36 50 
R Inferior Parietal Lobule/Intraparietal 

Sulcus  
-1 16 52 L Posterior Medial Frontal 

-54 -50 10 L Posterior Middle Temporal Gyrus 
-52 -70 6 L Occipital Lobe (V5) 
54 -64 4 R Occipital Lobe (V5) 
30 -62 63 R Superior Parietal Lobule 

 
Motor Execution (Motor) 

[Witt et al., 2008] 

x y z Macroanatomical Region 

-39 -21 54 L Postcentral Gyrus 
41 -16 57 R Precentral Gyrus 
-3 -2 54 L Posterior Medial Frontal 

-57 2 32 L Precentral Gyrus 
-53 -24 21 L Supramarginal Gyrus 
45 -38 48 R Inferior Parietal Lobule 
-23 -7 1 L Globus Pallidum 
25 -8 3 R Globus Pallidum 
-22 -52 26 L Cerebellum 
18 -54 -22 R Cerebellum 

R= right; L = left; for consistency coordinates (MNI-space) are assigned to the most 
probable brain areas as revealed by the SPM Anatomy Toolbox (Version 2.1) [Eickhoff et 
al., 2005; Eickhoff et al., 2006; Eickhoff et al., 2007]. 
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Table III: Classification results of the support vector machine of all groups based on specific 
networks (balanced accuracy) 

Network (abbr.) SCZ vs. HCSCZ PD vs. HCPD Old vs. Young 

EmoSF 73% 64% 88% 
ER 71% 69% 78% 

ToM 60% 67% 79% 
Empathy 71% 63% 78% 

Rew 68% 67% 87% 
AM 62% 76% 80% 
SM 61% 69% 84% 
WM 63% 66% 79% 

CogAC 68% 62% 74% 
VigAtt 68% 66% 81% 
MNS 64% 58% 84% 
Motor 61% 71% 80% 

Balanced accuracy is calculated as the average proportion of subjects correctly classified as 
patients (PD, SCZ) or advanced age versus healthy or younger age, respectively. 

 
Table SIV: Classification results of the support vector machine of all groups based on 
specific networks (d’) 

Network (abbr.) SCZ vs. HCSCZ PD vs. HCPD Old vs. Young 

EmoSF 1.19 0.69 2.33 
ER 1.13 1.00 1.52 

ToM 0.57 0.89 1.56 
Empathy 1.12 0.68 1.52 

Rew 0.92 0.86 2.23 
AM 0.63 1.36 1.67 
SM 0.54 0.99 1.99 
WM 0.63 0.79 1.59 

CogAC 0.95 0.60 1.25 
VigAtt 0.92 0.79 1.71 
MNS 0.72 0.38 1.95 
Motor 0.59 1.06 1.67 

d’: sensitivity index calculated as z (true positive rate) – z (false positive rate).  
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Figure S1: Group classification results of the support vector machine (z-values)  

Polar plot of z-standardized accuracies (corrected for multiple comparisons) of group 
classification based on all 12 networks for schizophrenia (in green), Parkinson’s disease (in 
blue) and normal aging (in yellow). 
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Figure S2: Variance of group classification results of the support vector machine 
(accuracies) 

Polar plot of variance for group classification accuracies over all 25 repetitions in the outer 
loop based on all 12 networks for A) schizophrenia (in green), B) Parkinson’s disease (in 
blue) and C) normal aging (in yellow). 
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Table SV: Differences in classification performance between networks within schizophrenia  

Network (abbr.) 
comparison 

Mean difference 
(Acc.) 

T P 

EmoSF - ER 3.320 6.211 < 0.0001 
EmoSF - ToM 11.240 23.735 < 0.0001 
EmoSF - Empathy 2.920 6.704 < 0.0001 
EmoSF - Rew 5.080 10.098 < 0.0001 
EmoSF - AM 8.720 14.498 < 0.0001 
EmoSF - SM 11.840 28.255 < 0.0001 
EmoSF - WM 10.800 22.358 < 0.0001 
EmoSF - Cog 7.040 14.735 < 0.0001 
EmoSF - VigAtt 4.360 9.375 < 0.0001 
EmoSF - MNS 7.280 14.510 < 0.0001 
EmoSF - Motor 15.640 22.506 < 0.0001 
ER - ToM 7.920 15.540 < 0.0001 
ER - Empathy 0.400 0.679 0.5034 
ER - Rew 1.760 2.903 0.0078 
ER - AM 5.400 7.991 < 0.0001 
ER - SM 8.520 12.649 < 0.0001 
ER - WM 7.480 11.821 < 0.0001 
ER - Cog 3.720 7.318 < 0.0001 
ER - VigAtt 1.040 1.996 0.05745 
ER - MNS 3.960 6.678 < 0.0001 
ER - Motor 12.320 16.991 < 0.0001 
ToM - Empathy 8.320 17.512 < 0.0001 
ToM - Rew 6.160 11.083 < 0.0001 
ToM - AM 2.520 4.016 0.0005 
ToM - SM 0.600 1.200 0.2419 
ToM - WM 0.440 0.751 0.4602 
ToM - Cog 4.200 9.635 < 0.0001 
ToM - VigAtt 6.880 14.633 < 0.0001 
ToM - MNS 3.960 7.251 < 0.0001 
ToM - Motor 4.400 7.738 < 0.0001 
Empathy - Rew 2.160 4.018 0.0005 
Empathy - AM 5.800 10.307 < 0.0001 
Empathy - SM 8.920 15.942 < 0.0001 
Empathy - WM 7.880 13.114 < 0.0001 
Empathy - Cog 4.120 7.771 < 0.0001 
Empathy - VigAtt 1.440 3.490 0.0019 
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Empathy - MNS 4.360 7.966 < 0.0001 
Empathy - Motor 12.720 24.253 < 0.0001 
Rew - AM 3.640 7.888 < 0.0001 
Rew - SM 6.760 12.987 < 0.0001 
Rew - WM 5.720 9.981 < 0.0001 
Rew - Cog 1.960 4.876 < 0.0001 
Rew - VigAtt 0.720 1.705 0.1012 
Rew - MNS 2.200 3.755 0.0010 
Rew - Motor 10.560 14.881 < 0.0001 
AM - SM 3.120 6.227 < 0.0001 
AM - WM 2.080 3.125 0.0046 
AM - Cog 1.680 3.072 0.0052 
AM - VigAtt 4.360 8.557 < 0.0001 
AM - MNS 1.440 2.138 0.0429 
AM - Motor 6.920 9.538 < 0.0001 
SM - WM 1.040 2.279 0.0319 
SM - Cog 4.800 11.314 < 0.0001 
SM - VigAtt 7.480 13.647 < 0.0001 
SM - MNS 4.560 8.771 < 0.0001 
SM - Motor 3.800 4.961 < 0.0001 
WM - Cog 3.760 7.556 < 0.0001 
WM - VigAtt 6.440 10.398 < 0.0001 
WM - MNS 3.520 7.179 < 0.0001 
WM - Motor 4.840 5.933 < 0.0001 
Cog - VigAtt 2.680 6.650 < 0.0001 
Cog - MNS 0.240 0.448 0.6585 
Cog - Motor 8.600 12.820 < 0.0001 
VigAtt - MNS 2.920 4.985 < 0.0001 
VigAtt - Motor 11.280 17.871 < 0.0001 
MNS - Motor 8.360 13.116 < 0.0001 

Comparison between networks with highest classification performance and all other 
networks in schizophrenia (in bold); significance threshold Pcorr < 0.001. 

 

Table SVI: Differences in classification performance between networks within Parkinson’s 
disease  

Network (abbr.) 
comparison 

Mean difference 
(Acc.) 

T P 

EmoSF - ER 6.000 8.721 < 0.0001 
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EmoSF - ToM 3.560 4.799 < 0.0001 
EmoSF - Empathy 0.680 1.034 0.3114 
EmoSF - Rew 1.720 3.149 0.0043 
EmoSF - AM 10.400 18.196 < 0.0001 
EmoSF - SM 3.080 4.447 0.0002 
EmoSF - WM 1.520 2.354 0.0271 
EmoSF - Cog 1.480 2.128 0.0438 
EmoSF - VigAtt 0.120 0.197 0.8455 
EmoSF - MNS 8.200 10.645 < 0.0001 
EmoSF - Motor 5.440 7.566 < 0.0001 
ER - ToM 2.440 5.160 < 0.0001 
ER - Empathy 6.680 11.148 < 0.0001 
ER - Rew 4.280 7.546 < 0.0001 
ER - AM 4.400 10.184 < 0.0001 
ER - SM 2.920 4.276 0.0003 
ER - WM 4.480 10.267 < 0.0001 
ER - Cog 7.480 13.724 < 0.0001 
ER - VigAtt 6.120 10.185 < 0.0001 
ER - MNS 14.200 21.168 < 0.0001 
ER - Motor 0.560 1.212 0.2374 
ToM - Empathy 4.240 9.021 < 0.0001 
ToM - Rew 1.840 3.100 0.0049 
ToM - AM 6.840 15.085 < 0.0001 
ToM - SM 0.480 0.762 0.4536 
ToM - WM 2.040 4.270 0.0003 
ToM - Cog 5.040 10.325 < 0.0001 
ToM - VigAtt 3.680 5.075 < 0.0001 
ToM - MNS 11.760 16.039 < 0.0001 
ToM - Motor 1.880 3.969 0.0006 
Empathy - Rew 2.400 3.811 0.0008 
Empathy - AM 11.080 29.641 < 0.0001 
Empathy - SM 3.760 6.317 < 0.0001 
Empathy - WM 2.200 4.260 0.0003 
Empathy - Cog 0.800 1.469 0.1549 
Empathy - VigAtt 0.560 0.854 0.4017 
Empathy - MNS 7.520 11.205 < 0.0001 
Empathy - Motor 6.120 9.394 < 0.0001 
Rew - AM 8.680 18.136 < 0.0001 
Rew - SM 1.360 2.134 0.0433 
Rew - WM 0.200 0.447 0.6587 
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Rew - Cog 3.200 5.409 < 0.0001 
Rew - VigAtt 1.840 3.145 0.0044 
Rew - MNS 9.920 12.435 < 0.0001 
Rew - Motor 3.720 7.566 < 0.0001 
AM - SM 7.320 12.510 < 0.0001 
AM - WM 8.880 25.177 < 0.0001 
AM - Cog 11.880 25.859 < 0.0001 
AM - VigAtt 10.520 18.683 < 0.0001 
AM - MNS 18.600 29.167 < 0.0001 
AM - Motor 4.960 11.639 < 0.0001 
SM - WM 1.560 3.019 0.0059 
SM - Cog 4.560 6.384 < 0.0001 
SM - VigAtt 3.200 3.687 0.0016 
SM - MNS 11.280 14.155 < 0.0001 
SM - Motor 2.360 3.432 0.0022 
WM - Cog 3.000 6.000 < 0.0001 
WM - VigAtt 1.640 2.605 0.0155 
WM - MNS 9.720 14.409 < 0.0001 
WM - Motor 3.920 8.699 < 0.0001 
Cog - VigAtt 1.360 2.091 0.0473 
Cog - MNS 6.720 9.333 < 0.0001 
Cog - Motor 6.920 11.815 < 0.0001 
VigAtt - MNS 8.080 9.150 < 0.0001 
VigAtt - Motor 5.560 7.835 < 0.0001 
MNS - Motor 13.640 18.569 < 0.0001 
Comparison between networks with highest classification performance and all other 
networks in Parkinson’s disease (in bold); significance threshold Pcorr < 0.001. 
 
Table SVII: Group differences between schizophrenia and Parkinson’s disease classification 
based on specific networks 

Network (abbr.) Mean difference 
(Acc.) 

T P 

EmoSF 9.120 14.028 < 0.0001 
ER 0.200 0.376 0.7088 

ToM 5.680 12.267 < 0.0001 
Empathy 6.880 12.561 < 0.0001 

Rew 2.320 4.011 0.0002 
AM 10.00 19.240 < 0.0001 
SM 5.800 8.985 < 0.0001 
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WM 3.200 6.137 < 0.0001 
CogAC 3.560 6.908 < 0.0001 
VigAtt 4.880 7.593 < 0.0001 
MNS 10.040 14.013 < 0.0001 
Motor 11.960 18.011 < 0.0001 

Networks with highest classification performance in schizophrenia (in green); networks with 
highest classification performance in Parkinson’s disease (in blue); significance threshold 
Pcorr < 0.001. 

 

Table SVIII: Differences in classification performance between networks within normal 
aging 

Network (abbr.) 
comparison 

Mean difference 
(Acc.) 

T P 

EmoSF - ER 9.640 24.386 < 0.0001 
EmoSF - ToM 10.080 20.307 < 0.0001 
EmoSF - Empathy 10.080 29.131 < 0.0001 
EmoSF - Rew 0.080 0.267 0.7917 
EmoSF - AM 8.000 24.495 < 0.0001 
EmoSF - SM 2.400 8.668 < 0.0001 
EmoSF - WM 8.840 23.167 < 0.0001 
EmoSF - Cog 12.160 29.018 < 0.0001 
EmoSF - VigAtt 8.080 22.727 < 0.0001 
EmoSF - MNS 4.400 12.882 < 0.0001 
EmoSF - Motor 8.400 18.046 < 0.0001 
ER - ToM 0.440 0.910 0.3717 
ER - Empathy 0.440 1.204 0.2404 
ER - Rew 9.560 25.526 < 0.0001 
ER - AM 1.640 4.194 0.0003 
ER - SM 7.240 19.286 < 0.0001 
ER - WM 0.800 1.668 0.1083 
ER - Cog 2.520 4.573 0.0001 
ER - VigAtt 1.560 3.576 0.0015 
ER - MNS 5.240 10.324 < 0.0001 
ER - Motor 1.240 2.055 0.0510 
ToM - Empathy 0.000 0.000 1.0000 
ToM - Rew 10.000 31.109 < 0.0001 
ToM - AM 2.080 4.578 0.0001 
ToM - SM 7.680 17.663 < 0.0001 
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ToM - WM 1.240 3.303 0.0030 
ToM - Cog 2.080 3.864 0.0007 
ToM - VigAtt 2.000 4.082 0.0004 
ToM - MNS 5.680 9.435 < 0.0001 
ToM - Motor 1.680 2.929 0.0073 
Empathy - Rew 10.000 30.151 < 0.0001 
Empathy - AM 2.080 5.316 < 0.0001 
Empathy - SM 7.680 26.755 < 0.0001 
Empathy - WM 1.240 3.059 0.0054 
Empathy - Cog 2.080 4.219 0.0003 
Empathy - VigAtt 2.000 5.477 < 0.0001 
Empathy - MNS 5.680 11.537 < 0.0001 
Empathy - Motor 1.680 2.959 0.0068 
Rew - AM 7.920 28.654 < 0.0001 
Rew - SM 2.320 7.632 < 0.0001 
Rew - WM 8.760 27.573 < 0.0001 
Rew - Cog 12.080 28.233 < 0.0001 
Rew - VigAtt 8.000 21.381 < 0.0001 
Rew - MNS 4.320 10.832 < 0.0001 
Rew - Motor 8.320 16.671 < 0.0001 
AM - SM 5.600 17.421 < 0.0001 
AM - WM 0.840 2.227 0.0356 
AM - Cog 4.160 9.744 < 0.0001 
AM - VigAtt 0.080 0.219 0.8283 
AM - MNS 3.600 8.647 < 0.0001 
AM - Motor 0.400 0.747 0.4623 
SM - WM 6.440 21.435 < 0.0001 
SM - Cog 9.760 23.380 < 0.0001 
SM - VigAtt 5.680 16.235 < 0.0001 
SM - MNS 2.000 5.410 < 0.0001 
SM - Motor 6.000 14.412 < 0.0001 
WM - Cog 3.320 6.565 < 0.0001 
WM - VigAtt 0.760 2.156 0.0413 
WM - MNS 4.440 9.320 < 0.0001 
WM - Motor 0.440 0.938 0.3578 
Cog - VigAtt 4.080 7.955 < 0.0001 
Cog - MNS 7.760 15.809 < 0.0001 
Cog - Motor 3.760 6.014 < 0.0001 
VigAtt - MNS 3.680 9.227 < 0.0001 
VigAtt - Motor 0.320 0.730 0.4727 



	 94	

MNS - Motor 4.000 8.281 < 0.0001 

Significance threshold Pcorr < 0.0001. 

Table SIX: Group differences between schizophrenia and normal aging classification based 
on specific networks 

Network (abbr.) Mean difference 
(Acc.) 

T P 

EmoSF 14.480 35.469 < 0.0001 
ER 8.160 14.995 < 0.0001 

ToM 15.640 31.139 < 0.0001 
Empathy 7.320 16.128 < 0.0001 

Rew 19.480 43.003 < 0.0001 
AM 15.200 29.173 < 0.0001 
SM 23.920 57.946 < 0.0001 
WM 16.440 32.283 < 0.0001 

CogAC 9.360 18.938 < 0.0001 
VigAtt 10.760 24.556 < 0.0001 
MNS 17.360 33.451 < 0.0001 
Motor 21.720 31.016 < 0.0001 

Significance threshold Pcorr < 0.001. 

Table SX: Group differences between Parkinson’s disease and normal aging classification 
based on specific networks 

Network (abbr.) Mean difference 
(Acc.) 

T P 

EmoSF 23.600 40.347 < 0.0001 
ER 7.960 16.335 < 0.0001 

ToM 9.960 19.051 < 0.0001 
Empathy 14.200 27.574 < 0.0001 

Rew 21.800 47.139 < 0.0001 
AM 5.200 14.720 < 0.0001 
SM 18.120 32.350 < 0.0001 
WM 13.240 31.323 < 0.0001 

CogAC 12.920 22.726 < 0.0001 
VigAtt 15.640 25.407 < 0.0001 
MNS 27.400 40.190 < 0.0001 
Motor 9.760 18.737 < 0.0001 

Significance threshold Pcorr < 0.001. 
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Abstract 
Personality is associated with variation in all kinds of mental faculties, including affective, 
social, executive and memory functioning. The intrinsic dynamics of neural networks 
underlying these mental functions are reflected in their functional connectivity at rest 
(RSFC). We therefore aimed to probe whether connectivity in functional networks allow 
predicting individual scores of the five-factor personality model and potential gender 
differences thereof. 
 
We assessed nine meta-analytically derived functional networks, representing social, 
affective, executive and mnemonic systems. RSFC of all networks was computed in a sample 
of 210 males and 210 well-matched females and in a replication sample of 155 males and 
155 females. Personality scores were predicted using relevance vector machine in both 
samples. Cross-validation prediction accuracy was defined as the correlation between true 
and predicted scores. 
 
RSFC within networks representing social, affective, mnemonic and executive systems 
significantly predicted self-reported levels of Extraversion, Neuroticism, Agreeableness and 
Openness. RSFC patterns of most networks, however, predicted personality traits only either 
in males or in females.  
 
Personality traits can be predicted by patterns of RSFC in specific functional brain networks, 
providing new insights into the neurobiology of personality. However, as most associations 
were gender-specific, RSFC–personality relations should not be considered independently of 
gender. 
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1. Introduction 

Interindividual differences in personality permeate all aspects of life, from affective and 
cognitive functioning to social relationships. One of the most comprehensive and most 
widely recognized models of personality is the Five Factor Model (FFM; Costa & McCrae, 
1992), consisting of five broad dimensions: Openness to experience/Intellect, Extraversion, 
Neuroticism, Agreeableness, and Conscientiousness. Openness to experience/Intellect 
reflects the engagement with aesthetic/sensory and abstract/intellectual information, as well 
as the degree of appreciation and toleration for the unfamiliar (Nicholson et al. 2002; 
Fleischhauer et al. 2010; Fayn et al. 2015). Extraversion relates to approach behavior of 
driving toward a goal that contains cues for reward, and tendency to experience positive 
emotions given by the actual attainment of that goal (Depue and Collins 1999; DeYoung 
2015). Neuroticism relates to a person’s emotional life and reflects the tendency to 
heightened emotional reactivity to negative emotions (Goldberg and Rosolack 1994; Rusting 
and Larsen 1997; Gray and Mcnaughton 2000). Agreeableness relates to interpersonal 
behavior and reflects the degree of avoidance of interpersonal conflicts (stability between 
individuals) (Graziano et al. 2007; Butrus and Witenberg 2013). Conscientiousness reflects 
the degree to which individuals perform tasks and organize their lives, exhibiting a tendency 
to show self-discipline, act dutifully, and aim for achievement (stability within individuals) 
(Ozer and Benet Martínez 2006; Roberts et al. 2009) (cf. for more details McCrae and Costa 
2004; DeYoung and Gray 2009). 
 
Since the FFM of personality is based on language descriptors of adjectives applied to human 
and human behaviour in English lexicon, rather than neurobiological features, many attempts 
have been made to explore the neural bases of these five factors. At first, each trait has been 
associated to its most crucial and characterizing psychological functions (e.g. Neuroticism 
and Extraversion to sensitivity to punishment and reward respectively, Agreeableness to 
social processes, Conscientiousness to top-down control of behaviour and Openness 
cognitive flexibility), and hypotheses have been developed about the associations between 
brain systems supporting those psychological functions, and the respective trait, paving the 
way for a biology of personality traits (c.f. DeYoung and Gray 2009). It has, therefore, been 
suggested that Neuroticism is associated (functionally or structurally) to affective regions 
that had been linked to respond to threat and punishment like amygdala, hippocampus, 
cingulate cortex and medial prefrontal cortex (Kumari 2004; Cremers et al. 2010; DeYoung 
et al. 2010; Tzschoppe et al. 2014; Madsen et al. 2015; Pang et al. 2016). Extraversion has 
been linked to regions responding to reward-related stimuli like nucleus accumbens, 
striatum, amygdala and orbitofrontal cortex (DeYoung et al. 2010b; Adelstein et al. 2011; 
Pang et al. 2016, c.f. Lei et al. 2015). Conscientiousness has been related to the lateral 
prefrontal cortex (Asahi et al. 2004; Passamonti et al. 2006; DeYoung et al. 2010; Kunisato 
et al. 2011), deputed to the planning, following complex rule and voluntarily control of 
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behavior. Similarly, Openness has also been associated to the functions of the lateral PFC 
(DeYoung et al. 2005; Kunisato et al. 2011), but in contrast to Conscientiousness, more 
because of its role in attention, working memory and cognitive flexibility. Finally, 
Agreeableness has been associated to regions involved in the processing of social 
information, such as temporo-parietal junction, superior temporal gyrus and posterior 
cingulate cortex (Hooker et al. 2008; DeYoung et al. 2010; Adelstein et al. 2011). However, 
the associations between brain systems underlying specific mental functions and personality 
traits might be more complex than such one-to-one mapping; instead, it is much more 
plausible that the mapping between traits and brain systems is rather many-to-many (c.f. 
Yarkoni 2015; Allen and DeYoung 2016). One example is provided by Neuroticism, which 
has not only been associated to affective regions, but also to regions exerting cognitive 
functions, e.g. dlPFC (Kunisato et al. 2011; Pang et al. 2016), or behavioural performances 
probing attention (MacLean and Arnell 2010), working memory (Studer-Luethi et al. 2012), 
verbal fluency (Sutin et al. 2011) and explicit memory (Pearman 2009; Denkova et al. 2012). 
It is therefore possible that these systems (affective and executive) both contribute in 
explaining variance in Neuroticism. The potential contribution of other regions rather than 
the ones originally suggested also holds for other traits. For example, increasing evidence 
points to a link between Openness and the functional organization and global efficiency of 
the default mode network (DeYoung 2014; Sampaio et al. 2014; Beaty et al. 2016). 
Similarly, even if not directly investigating the trait of Agreeableness, there is evidence 
(Gazzola et al. 2006; c.f. Iacoboni 2009) showing a possible association between one of its 
facet, empathy, with the mirror neuron system. 
 
Furthermore, one of the major challenges of using functional studies for the association 
between personality traits and brain systems is the fact that the latter can only be based on 
specific implementations such as behavioural tests or paradigms used in experimental 
research. Moreover, there is a general consensus that mental functions arise from the 
coordinated activity within distributed networks rather than any individual brain region 
(Eickhoff and Grefkes 2011). Therefore, relating a personality trait to a particular function 
only because a brain region correlates with both is problematic. These considerations have 
prompted a network-centred perspective of brain organization (c.f. De Vico Fallani et al. 
2014), highlighting the importance of functional integration for mental processes and their 
inter-individual differences. However, this approach, which requires a priori defined seeds, 
suffers from an important methodological limitation. That is, by choosing pre-defined nodes 
from a single task-based fMRI study, the findings might be biased toward that particular 
paradigm operationalization. Furthermore, task-based fMRI literature often suffers from low 
statistical power and low reproducibility, due to the small sample sizes typically used and 
considerable heterogeneity in the analysis pipeline (cf. Samartsidis et al. 2017). To solve the 
problem of a more objective definition of relevant nodes in a given functional network, 
quantitative meta-analyses of task-based neuroimaging studies aggregate the findings of 



	 101	

many individual task-activation studies into a core network representing those locations that 
are reliably recruited by engaging in a given kind of mental process (cf. Fox, Lancaster, 
Laird, & Eickhoff, 2014). The investigation of RSFC in meta-analytically defined networks 
representing specific social, affective, executive, or memory functions, therefore, provides a 
viable approach to capturing the complex intrinsic neural architecture underlying personality 
(Adelstein et al. 2011; Sampaio et al. 2014).  
 
Given that network connectivity data are almost inevitably high-dimensional, consisting of 
many correlated features, univariate analyses of associations between connectivity measures 
and phenotypical traits such as personality may not represent an optimal strategy (Orrù et al. 
2012). Moreover, univariate analyses will likely fail to elucidate associations that depend on 
the pattern of connectivity within a network rather than any specific individual connection. 
On the other hand, machine learning and multivariate pattern analysis (MVPA), suitable for 
analysing neuroimaging data (cf. Oktar & Oktar, 2015; Gael Varoquaux & Thirion, 2014), 
provide an approach that overcomes these limitations by searching for patterns in the 
connectivity matrix that allow the prediction of a continuous target variable (Doyle et al. 
2015). In this article, the term “prediction” refers to the out-of-sample evaluation of a 
statistical model’s ability to predict the personality score for previously unseen individuals 
based on their RSFC. The potential of such approaches to predict behavioural scores from 
resting-state connectivity data has already been demonstrated with respect to sustained 
attention (Rosenberg et al. 2016), autistic traits (Plitt et al. 2015) and impulsivity in 
economic decision-making (Li et al. 2013). Conversely, personality traits have been 
predicted from cyber records such as personal web sites (Marcus et al. 2006) or social 
networks (Golbeck et al. 2011; Bachrach et al. 2012) but not yet from neuroimaging data.  
 
Bringing together the different aspects outlined above, the current study explored whether 
individual levels of five major personality traits can be predicted from RSFC profiles in a 
priori defined brain networks representing specific cognitive functions. The selection of the 
networks used a priori knowledge based on the associations reported in literature between 
psychological functions (and deputed networks) with personality. Accordingly, we chose 
functional networks associated to affective (emotion processing, reward and pain) functions 
given their main associations with both Extraversion and Neuroticism, social (empathy and 
face processing) functions in relation to Agreeableness, executive functions as linked to 
Conscientiousness and Openness (vigilant attention and working memory to represent 
respectively rigid control and flexibility) and memory (autobiographic and semantic) 
functions as many traits were also found to be associated with them. However, it is important 
to note that we refrained from having hypotheses about network – predicted traits 
associations, since we believe that multiple brain systems, among the selected ones, can 
contribute to explaining inter-individual variance in one trait (e.g. Openness being predicted 
from networks outside the executive domain). We additionally used a network with whole-
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brain coverage consisting of 264 nodes (we here refer to it as Connectome; Power et al. 
2011) to predict the five personality traits in order to test if personality can be better 
predicted by specific functional networks or a rather unspecific whole-brain network. 
Additionally, in light of previous findings of sexual dimorphism in the relationships between 
brain structure and personality traits (Nostro et al. 2016) as well as gender differences in 
RSFC (Allen et al. 2011; Filippi et al. 2013; Hjelmervik et al. 2014; Weis et al. 2017) and 
personality (Yang et al. 2015), these analyses were performed in a gender-mixed sample as 
well as separately in male and female subsamples.  
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2 Materials and methods 
2.1 Participants 
All data were obtained from the Human Connectome Project (HCP) WU-Minn Consortium 
as provided in the current “S1200” release (http://www.humanconnectome.org  (Van Essen 
et al. 2013). The HCP was funded by the 16 NIH Institutes and Centers that support the NIH 
Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 
Neuroscience at Washington University. Our analyses of the HCP data were approved by the 
ethics committee of the Heinrich Heine University Düsseldorf.  
 
The HCP sample is composed of monozygotic and dizygotic twins as well as not-twins, the 
latter including siblings of twins, just siblings, and only-children (including those that have 
an as-yet not scanned sibling but not twin). Given this structure of related and unrelated 
subjects, we paid particular attention to select a well-matched sample of males and females 
that was as large as possible while at the same time controlling for possible effects of 
heritability by creating a sample of only unrelated subjects. Evidently, we first selected all 
participants from the HCP sample for whom resting-state fMRI volumes and personality data 
were available. Out of this sample, we then selected groups of unrelated males and females 
(i.e. only one representative of a given family), matched for age, year of education and twin-
status. This last match (twin or not twin) was preferred over the match for zygosity (not twin, 
dizygotic or monozygotic) as it enabled us to select a higher number of participants while not 
introducing dependencies in the sample. In fact, Kolmogorov-Smirnov test showed that 
zygosity does not lead to any significant difference in the five scores distribution, cf. 
supplementary Table S1. Importantly, we created a first main sample (Sample 1), where 
we aimed for the highest number of participants according to the inclusion criteria, but since 
a considerable number of individuals were left out from the first selection, we additionally 
created a “replication” sample, (Sample 2). Sample 2 was thus created by removing the 
subjects belonging to the Sample 1 from the main release (S1200) and re-applying the 
selection criteria on the remaining participants. The final selection procedure of Sample 1 
resulted in a total of 420 subjects: 205 males (119 non-twins, 91 twins subjects; aged 22-37 
years, mean: 28.3 ± 3.5; years of education: 14.9 ± 1.8) and 205 females (117 non-twins, 93 
twin subjects; aged 22-36 years, mean: 28.8 ± 3.5; years of education: 15.0 ± 1.8). From the 
remaining subjects not selected for Sample 1, Sample 2 was obtained resulting in a 
sample of 302 subjects: 151 males (75 non-twins, 76 twins subjects; aged 22-36 years, mean: 
28.2 ± 3.4; years of education: 14.8 ± 1.8) and 151 females (76 non-twins, 75 twin subjects; 
aged 22-35 years, mean: 28.9 ± 3.5; years of education: 15.0 ± 1.8). For an overview on the 
samples selection, see Fig 1. 
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Fig 1: Samples selection overview: first Sample 1 (or “main” sample) was created aiming for 
the largest number of participants. Once 430 subjects were selected for this sample, the same 
procedure was applied on the remaing subjects of the HCP to generate Sample 2 (or 
“replication” sample). The two samples result in this was related to each other (as siblings of 
the subjects in Sample 1 are present in Sample 2), but, within each sample, there are no 
subjects related to each other.  
 
2.2 Self-report data  
Personality was assessed using the English-language version of the NEO Five Factor 
Inventory (NEO-FFI; McCrae and Costa 2004). The NEO-FFI consists of 60 items in the 
form of statements describing behaviours that are characteristic for a given trait, 12 for each 
of the five factors (Openness, Conscientiousness, Extraversion, Agreeableness and 
Neuroticism). Each factor is assessed by aggregating individual responses given on five-
point Likert-type ratings scales, yielding sum scores between 0 and 60 for each factor. Data 
were analysed using SPSS 20 (IBM Corp. Released 2011); scores of males and females were 
compared via t-tests (p < 0.05, Bonferroni-corrected for multiple comparisons) for each 
personality trait. In case of significant group differences, we estimated effect sizes by using 
Cohen’s d measure (Cohen 1988). Furthermore, correlations among factors were calculated 
and tested for significance (Bonferroni-corrected) separately for males and females (for 
details, see supplementary material). Importantly, as reported on the HCP listserv 
(https://www.mail-archive.com/hcp-users@humanconnectome.org/msg05266.html), the 
Agreeableness factor score in the HCP database was erroneously calculated due to item 59 
not reversed. We addressed this issue by reversing it and using the correct score of 
Agreeableness. 
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2.3 Meta-analytically derived networks 
2.3.1 Selection of networks 
We selected nine meta-analytic networks representing regions consistently activated by 
various social, affective, executive and memory functions. Specifically, we used two 
networks related to social cognition:  empathy (Emp; Bzdok et al., 2012) and static face 
perception (Face; Grosbras, Beaton, & Eickhoff, 2012); three networks related to affective 
processing: reward (Rew; Liu, Hairston, Schrier, & Fan, 2011), physiological stress/pain 
(Pain; Kogler et al., 2015) and perception of emotional scenes and faces (Emo; Sabatinelli et 
al., 2011); two networks related to executive functions: working memory (WM; Rottschy et 
al., 2012) and vigilant attention (VA; Langner & Eickhoff, 2013); two networks related to 
long-term memory: autobiographic memory (AM; Spreng, Mar, & Kim, 2008) and semantic 
processing (SM; Binder, Desai, Graves, & Conant, 2009).   
 
2.3.2 Selection of coordinates 
From each meta-analysis, we selected the reported coordinates of the networks to include in 
our analyses and modelled a 6-mm sphere around each coordinate. This ensured that all 
nodes were represented by region of interest of equal size (ROIs) within and across networks. 
Within each single network, we only selected peaks that either represented different 
anatomical regions, preventing multiple representations of a single region, or were at least 15 
mm apart from each other (according to the SPM anatomy toolbox 2.1; (Eickhoff et al. 2005, 
2007)). In cases of multiple peaks within an anatomical region that were closer to each other, 
we included the peak showing the highest Z-score. Please note, these criteria were only 
applied for multiple regions within a single network, while we did not exclude any regions 
that were found also in another network. That is, even if different networks featured peaks at 
the same location, these presumably shared nodes were retained. Given that little is yet 
known about the effect of the networks’ sizes on the outcome predictability, we also had to 
consider the size of the networks (i.e. number of nodes) to make sure that possible 
differences in their predictive power were not due to the number of nodes included. As a 
result, the size of the networks ranged between 16 (VA) and 24 (Emo) nodes. Further details 
on the meta-analytic networks can be found in Table 1, supplementary Table S3 and 
supplement Fig S1. 
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Table 1: Description of the meta-analytic derived networks 

Domain 
Meta-analytic 

Network Abbreviation 
Author, 

Year 

Reference of 
the network 

in the 
original 
paper 

Number 
of 

included 
Nodes 

Network 
description 

Social Empathy Emp Bzdok, 2012 

Table n.1 
(ALE meta-
analysis of 
empathy) 

22 

Regions 
consistently 

activated during 
tasks referring to 

conscious and 
isomorphic 

experience of 
somebody else’s 

affective state 

Social Static Face Perception Face Grosbras, 
2012 

Table n. 7 
(Static face 
perception) 

19 

Convergence 
across tasks 
consisting in 

viewing 
photographs of 

faces or viewing 
objects/ scrambled 

images 

Affective Reward Rew Liu, 
2011 

Table n. 1 23 

Convergence 
across reward 
valence and 

decision stages 
contrasts 

Affective Physiological Stress Pain Kogler, 2015 
Table n.1 

(Activation 
physiological) 

18 

Regions 
consistently 

activated during 
tasks referring to 

unpleasant 
sensoric, 

emotional and 
subjective 

experience that is 
associated with 

potential damage 
of body tissue and 

bodily threat 

Affective 
Perception of 

emotional scenes and 
faces 

Emo 
Sabatinelli, 

2012 

Table n.2 
(emotional 

face>neutral 
face) 

& 
Table n.3 

(emotional 
scenes>neutral 

scenes) 

24 

Regions 
consistently 

activated during 
tasks referring to 
discrimination of 
emotional faces> 

neutral faces 
contrast combined 

with emotional 
scenes> neutral 
scenes contrast 
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Executive Working Memory WM Rottschy, 
2012 

Table n. 2 22 

Regions 
consistently 

activated during 
all WM contrasts/ 

experiments 
(mainly n-back, 

Stenberg, DMTS, 
delayed simple 

matching) 

Executive Vigilant Attention VA 
Langner, 

2012 
Table n.1 16 

Regions 
consistently 

activated during 
tasks posing only 
minimal cognitive 

demands on the 
selectivity and 

executive aspects 
of attention for 
more than 10s 

Memory 
Autobiographic 

Memory 
AM Spreng, 2008 Table n. 6 23 

Convergence 
across tasks 
referring to 

autobiographical 
recall: episodic 
recollection of 
personal events 
from one’s own 

life 

Memory Semantic Memory SM Binder, 2009 
On request to 

the author 
23 

Regions 
consistently 

activated during 
all SM contrasts/ 

experiments 
(mainly words vs. 

pseudowords, 
semantic vs. 

phonological task, 
high vs. low 

meaningfulness) 

Whole-
brain Connectome Connectome 

Power, 
2011 

Supplement 
material 

264 

Meta-analytic 
ROIs and FC-
mapping ROI 

merged to form a 
maximally-

spanning 
collection of ROIs. 

Meta-analytic 
ROIs were given 
preference, and 
non-overlapping 
fc-mapping ROI 
were then added 
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2.4 Connectome analysis 
In addition, we employed a brain-wide network of 264 functional areas from Power and 
colleagues (Connectome; Power et al. 2011) to compare the predictive power of RSFC from 
the whole-brain and from meta-analytic networks. For the coordinates of this Connectome, 
please refer to the supplementary Table S2 of Power et al. 
 
2.5 Resting-state fMRI data: Acquisition, preprocessing and functional connectivity 
analyses 
As part of the HCP protocol (Glasser et al. 2013), images were acquired on a Siemens Skyra 
3T Human Connectome scanner (http://www.humanconnectome.org/about/project/MR-
hardware.html) using a 32-channel head coil. Resting-state (RS)-BOLD data (voxel size= 2 x 
2 x 2 mm³, FoV= 208 x 180 mm², matrix = 104 x 90, 72 slices in a single slab, TR = 720 ms; 
TE= 33.1 ms, flip angle = 52°) were collected using a novel multi-band echo planar imaging 
pulse sequence that allows for the simultaneous acquisition of multiple slices (Xu et al. 
2013). RS-fMRI data were then cleaned of structured noise through the Multivariate 
Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) 
part of FSL toolbox (www.fmrib.ox.ac.uk/fsl). This process  pairs independent component 
analysis  with a more complex automated component classifier referred to as FIX (FMRIB's 
ICA-based X-noisifier) to automatically remove artefactual components (Salimi-Khorshidi et 
al. 2014).  
 
The FIX-denoised RS-fMRI data were further preprocessed using SPM12 (Statistical 
Parametric Mapping, Wellcome Department of Imaging Neuroscience, London, UK, 
http://www.fil.ion.ucl.ac.uk/spm/), running under Matlab R2016a (Mathworks, Natick, MA). 
For each participant, the first four EPI images were discarded prior to further analyses. Then 
EPI images were corrected for head movement by affine registration using a two-pass 
procedure: in the first step, images were aligned to the first image, and in the second step to 
the mean of all volumes. Next, the mean EPI image was spatially normalized to the non-
linear MNI152 template (Holmes et al. 1998) by using the “unified segmentation” approach 
in order to account for inter-individual differences in brain morphology (Ashburner and 
Friston 2005). Finally, images were smoothed with an isotropic Gaussian kernel (full-width 
at half-maximum = 5 mm). The activity time series of each voxel was further cleaned by 
excluding variance that could be explained by mean white-matter and cerebrospinal-fluid 
signal (Satterthwaite et al. 2013). Data were then band-pass filtered with cut-off frequencies 
of 0.01 and 0.08 Hz.  
 
In order to identify participants with aberrant RSFC patterns, we computed each subject’s 
entire connectome sampled on a 1-cm grid. We then computed the pairwise Euclidean 
distance between the subjects and identified the nearest neighbour for each subject. We 
excluded the subjects whose distance to their nearest neighbour was in the highest 2.5% and 
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at least 3 SD away from the average distance. This procedure was done separately for men 
and women (Sample 1: 5 males, 5 females; Sample 2: 4 males, 4 females). No subjects were 
excluded due to outlier motion parameters (DVARS and FD both displaying zero-centered 
values) (Salimi-Khorshidi et al. 2014; Varikuti et al. 2016; Ciric et al. 2017). For RSFC 
analyses, the subject-specific time series for each node of each network were computed as 
the first eigenvariate of the activity time courses of all grey matter voxels within 6 mm of the 
respective peak coordinate. We then computed pairwise Pearson correlations between the 
eigenvariates of all nodes in each network, which then were transformed using the Fischer’s 
Z scores and adjusted (via linear regression) for the effects of age and movement.  
 
2.6 RSFC-based prediction of personality traits by Relevance Vector Machine learning 
We examined if the RSFC patterns within each network predicted personality scores by 
means of statistical learning via the Relevance Vector Machine (RVM; Tipping, 2001) as 
implemented in the SparseBayes package (http://www.miketipping.com/index.htm). The 
RVM is a machine learning technique that can learn to predict a continuous target value 
given explanatory variables (also called features). In our case the features were the RSFC 
values between all nodes of a meta-analytic network, while the score of a specific personality 
factor scale was the target value.  
 
Briefly, RVM is a multivariate approach that was developed from the Support Vector 
Machine (SVM) in order to induce sparseness in the model’s parameters. The RVM, in 
contrast to SVM, implements a fully probabilistic Bayesian framework: for each possible 
value of the input vector (e.g. set of FC values), the RVM algorithm provides a probability 
distribution of the predicted target value (e.g. FFM personality score), unlike a point estimate 
obtained by the SVM.   

y x,w = w! 0;σ! + w!
!

!!!
0;σ! K! x!, x , 

 
In the RVM formulation above, the kernel K is a multivariate zero-centered Gaussian with 
standard deviation σ (estimated by the algorithm) and every parameter wi, assigned to each 
subject xi in the training set, is assumed to follow a Gaussian with mean zero and standard 
deviation σi. The standard deviations σi that describe the probability distribution of the 
parameters wi are iteratively estimated from the training data in order to maximize the 
likelihood of the model. Sparseness is achieved by discharging parameters wi converged to 
zero. Once σ0 and σi have been estimated, the trained model can be used to predict the target 
value (e.g., FFM personality score) from a previously unseen input vector (RSFC data from 
participants that were not part of the training data) by computing the predictive distribution 
(for a more detailed description, see Tipping, 2001). 
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In our study, we implemented the RVM algorithm with a 10-folds cross-validation. That is, 
the sample was randomly split into 10 equally sized groups of which 9 were used for training 
while one was held back and used for assessing the performance of the prediction in 
previously unseen data. Holding out each of the 10 groups in turn then allowed computing 
the prediction performance across the entire dataset. Importantly, this procedure was repeated 
250 times using random initial splits of the data to obtain robust estimates of the RVM 
performance for predicting a given NEO-FFI score from a particular network’s RSFC 
pattern. For each subject, the predicted values resulting from each cross-validation (i.e. one 
replication) were averaged over the 250 replications and ultimately correlated with the real 
score. As we performed 250 replications of a 10-fold cross-validation, in total 2500 models 
were computed to predict each trait. We thus quantified the contribution of each connection 
by the fraction of these 2500 models in which the weight for the respective connection was 
non-zero. The connections that had a non-zero weight in at least 80% of all models were 
identified as the connections that were most robustly part of the predictive model. The brain 
networks were visualized with the BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia 
et al. 2013). 
 
For both the “main” (Sample 1) and “replication” (Sample 2) samples, predictions were first 
carried out for all subjects with males and females combined (AllSample1: n = 410 AllSample2: n 
= 302), and then separately for the male (MenSample1: n = 210; MenSample2: n = 151) and 
female group (WomenSample1: n = 210; WomenSample2: n = 151) in order to assess gender 
differences in predictability. Predictive power was assessed by computing Pearson 
correlations between real and predicted NEO-FFI scores and mean absolute error (MAE). 
Importantly, results were only regarded as significant when they were significant at a 
threshold of p < 0.05 in both samples (Sample 1 and Sample 2). The p value was computed 
via permutation testing between real and predicted values with 10.000 runs. For each run, we 
shuffled the predicted scores across subjects in either the entire sample (for “All”) or in the 
gender-groups (for “Men” and “Women”) without replacement. From here, the definition of 
the p value as the fraction of runs when the correlation between real and the shuffled 
predicted score was higher than the one obtained between the real and the original predicted 
value.  
 
For all significant results in either “All”, “Men” or “Women”, we further tested for 
significant differences in prediction performance (i.e. correlation between real and predicted 
value) between males and females in the main sample. Pearson correlation coefficients (r) 
were transformed into Fisher’s Z and the difference between ZMen and ZWomen calculated and 
then 95% confidence intervals (CI) were computed based on these difference scores. The 
difference in correlation coefficients between males and females were regarded as significant 
if the 95% confidence interval did not contain zero (Lane 2013).  
 



	 111	

3.  Results 
3.1 NEO-FFI scores 
Subjects scored in the same range as reported by McCrae and Costa (McCrae and Costa 
2004) in both the samples. 
Correlations between factors were calculated separately for males and females and in the 
entire sample (see supplementary Table S2 for more detailed information). Most of them 
were significant at p < 0.05 (Bonferroni-corrected) in both males and females and the entire 
sample. Openness, however, was found to be independent of most of the other factors, except 
for Agreeableness (in Sample 1 for All, Men and Women), and Conscientiousness (in All for 
both Sample 1 and Sample 2). Furthermore, Neuroticism was the only factor correlating 
negatively with almost all the others (except for Openness in Men of Sample 1 and in All, 
Men and Women of Sample 2). 
 
Comparison of the scores for the five personality traits between Men and Women revealed a 
significant difference for Agreeableness in both samples (Sample 1: t407 = −4.95; p < 0.05, d 
= -0.49; Sample 2: t299 = −2.2; p < 0.05, d = -0.27), with females scoring higher than males. 
For Neuroticism, Women significantly scored higher than Men in Sample 1 (t407 = −2.8; p < 
0.05, d = -0.28), while in Sample 2 this difference only showed a trend (t299 = −1.93; p = 
0.055, d = -0.2). For Openness (Sample 1: t407 = 0.1; p = 0.9; Sample 2: t299 = 1.64; p = 0.1) 
and Extraversion (Sample 1: t407 = 1.1; p = 0.3; Sample 2: t299 = -0.68; p = 0.5) no 
significant gender differences were found. For Conscientiousness, Women significantly 
scored higher than Men in Sample 2 (t299 = −2.11; p < 0.05, d = -0.245), while in Sample 1 
Women scored higher than Men, but not significantly (t407 = -0.41; p = 0.15). 
 
3.2 RVM: Predicting personality traits based on RSFC 
Results are only be reported if they were significant both in the main (Sample 1) and in the 
replication sample (Sample 2). 
3.2.1 Predictions in the entire sample (balanced males & females) 
In the entire sample, the RSFC pattern of four networks significantly predicted personality 
factors: Pain and VA predicted Openness, AM predicted Agreeableness and Connectome 
predicted Neuroticism (see Table 2, Fig 2 for an overview of the results and Fig 3 for the 
correlation plots). 
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Fig 2: Emp: empathy; AM: Autobiographic memory; WM: working memory; Emo: 
emotional processing; Face: face processing; Rew: reward; SM: semantic memory; VA: 
vigilant attention; Pain: pain processing.  
Summary of the networks for which FC patterns significantly predicted the five personality 
traits. For each network-trait combination in either Men or Women, here it is reported the 
conjunction between the correlation coefficients (i.e. minimum  r value). Only predictions 
with r > 0.1 are displayed. While the nine meta-analytic networks are represented as slices 
(triangules) of the five personality circles, the connectome is represented as well as a circle. 
Triangules and circles are scaled based on the r values of the predicting networks (r values 
reported in the axis). Meta-analytic networks are underlined if a significant prediction is 
detected in either Men or Women. Asterisks mark significant gender differences in Sample 
1. 
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Fig 3: Scatter plots of the predictions of personality scores significant at p < 0.05 in both 
samples. Continuous regression lines, dashed lines, representing the standard deviation, and 
mean absolute errors (MAE) are displayed. 
 

Table 2: Results of the Relevance Vector Machine 
Predicted 

Trait 
Predicting 
Network 

Group r 
(Sample1) 

p-value 
(Sample1) 

r 
(Sample2) 

p-value 
(Sample2) 

O VA All 0.12 0.006 0.17 0.001 

O Pain All 0.1 0.018 0.2 0.0 
O Rew Women 0.17 0.006 0.2 0.006 

O Pain Women 0.12 0.048 0.29 0.0 

E Face Men 0.18 0.005 0.14 0.04 

E Rew Women 0.14 0.02 0.23 0.002 

E Connectome Women 0.29 0.0 0.23 0.002 

A AM All 0.1 0.018 0.18 0.001 

N Connectome All 0.14 0.018 0.14 0.04 
N Connectome Men 0.17 0.0 0.38 0.0 
N Emo Men 0.2 0.002 0.42 0.0 
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Predicted Trait: O: Openness; E: Extraversion; A: Agreeableness; N: Neuroticism. 
Predicting Network: VA: vigilant attention; Pain: pain processing; Rew: reward; AM: 
autobiographic memory; Face: face perception; Connectome: whole-brain network; Emo: 
emotional processing.  
Correlation coefficients between real and predicted values which resulted significant at p < 
0.05 in both samples in either across the entire sample (All), or in gender groups (Men or 
Women).  
 
 
3.2.2 Predictions of personality traits in the gender-split groups 
In the gender-split groups, we also found a significant prediction of Openness scores based 
on FC patterns within the Pain network in Women as well as prediction of Neuroticism 
based on the Connectome FC in Men. In contrast, the VA and AM-related networks did not 
significantly predict Openness and Agreeableness in either subgroup. However, in the 
gender-specific groups additional significant predictions were observed: in males, 
Extraversion was predicted by the RSFC patterns of Face and Neuroticism by Emo networks 
(Table 2, Fig 2-3). In females, Openness was predicted by Rew network. Furthermore, in 
females, Extraversion was predicted by Rew network and the Connectome (Table 2, Fig 2-
3).  
 
3.3 Gender differences in personality predictability 
For all the predictions that were significant in at least one group (All/Males/Females), we 
tested if prediction performance was significantly different between the male and female 
subgroups. Significantly better predictability in Men than Women was found for Neuroticism 
predicted from Emo network (Table 3, supplementary Fig S2). In Women compared with 
Men, Openness was significantly better predicted from Rew network and Extraversion from 
the entire Connectome (Table 3, supplementary Fig S2).  
 
Notably, not all associations that were only found predictive in one subgroup showed 
significant differences in predictability between males and females. In particular, no gender 
differences were found in predicting Openness from Pain, and VA networks, Neuroticism 
from Connectome, Agreeableness from AM, and Extraversion from Face and Rew 
networks (Table 3, supplementary Fig S2). 
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Table 3: Gender differences in personality predictability 
Predicted  

Trait 
Predicting  
Network 

Group r  
(Sample1) 

ZMen - 
ZWomen 

(Cohen’s 
q)  

CI 
(Lower limit / 
Upper limit) 

O VA Men 0.06 
0.013 -0.176 / 0.205 

  Women 0.07 
O Pain Men 0.08 

0.039 -0.153 / 0.231   Women 0.12 

O Rew Men -0.06 
0.236 * 0.044 / 0.428  

  Women 0.17 

O Pain Men 0.08 
0.039 -0.153 / 0.231 

  Women 0.12 

E Face Men 0.18 
0.054 -0.138 / 0.246   Women 0.12 

E Rew Men 0.08 
0.055 -0.137 / 0.247   Women 0.14 

E Connectome Men -0.03 
0.323 * 0.131 / 0.515 

  Women 0.29 
A AM Men 0.10 

0.190 -0.002 / 0.382 
  Women -0.09 

N Connectome Men 0.17 
0.119 -0.073 / 0.311   Women 0.06 

N Emo Men 0.2 
0.276 * 0.084 / 0.468   Women -0.07 

 
Comparison of the correlation coefficients between males and females and effect size of 
significant gender differences. Confidence intervals (CI) are computed on the Z-transformed 
difference between correlations in Men and Women for each prediction. Note * marks 
significant gender difference at 95% of confidence. 
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4. Discussion 
 
Here we report associations between major dimensions of personality and RSFC in 
functional brain networks. In particular, individual scores of various personality traits of the 
Five-Factor Model (McCrae and Costa 2004) could be predicted from patterns of RSFC in 
specific meta-analytically defined networks as well as from the whole-brain FC pattern. In 
assessing the generalizability of our findings, we focused on the predictions that replicated in 
two different samples within the HCP dataset.  
 
These results capitalize on the as-yet largely untapped potential (though cf. Schilbach et al., 
2016; Varikuti et al., 2016) of neuroimaging meta-analyses to provide robust, functionally 
specific ROIs to investigate individual task-free data (Lee et al. 2012). These can help to 
constrain the otherwise vast feature space for statistical learning on resting-state data in a 
functionally meaningful and anatomically specific manner (Wang et al. 2010). As we 
demonstrate here, combining meta-analytic network definitions with statistical learning 
approaches allows, at a moderate level, not only predicting complex individual 
characteristics such as personality traits, but also the characterization of functional brain 
networks by their capability to do so. Nonetheless, our results of prediction of personality 
based on whole-brain FC pattern highlight that for some traits it might be crucial to consider 
the global connectivity as well. 
 
In the overall (gender-mixed) sample, RSFC within networks representing affective and 
executive brain systems predicted Openness, RSFC within mnemonic network predicted 
Agreeableness, while RSFC from the whole brain predicted Neuroticism. In the gender-split 
samples, however, the prediction of Openness from the executive network VA and of 
Agreeableness from the mnemonic network AM were not replicated in any of the two 
subgroups, an effect likely related to the moderate effect present in the overall sample not 
specifically driven by a particular sex. In contrast, the prediction from the affective network 
Pain was also predicted in the female-only subsample, indicating that more information on 
the respective phenotypes can be gained from RSFC data in one gender. The gender-specific 
analyses revealed further constellations in which personality traits could be predicted from 
particular networks (see Fig 2). In fact, none of the network–trait combination was predictive 
in both female and male subsamples, but several functional networks were found to 
differentially predict personality traits in females versus males. Additionally, Connectome 
successfully predicted Extraversion (in Women) and Neuroticism (in the entire sample, but 
then also in Men only). This underlines the notion that gender is a fundamental factor with 
regard to brain–personality relationships. 
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4.1 Methodological considerations and limitations 
In our analysis, we combined a priori selection of networks of interest, built upon the 
existing literature (cf. Kennis et al. 2013, Hu et al. 2011, DeYoung 2010), together with a 
data-driven approach for learning of the predictive models. The benefits of this approach 
were two-folds: on the one hand, with the a priori selection of networks, we could narrow 
down the networks of interest, which allowed us for a better functional interpretation of the 
results as the nodes represent brain regions robustly associated with the respective mental 
functions; on the other hand, the data-driven predictive models allowed for an explanatory 
analysis investigating which networks were informative in predicting a single trait, assuming 
therefore that many biological systems could contribute in explaining its inter-individual 
variance (Yarkoni 2015). Given that if only meta-analytically defined functional networks 
were employed, less consistently linked yet potentially critical regions might have been left 
out, we included also a purely explorative analysis employing the whole-brain FC.  
 
In addition, as noted above, using a sparsity inducing method (RVM) which yielded compact 
regional modes has the advantage of providing regionally specific prediction models. As 
outlined above, our procedure provided a biologically informed feature reduction, as only the 
most relevant connections were taken in account in the prediction models. This has the 
advantage of reducing the complexity of the models avoiding overfitting (Hastie et al. 2009).  
With respect to the prediction model, we here employed Relevance Vector Machine (RVM), 
which in contrast to support vector regression or ridge regression, yields considerably sparser 
solutions (Tipping 2001). This allowed for identifying the most used connections and nodes 
(Fig 4) that mainly drove the prediction and hence enabled a more specific interpretation of 
its neurobiological underpinnings. In this context, it is important to note that for any given 
model the entire set of connections with non-zero coefficients provides information about the 
personality trait (Orrù et al. 2012). For interpretation, however, we focused on the most 
consistently utilized connections (over 250 replications) as key components of the given 
prediction.  
 
In accordance with recent recommendations, the current study used 10-folds cross-validation, 
which has been showed to be less susceptible to overly optimistic estimates as compared 
with a leave-one-out approach (LOO-CV) (Varoquaux et al. 2016). Moreover, we repeated 
the cross-validation procedure 250 times, averaging the prediction performance over all 
replications to obtain robust and generalizable estimates of the capability of different brain 
networks to predict personality scores in new individuals.  
 
Our approach, by building upon these methodological considerations, yielded insights into 
the relationships between brain, behaviour and personality. However, there are some 
limitations which are worth consideration in the future studies. First, gender-stratified sub-
analyses may reduce statistical power because of the smaller sample sizes. Further studies 
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with a larger sample size, designed to separately analyze men and women are required, 
especially monitoring their hormonal levels (Arélin et al. 2015; Weis et al. 2017). Second, 
even though meta-analytic networks are among the most reliable ways to infer a mental 
function given a set of brain regions, we acknowledge that some regions of different 
functional networks can overlap. As a matter of fact, the employment of meta-analytically 
derived networks does not necessarily ensure a stringent and univocal relationship between 
the mental function supported by a particular network and a personality trait. Nonetheless, 
this approach can at least provide some confidence for the implication that a specific trait is 
related to a particular mental function in terms of the network that subserves them. A third 
consideration relates to the measurement of personality, i.e. the use of self-reported 
questionnaires. Self-reported questionnaire might have indeed contributed in increasing the 
noise in the data, as perception and report of own personality traits can be affected by many 
factors, e.g. men usually scoring low on Neuroticism as socialization effect (Viken et al. 
1994).   
 
4.2 Predicting Openness to experience 
Our results indicated that self-reported Openness to experience can be linked to RSFC 
patterns in the networks subserving reward (Rew) and pain (Pain) processing in Women, 
while in the overall sample Openness was significantly predicted by RSFC in the vigilant 
attention (VA) network and, again, from Pain. Openness to experience has been linked to 
“need for cognition,” that is, an individual’s tendency to engage in effortful cognitive 
processing (Fleischhauer et al. 2010): high levels of Openness were found to positively affect 
work outcomes for highly complex jobs while increasing dissatisfaction when jobs become 
mechanical and unchallenging (Mohan and Mulla 2013). Such monotonous and intellectually 
unchallenging tasks were exactly the tasks investigated in the VA meta-analysis of Langner 
and Eickhoff (2013), which revealed the brain network involved in dealing with sustained 
attentional demands in boring situations. Thus, the predictability of Openness from FC in the 
VA network may reflect a neural substrate of the challenge experienced by individuals 
scoring high on Openness when faced with repetitive tasks and standardized routines. High-
Openness participants might therefore need to recruit this network differently than their low-
Openness individuals to keep focused on a tedious, repetitive task over time. Indeed, 
connections used throughout all prediction models from the VA network of Openness in both 
samples are between pre-supplementary motor cortex and medial prefrontal cortex (both 
involved in task-set re-energizing and outcome monitoring), between left inferior occipital 
gyrus (IOG) and  right temporo-parietal junction (crucial for re-orienting the signalling), and 
left IOG and inferior frontal junction (known for  its contribution in the input/output 
transformation) (see Fig 4 for the most informative connections and Langner and Eickhoff 
2013 for more details on the regions functions).  
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Behaviours associated with the trait of Openness, such as cognitive exploration, have been 
attributed to high dopamine (DA) functioning (DeYoung et al. 2005). This, indeed, led to the 
inclusion of Openness in the meta-trait “β” (or plasticity, c.f. DeYoung 2010), a higher order 
factor representing the shared variance between Openness and Extraversion, which are 
suggested to be both modulated by the dopaminergic system. DA is the main 
neurotransmitter modulating the reward network (cf. Berridge and Robinson 1998), and, in 
line with this, RSFC within the Rew network, could predict both Openness and Extraversion 
(in Women and in Men respectively), possibly via affecting the reactivity of the 
dopaminergic system. Interestingly, in predicting Openness, the weights of the nodes (i.e. 
number of incident edges) most used across the predictive models showed a stronger 
involvement of the dlPFC, corroborating previous findings that showed an association 
between Openness and the dopaminergic mesocortical branch, which projects directly onto 
the dlPFC (DeYoung 2013; Passamonti et al. 2015). On the other hand, regions like 
amygdala, nucleus accumbens (NAc) and orbitofrontal cortex (OFC), which constitute the 
other main dopaminergic branch, the mesolimbic pathway, were significantly less recruited. 
We would thus suggest that DA neurons populating the mesocortical branch, by encoding 
specifically the saliency of the stimulus (i.e. reward value of information, cf. Bromberg-
Martin et al. 2010), can be potentially more informative for high-Open individuals, 
characterized by the automatic tendency to perceive salient information in everyday 
experience (DeYoung 2013). Interestingly, we found that Openness could be predicted by FC 
of the Rew network significantly better in Women, compared to Men (r = 0.17 in Women 
and r = -0.06 in Men of Sample 1). This might be explained by the fact that Rew functioning 
is highly influenced by the ovarian hormones estrogen and progesterone during the menstrual 
cycle (Dreher et al. 2007). In addition, estrogens have been related to dlPFC functioning, 
going along with cognitive decline which follows the drop of estrogens in menopause 
(Shanmugan and Epperson 2014). Despite the lack of studies exploring a direct relationship 
between females’ hormonal cycling and the trait of Openness, there is evidence for its 
indirect modulation by estrogen. That is, the catechol-O-methyltransferase gene, which is 
associated with the trait of Openness (Konishi et al. 2014), is influenced by estrogen 
(Harrison and Tunbridge 2008). We thus suggest that the influence of ovarian hormones on 
RSFC in the Rew network as well as on perceived Openness induces joint intra-individual 
variation (i.e. shared variance), which in turn increases the strength of the neural and 
phenotypical association across women. This should then result in the observed higher 
predictability of Openness in female participants.  
 
Across the entire sample, but then also in the female sub-group only, Openness could 
additionally be predicted in both samples based on FC within the pain network (Pain). 
Relationships between pain and Openness have been demonstrated in terms of a higher 
threshold for pain tolerance (Yadollahi et al. 2014) and as protective factor in migraine 
occurrence (Magyar et al. 2017) in individuals reporting higher levels of Openness. 
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However, very little is known about the association between this trait and the neural 
correlates of pain. Indirect evidence, however, comes from research in avoidance learning, 
which suggests that the successful avoiding of an aversive stimulus is experienced as an 
“intrinsic” reward (Kim et al. 2006). Endogenous opioid peptides, which are highly dense in 
the pain network (Baumgartner et al. 2006), were indeed found to modulate the dopaminergic 
system in response to aversive stimuli, resulting in the enhancement of a pleasure feeling 
boosted by DA (Sprouse-Blum et al. 2010). We thus suggest that high- and low-Open 
individuals differ in their ability to detect possible aversive stimuli (via diverse reactivity of 
the Pain network) and, by avoiding them, differently experience “intrinsic” reward.  
In summary, the predictions from the Rew, VA and Pain networks of Openness might, 
therefore, jointly point to the importance of saliency processing of stimuli, which can be 
rewarding (Rew), monotonous (VA) or aversive (Pain), turning high Open-individuals as 
highly receptive and permeable to relevant information. Ultimately, connections between 
regions specially targeted by ovarian hormones (e.g, dlPFC), might underlie the significant 
gender difference in the predictability of Openness from FC in Rew network (Fig 4).  
 

Fig 4: Summary of the most used nodes (i.e. above 80% of the models) between regions 
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from (A) the reward (Rew), vigilant attention (VA), and pain processing (Pain) networks in 
the prediction of Openness, (B) the Rew and face processing (Face) networks in the 
prediction of Extraversion. Summary of the most used connections between regions from (C) 
the autobiographic memory (AM) network in the prediction of Agreeableness, (D) the Pain 
and emotional processing (Emo) networks in the prediction of Neuroticism. 
 
4.4 Predicting Extraversion  
Extraversion was predicted by the RSFC patterns within the networks of reward (Rew) in 
Women and face perception (Face) in Men. Moreover, in Women, this trait was also 
significantly predicted by the whole-brain (Connectome) RSFC. Extraversion is generally 
described as behavioural exploration and sensitivity to specific rewards. Importantly, a 
distinction has been also made between “Agentic Extraversion”, reflected in assertiveness, 
dominance, and ambition aspects, and a “Affiliative Extraversion” which is more related to 
sociability and affiliative social bonding (DeYoung et al. 2007; c.f. Allen and DeYoung 
2016).  
 
As discussed previously in paragraph 4.3, the traits of Extraversion and Openness exhibit a 
shared variance, known as “β” factor and are genetically influenced by the dopaminergic 
system (c.f. Allen and DeYoung 2016). Notably, while for Openness, Rew’s most used 
nodes encompassed the mesocortical pathway (see above), for Extraversion, it was regions 
along the mesolimbic branch that were mostly used (amygdala, NAc and OFC). Thus, we 
suggest that even though FC of Rew predicts both Openness and Extraversion, the functional 
connectivity of two different subsystems of the Rew network are informative for the two 
different traits, namely the mesocortical and mesolimbic pathway respectively. In favour of 
this distinction, extraverts were shown to be more sensitive toward the motivational content 
of the reward stimulus, encoded by DA neurons along the mesolimbic pathway (Bromberg-
Martin et al. 2010; DeYoung 2013). We thus believe that the prediction of Extraversion from 
the FC within Rew might well-capture the “Agentic” dimension of Extraversion, given the 
motivational value of the rewarding stimuli and drive toward a goal prompted by the 
dopaminergic mesolimbic system. 
 
While extraversion in Women was found to be associated to FC of Rew, relationships of this 
trait, in Men, were found with FC in Face network. Faces are arguably the most important 
social stimuli for humans and it has been shown that extraverts compared to introvert, by 
spending more time on people, are significantly better at recognizing faces (Li and Liu 
2010). Extraversion’s hedonic experience of goal achievement is enclosed in the 
“Affiliative” component (DeYoung et al. 2007; c.f. Allen and DeYoung 2016) and its genetic 
variation has been also pointed to the opiate system, due to its involvement in the hedonic 
response to the stimulus (Peciña et al. 2006). It is therefore possible that the endogenous 
opioid system via modulation of amygdala and medial prefrontal cortex (Tejeda et al. 2015; 
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Selleck and Baldo 2017), most used regions in the connections of Face, mediate both the 
perception of faces (Martin et al. 2006) and the social bonding (Pasternak and Pan 2013). We 
thus suggest that functional connectivity within the Face network in Men, is mostly related 
to the “Affiliative” aspect of Extraversion.  
 
The last prediction of Extraversion is based on whole-brain FC in Women (Sample 1: r = 
0.29; Sample 2: r = 0.23, both p < 0.05; for gender comparison in Sample 1, Cohen’s q = 
0.323, p < 0.05). However, a major issue using whole-brain connectivity patter might be the 
lack of anatomical localization for the most informative features, as none of them resulted to 
be used more than 40% of the predictive models, indicating a heterogeneous mosaic of 
connections which contribute to the prediction of Extraversion. The only theory in 
personality neuroscience which relates the functioning of entire cortex to Extraversion (and 
Neuroticism, see below 4.6) is Eysenck’s  biological theory of personality (Eysenck 1967). 
Here, Extraversion is thought to depend on the variability in cortical arousal, with introverted 
individuals having lower response thresholds consequently more cortical arousal compared 
to extraverts. In favour of this hypothesis, the topological properties of whole-brain RSFC 
has shown that brains of more extraverted individuals behave more similarly to a “small-
world” compared to a “random” network, with higher clustering coefficient compared to 
introverts (Gao et al. 2013). A clustered configuration, which supports a more modularized 
information processing and fault tolerance, can therefore be associated with higher arousal 
threshold in extraverts’ cortex. We also observed that this prediction performance was 
significantly stronger in Women compared to Men (r = 0.29 in Women and r = -0.03 in Men 
of Sample 1). Again, a possible cause might be the involvement of ovarian hormones, 
targeting specifically the most densely interconnected hub structures of the connectome 
(Alawieh et al. 2015) as well as influencing level of Extraversion (Jokela et al. 2009; 
Ziomkiewicz et al. 2012). However, more studies are needed to prove this interaction 
between Extraversion, estrogen and the topographical properties of whole-brain functional 
connectivity.  
 
To sum up, connectivity of regions encoding the motivational value and the drive toward a 
goal (Rew) and the hedonic processing of the goal itself (Face), were informative to predict 
interindividual variability in the trait of Extraversion possibly capturing the “Agentic” and 
“Affiliative” aspects of the trait respectively (Fig 4). Importantly, given the modulation of 
ovarian hormones on both the trait of Extraversion and on the topological properties of the 
Connectome, we would suggest that sex hormones might be a possible mediator of this trait-
network relationship, resulting in better prediction performance in Women.  
 
4.5 Predicting Agreeableness 
RSFC patterns in the AM network could predict the individual level of perceived 
Agreeableness while grouping men and women in both samples. This trait reflects a high 
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desire to avoid interpersonal conflicts (Jensen-Campbell and Graziano 2001) and strong 
affect regulation (Ryan et al. 2011). In line with this, positive correlations have been 
demonstrated between Agreeableness and regions supporting social functioning (Hooker et 
al. 2008; DeYoung et al. 2010; Hassabis et al. 2014) and midline regions of the default mode 
network (DMN), as deputed to self-referential process (Adelstein et al. 2011; Sampaio et al. 
2014). Our prediction of Agreeableness from the AM network supports a crucial role of self-
reference, strongly linked to autobiographical memory (Molnar-Szakacs and Arzy 2009), in 
how high agreeable individuals deal with social demands. Self-related cognition has been 
often discussed at the neural level as the product of interaction between the DMN and the 
mirror neuron system (MNS), the first responsible for high-level mentalizing function and 
the second for embodied simulation-based representation (Keysers and Gazzola 2007; Qin 
and Northoff 2011; c.f. Molnar-Szakacs and Uddin 2013). As a result, the privileged access 
to the own physical and mental states would allow a better insight into others’ physical and 
mental states, and consequent appropriate social responses.  
 
Interestingly, within the AM network, most used connections that informed about the trait in 
both samples reflected the interaction between the DMN and MNS systems: nodes with 
highest weights belonged indeed to DMN subsystem, such as medial PFC, posterior 
cingulate cortex, medial temporal lobe (amygdala and hippocampus) and lateral parietal 
cortex (temporo-parietal junction). The remaining nodes with the highest weights belonged 
to the MNS, such as inferior frontal gyrus, precentral gyrus, inferior parietal cortex and 
superior temporal sulcus. Our result, hence, supports the interplay of these two subsystems in 
the context of self-processing (here expressed via memory recollection about past 
experiences, AM) and that this knowledge about the self can significantly predict 
Agreeableness, the trait most reflecting enhanced social skills. 
 
4.6 Predicting Neuroticism 
In Men, self-reported Neuroticism was predicted by RSFC within the emotional processing 
network (Emo). Additionally, the RSFC from the whole brain (Connectome) significantly 
predicted this trait across the entire sample and then specifically in Men only. Neuroticism 
represents a broad dimension of individual differences in the tendency to experience 
negative, distressing emotions. High Neuroticism scores entail the experience of fear, anger, 
sadness, embarrassment, the incapacity to control cravings and urges, and to cope with stress 
(Costa and McCrae 1987). Within this trait, it is possible to delineate two major divisions, 
one related to the experience of anxiety, fear and passive avoidance, and referred in literature 
as the component Withdrawal, and the other related to irritability, anger and active defensive 
responses, or Volatility  (DeYoung et al. 2007). Neuroticism is arguably the most studied 
personality trait and is an important predictor of many different mental and physical 
disorders (Lahey 2009). Furthermore, the two components of Neuroticism (Withdrawal and 
Volatility) highly reflect the dimension of Behavioural Inhibition System (BIS) and Fight-
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Flight-Freeing System (FFFS) from the Gray’s Reinforcement Theory (Gray and 
Mcnaughton 2000), conceptualized in term of their neurobiology. Interestingly, this 
distinction between the Volatility/ FFFS and Withdrawal/BIS seems to be captured by the 
two networks showing predictability power for Neuroticism, Emo and Pain. Even though 
this last prediction (Pain) was found significant in Sample 1 (with r = 0.15, p < 0.05 in Men) 
but not fully replicated in the Sample 2 (with r = 0.2, p = 0.05 in Men) (Fig 4), we would 
still suggest that recruitment of this network in association to Neuroticism might indicate that 
perception of the aversive stimulus via the Pain network (Iannetti and Mouraux 2010; Hayes 
and Northoff 2012) could lead high-Neuroticism men to inhibit their behaviours such to 
avoid potential threats and punishments (Withdrawal). Conversely, Emo network would 
trigger emotional responses for either escaping or eliminating the threat, but in both cases 
showing a strong emotional lability (Volatility). Beyond associations with specific networks, 
Neuroticism could also be predicted from the whole-brain RSFC (Connectome) in Men and 
across genders. This is nicely in line with graph analysis studies (Gao et al. 2013; Servaas et 
al. 2015) showing that the neurotic brain displays topological properties of a “random 
network” and overall weaker FC. Here cortisol might play a specific role, the hormone that is 
most closely associated with a biological reaction to stress and found to correlate with 
Neuroticism. However, the directionality of correlation seems to depend on gender: many 
studies converged in discovering that Neuroticism was positively correlated with baseline 
cortisol in men, but the opposite was true in women (Zobel et al. 2004; Oswald et al. 2006; 
DeSoto and Salinas 2015). Thus, especially in men, the overabundance of cortisol by 
potentiating neuronal degeneration (Sapolsky 1994), might be responsible for the overall 
smaller brain volume (Liu et al. 2013), white-matter (Bjørnebekk et al. 2013) and gray-
matter (Servaas et al. 2015) functional disconnectivity found in high-Neuroticism individuals 
compared to the more emotional stable. Given that all the three networks (Emo, Pain, 
Connectome) showed a stronger predictability in Men compared to Women (statistically 
significant for the first two, and a strong trend for the third, see Table 3), we suggest that 
gender may moderate Neuroticism’s relationship to cortisol. However, more (direct) studies 
are needed to better understand this intricate relationship between RSFC, cortisol, 
Neuroticism and gender and to shed light on the neural mechanisms that make women’s 
brain more susceptible to Neuroticism-related mental disorders (Jorm 1987).  
 
4.7 Implications for the neurobiology of FFM 
Contrary to other important theories of personality, such as Cloninger’s Tridimensional 
Personality Questionnaire (TPQ) or Gray’s Reinforcement Sensitivity Theory (RST), the 
FFM is not based on biological grounds. However, variability in its personality factors had 
been associated to the brain, given that personality traits are the product of our actions, 
emotions and, more generally, cognitive processes. In this way, the cognitive mechanisms 
work as intermediate bridge between the psychometric constructs of personality and 
plausible biological substrates. However, the relationships among these factors (brain, 
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behaviour and personality) can be misleading in the context of personality predictions, 
which, in fact, were significant only to a moderate level, compared to other findings: contrary 
to predictions of sustain attention (Rosenberg et al. 2016) or reading comprehension (Cui et 
al. 2017) which tap predictability of cognitive process itself, personality traits are mostly 
modulators of these cognitive processes. This may make it more difficult to find brain 
correlates of personality in specific networks associated with those functions. 
 
Also, the hierarchy of the FFM model might have contributed in enlarging the gap: in our 
findings, we highlighted the possibility that the predictions of one trait from different 
networks could reflect different components within this trait, also known as facet (cf. 
DeYoung et al. 2007; Koelsch et al. 2013; Haas et al. 2015). For example, we discussed the 
prediction of Extraversion from Rew and Face as potentially capturing the “Agentic” and 
“Affiliative” aspects respectively, or the prediction of Neuroticism from Pain and Emo as 
linked to Withdrawal and Volatility. Conversely, when the same network was predicting two 
different traits (e.g. Rew predicting Openness and Extraversion, discussed in light of the 
saliency and motivational contribution for the two traits), the prediction might have indeed 
boosted if investigating the meta-trait “β”, which reflects their shared variance within the 
dopaminergic system and thus more prone to be predicted by the network of reward 
processing (DeYoung 2013). Therefore, the level of abstraction of the five traits might not 
mapped well to particular brain systems, and more studies are encouraged for testing both 
more specific and homogeneous sub-dimensions as well as more heterogeneous higher-order 
factor structure. Lastly, many biological mechanisms participate in evoking the same 
cognitive process, e.g. changes in brain structure, function, or genetic, which are then 
intrinsically connected with personality. We here used RSFC as “marker” for the individual 
expression of personality traits, enduring across time and situations. However, a downside of 
FC in resting conditions might be that it has not so much to do with how personality factors 
come together to "produce" stable modulations of a whole range of cognitive processes. 
Therefore, other brain measurements (as structural connectivity, task-based functional 
activation, or molecular genetics) might be also useful in gaining more knowledge on the 
biology of personality and its relationship with specific mental functions. Keeping in mind 
that we cannot expect biological mechanisms to show clear-cut as the respective  
psychometric dimensions (Yarkoni 2015), but conversely many biological mechanisms 
(function, structure, neurotransmitters) as well as many mental functions can be informative 
for a given personality trait, we therefore support the need for a multi-level approach in 
future studies as proposed by Yarkoni in order to achieve a unified description of the 
biological bases of personality traits. 
 
However, even though all these aspects might affect the relationship between brain function 
(and structure) and personality, we here do provide insights on the relation between brain and 
personality: when analysing the entire sample while adjusting for gender effects, only two 
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predictions (VA predicting Openness and AM predicting Agreeableness) can be found not 
specifically driven by one gender-group. However, when looking at men and women 
separately, we observed much more and larger effects, evidence which highly remarks the 
importance of gender while investigating the neural correlates of personality. Specifically, 
the current findings propose a link between Openness and executive and affective domain. 
Agreeableness with memory domain. Extraversion with social and affective networks and 
lastly Neuroticism with the affective system. Interestingly, these last two traits could be 
predicted as well from the entire Connectome. An interesting consideration is that Openness 
could be significantly predicted by three different, barely overlapping networks (Pain, Rew, 
VA), but could not be predicted from the whole-brain, which was covering the nodes of all 
the three at the same time. We thus argue for a better predictability of Openness from 
specific and separate functional networks. Contrarily, Extraversion and Neuroticism could be 
significantly predicted by both meta-analytic networks and the whole-brain, pointing to the 
importance of also global effects, besides specific functions. This is particularly true for 
Extraversion, which showed significantly higher prediction performance from global RSFC 
(Connectome) with a very vast nodes contribution, rather than from the specific networks of 
Rew and Face, thus favouring the global effects over the specific functions for this trait. 
 
4.8 Conclusions 
Using multivariate machine learning, we showed that personality traits can be predicted from 
RSFC patterns in affective, social, executive and memory networks of the brain, as well as 
from the whole-brain. Our observation that for most of these networks predictive power was 
gender-specific complements previous morphometric findings (Nostro et al. 2016) in 
highlighting the crucial role of gender when trying to understand the neurobiology of 
personality. Additionally, the many-to-many associations between mental functions and 
personality traits, indicate the complexity of the biological substrates of personality, as many 
functional systems may contribute to the observable differences in each trait (for a critical 
review see Yarkoni 2015). Maybe even more fundamental are the implications for the 
concept of personality, given that even a trait as complex and broad as, for instance, 
Openness, seems to have a neurobiological underpinning in pre-defined functional networks 
that enables estimation of the individual level of that trait in a new subject. 
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Supplementary material 
Table S1: Influence of zygosity on the traits distribution  
We performed a Kolmogorov-Smirnov (KS) test in order to verify that the distribution for 
each trait in monozygotic and dizygotic twins was not significantly different (null 
hypothesis). Therefore, from the S1200 release we selected only twin participants (N= 563) 
and later extracted a subsample of unrelated subjects (N = 262, 131 males and 131 females). 
All the statistics result not significant, i.e. the distribution of each trait in Mz and Dz does not 
differ. 
 
Trait K-S statistic (Mz vs Dz) P value 
Openness 0.10 0.47 
Conscientiousness 0.06 0.96 
Extraversion 0.07 0.87 
Agreeableness 0.13 0.23 
Neuroticism 0.07 0.93 
 
Table S2: Correlations between factors 
Supplementary Table 1: Intercorrelations (Pearson’s r) among the 5 personality factors 
for Sample 1 and Sample 2, across the overall samples, in males, and females. 
 
Sample 1 

  Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall 
Males 

Females 

- -0.14*/ 
-0.15/ 
-0.11 

0.07/ 
0.06/ 
0.09 

0.17*/ 
0.17*/ 
0.18* 

0.0/ 
0.07/ 
-0.08 

Conscientious
ness 

Overall 
Males 

Females 

- - 0.27*/ 
0.32*/ 
0.24* 

0.19*/ 
0.24*/ 
0.12 

-0.35*/ 
-0.37*/ 
-0.36* 

Extraversion Overall 
Males 

Females 

- - - 0.26*/ 
0.23*/ 
0.34* 

-0.32*/ 
-0.32*/ 
-0.3* 

Agreeableness Overall 
Males 

Females 

- - - - -0.26*/ 
-0.29*/ 
-0.31* 

Neuroticism  - - - - - 

 
Sample 2 

  Openness Conscientiousness Extraversion Agreeableness Neuroticism 

Openness Overall 
Males 

Females 

- -0.17*/ 
-0.11/ 
-0.2 

0.13/ 
0.09/ 
0.18 

0.13/ 
0.13/ 
0.18 

0.07/ 
0.09/ 
0.08 
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Conscientious
ness 

Overall 
Males 

Females 

- - 0.25*/ 
0.32*/ 
0.17 

0.21*/ 
0.26*/ 
0.13 

-0.47*/ 
-0.54*/ 
-0.43* 

Extraversion Overall 
Males 

Females 

- - - 0.43*/ 
0.40*/ 
0.46* 

-0.41*/ 
-0.42*/ 
-0.41* 

Agreeableness Overall 
Males 

Females 

- - - - -0.39*/ 
-0.39*/ 
-0.45* 

Neuroticism  - - - - - 

 
* Marks significance at p<0.05 (Bonferroni corrected) 
 
Table S3: Coordinates of each network included in the RS functional connectivity 
network analysis 

Empathy 
Bzdok et al., 2012 

x y z Macroanatomica
l location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

2.0 56.0 18.0 rdmPFC dmPFC Area p32 
-8.0 54.0 34.0 ldmPFC dmPFC - 
36.0 22.0 -8.0 raIns/IFG raIns - 
54.0 16.0 20.0 rIFG rIFG Area45 
50.0 30.0 4.0 rIFG (p.Tr) rIFG - 
-30.0 20.0 4.0 laIns laIns - 
50.0 12.0 -8.0 rSTG rIFG - 
-44.0 24.0 -6.0 lIFG(p.Orb) lIFG - 
-4.0 18.0 50.0 SMA SMA  
-2.0 28.0 20.0 aMCC aMCC Area 33 
-4.0 42.0 18.0 pACC rostral ACC Areap32 
-2.0 -32.0 28.0 PCC PCC Retrosplenial Area 

a30 
52.0 -58.0 22.0 rTPJ rTPJ Area PGp 
-56.0 -58.0 22.0 lTPJ lTPJ Area PGa 
22.0 -2.0 -16.0 rAm rAm Amygdala: SF, CM 
54.0 -8.0 -16.0 rMTG rMTG - 
52.0 -36.0 2.0 rpSTS                                             rpSTS - 
-12.0 -4.0 12.0 laTh laTh Th:Prefrontal,  



	 139	

6.0 -32.0 2.0 rpTh rpTh  
26.0 -26.0 -12.0 r Hippo rHippo Subiculum 
2.0 -20.0 -12.0 Midbrain Midbrain - 

14.0     4.0 0.0 rGP rGP Th:Prefrontal 

Face processing 
Grosbras et al., 2012 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment  

42.0     -78.0    -8.0    r lOcC r lOcC hOc4la 
-40.0      -82.0 -8.0    lOcC l lOcC hOc4la 
26.0     -100.0   2.0      rOcPole rOcPole hOc2 
-14.0       -98.0 -4.0     lOcPole lOcPole hOc1 
52.0        -44.0 8.0      rMTG rMTG/pSTS - 
-56.0      -58.0 36.0     lTPJ lMTG/pSTS Area PFm 
28.0     -52.0    42.0 rIPS rSPL Area hIP1 
4.0      -58.0    28.0     rPrc rPCC - 

52.0     24.0     26.0     rIFS rIFG Area45 
-46.0    20.0     22.0     lIFG lIFG IFS1/IFS2 
0.0      20.0     54.0     l pre-SMA pre-SMA - 

42.0     12.0     30.0     rIFS rMFG IFS4 
12.0     52.0     16.0     pACC rMFG Area p32 
8.0          46.0 36.0 r amSFG rmPFC - 

14.0     28.0     50.0 r pmSFG rSFG - 
-24.0    24.0     42.0     lMFG lSFG - 
36.0     2.0      42.0     rMFG rPrG - 
20.0     -8.0    -14.0 rAm rAm Am: SF 
-16.0 -6.0 -12.0 lAm lAm - 

Reward 
Liu et al., 2011 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

12.0     10.0     -6.0 rNAc rNAc NAc_fundus 
-10.0    8.0      -4.0   lPal lPal Striatum_scgp 
36.0       20.0 -6.0 raIns rIns - 
-32.0    20.0     -4.0 laIns lIns - 
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0.0      24.0     40.0 aMCC dmPFC Area 32’ 
0.0      54.0     -8.0    mOFC mOFC Fp2 

24.0      -2.0    -16.0    rAm rAm Am: LB 
4.0     -14.0    8.0      rTh rTh Th: Temp 
0.0      8.0      48.0     l pre-SMA SMA - 
8.0      -18.0    -10.0    rBrainstem rBrainstem - 
2.0      44.0     20.0     rpACC rACC Area p32 

-24.0             2.0 52.0 lpMFG lMFG - 
-38.0    -4.0     6.0      lpIns lIns Area Id3 
24.0         40.0 -14.0 r SOrbG r midOFC Area Fo3 
-16.0    42.0     -14.0    lSOrbG l midOFC - 
40.0        32.0 32.0     rpMFG rMFG - 
-28.0    -56.0    48.0     lIPS lIPL hIP3 
28.0     -58.0    50.0     rIPS rAG hIP3 
0.0          -32.0    32.0 PCC PCC  

-36.0    50.0     10.0 laMFG lFP - 
-46.0    42.0     -4.0 lIFG l lOFC - 
30.0     4.0      50.0     raMFG rMFG - 
-22.0    30.0     48.0   lSFG lSFG - 

Pain 
Kogler et al., 2015 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

38.0 18.0 0.0 rIns rIns - 
52.0        12.0 -4.0     rSTG rSTG Area 44  
60.0     6.0      2.0      rIFG rTP Area 44 
22.0     0.0      -4.0     rPal rPal - 
-38.0    14.0     4.0      laIns lIns OP7 
-58.0    0.0      6.0      lfOP lOP4 OP6 
-20.0    6.0      2.0      lPut lPut Striatum_PM 
4.0      6.0      46.0     rSMA rSMA Area 24dv 
0.0      14.0     36.0     laMCC lMCC Areas 24c’v,24c’d 

-42.0     -18.0   18.0     lpOP lOP3 OP3 
-54.0    -24.0    24.0     lSMG lSMG Area PFop 
-36.0      -20.0 2.0      lpIns lIns OP7, OP6 
-14.0    -12.0    10.0     lTh lTh Th: Pref 
10.0     -18.0    4.0      rTh rTh Th: Pref 
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56.0     -24.0    24.0     rSMG rSMG Area PFop 
44.0     -14.0    16.0     r pOP rOP3 OP3 
38.0     50.0     12.0     rMFG rMFG - 
-24.0     -66.0   -26.0    lCb lCb LobuleVI 

Emotion perception 
Sabatinelli et al., 2012 

x y z Macroanatomica
l location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

4.0 47.0 7.0 pACC medPFC pv24c; pd24cv; 
pd24cd 

42.0 25.0     3.0 rIFG rIFG  
-42.0 25.0 3.0      lIFG(p.Tr) lIFG - 
48.0 17.0     29.0     rIFJ rMFG IFJ1 
-42.0 13.0 27.0     lIFJ lMFG IFJ1 
-2.0 8.0      59.0     l pmSFG lSFG  
20.0 -4.0 -15.0 rAm rAm Amygdala: SF 
-20.0 -6.0     -15.0 lAm lAm Amygdala:SF 
-20.0 -33.0 -4.0     lHippo lPHG . 
14.0 -33.0    -7.0     rHippo rPHG Subiculum 
53.0 -50.0    4.0      rMTG rMTG - 
38.0 -55.0 -20.0 r aFFG rFFG FG3 
-40.0 -55.0 -22.0 l aFFG lFFG Lobule VI 
38.0 -76.0   -16.0 r pFFG rpFFG hOc4v 
-40.0 -78.0 -21.0 lpFFG lpFFG hOc4v 
-4.0 52.0 31.0   lamSFG medPFC - 
36.0 25.0 -3.0 rIns rOFC - 
-38.0 25.0     -8.0     lIFG(p.Orb) lOFC - 
2.0 19.0 25.0 aMCC rACC Area a24a’, a23b’ 
0.0 -15.0 10.0 lTh Th Th: Temporal 
-2.0 -31.0    -7.0     Superior 

Colliculus 
Pulvinar - 

-28.0 -70.0 -14.0    lFFG lFFG FG1 
46.0 -68.0 -4.0     r lOcC r lOcC hOc4lp 
-48.0 -72.0    -4.0     l lOcC  l lOcC hOc4lp 

Working Memory 
Rottschy et al., 2012 

x y z Macroanatomica Original Cytoarchitectonic 
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l location labeling in 
the Meta-
analysis 

Assignment  

-32.0 22.0     -2.0     l aIns laIns - 
-48.0 10.0     26.0     lIFG lIFG (p.Orb) Area 44 
-46.0 26.0     24.0     lIFS l plPFC IFS1/IFS2 
-38.0 50.0     10.0 lMFG l alPFC - 
36.0 22.0     -6.0     r aIns raIns - 
50.0 14.0     24.0     rIFG rIFG (p.Tr) Area44 
44.0 34.0     32.0     rpMFG r plPFC - 
38.0 54.0     6.0      raMFG r alPFC - 
2.0 18.0     48.0 r dmPFC pmedFC - 

-28.0 0.0      56.0 lSFG l pSFG - 
30.0 2.0      56.0     rSFG r pSFG - 
-42.0 -42.0 46.0 lIPS lIPS hIP2 
-34.0 -52.0    48.0     lSPL lSPL/IPS hIP3 
-24.0 -66.0    54.0 lSPL lpSPL Area7A 
42.0 -44.0    44.0     rIPS rIPS hIP2 
32.0 -58.0    48.0 rIPS rIPS hIP3 
16.0 -66.0    56.0     rSPL rpSPL Area7A 
-12.0 -12.0    12.0     lTh lTh Th: Pref 
-18.0 4.0      6.0 lPutament lPutamen Striatum:PoStP 
12.0 -10.0 10.0 rTh rTh Th: Pref 
-34.0 -66.0    -20.0 lFFG/Cb lCb/FFG FG2 
32.0 -64.0    -18.0 rFFG/Cb rCb/FFG FG1 

Vigilant Attention 
Langner et al., 2012 

x y z Macroanatomica
l location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

-2.0 8.0 50.0 l pre-SMA   a paracentral 
lobule 

- 

8.0 32.0 46.0 r mSFG r pmed SFG - 
0.0 26.0 34.0 l MCC l/r dorsal 

MCC 
Area 32’ 

50.0 8.0 32.0 r IFJ r IFJ  
40.0 22.0 -4.0 r aIns r aIns - 
46.0 36.0 20.0 r MFG r IFS - 
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-40.0 -12.0 60.0 l PrG l PrG - 
-46.0 -68.0 -6.0 l IOG l IOG hOc4lp; hOc4d; 

hOc3d 
-48.0 8.0 30.0 l IFJ l IFJ area 44 
62.0 -38.0 17.0 r IPL r TPJ area PF 
8.0 -12.0 6.0 r Th r a/mTh Th: temporal 

32.0 -90.0 4.0 r MOG r MOG hOc4la 
-42.0 12.0 -2.0 l aIns l aIns - 
-10.0 -14.0 6.0 l Th l a/m Th Th: prefrontal 
6.0 -58.0 -18.0 r Cb l/r Cb lobule V 

44.0 -44.0 46.0 r IPS r IPL hIP2 
Autobiographical memory 

Spreng et al., 2008 
x y z Macroanatomica

l location 
Original 

labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

-1.0 -53.0    21.0     lPrc l/rPrc - 
-26.0 -28.0    -17.0    lHippo lHippo Subiculum 
-49.0 -61.0    31.0     lTPJ lTPJ Area PGa 
-2.0 51.0     -11.0    lFP l medPFC Fp2 

-60.0 -9.0     -18.0    lSTS lSTS/MTG - 
-50.0 27.0     -12.0    lSOrbG l vlPFC Fo5 
26.0 -33.0    -15.0    rHippo rpHippo Subiculum 
-1.0 20.0     57.0     lmSFG MFG - 
55.0 -58.0    30.0     rTPJ rTPJ Area PGa 
-47.0 9.0      46.0     lPrG l plPFC - 
-42.0 53.0     7.0      lFP l lFP - 
26.0 -14.0    -23.0    rHippo raHippo DG 
52.0 -5.0     -18.0    rMTG rTP/MTG - 
-39.0 13.0     -41.0    lTP lTP - 
-38.0 -82.0    38.0     lIPL lOC Area PGp 
-48.0 29.0     17.0     lIFG l dlPFC Area 45 
52.0 31.0     -11.0    rSOrbG r vlPFC Fo5 
-11.0 62.0     9.0      lFP lmedFP Fp1 
4.0 -8.0     2.0      rTh rTh Th: Temporal  
-4.0 39.0     16.0     lACC lrACC Area pv24c, 

pd24cv,  pd24cd 
-5.0 -34.0 36.0 lPCC lPCC - 
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-29.0 16.0     51.0     lSFG lSFS - 
31.0 1.0      -26.0    rAm rAm Amygdala: LB 

Semantic Memory 
Binder et al., 2009 

x y z Macroanatomica
l Location 

Original 
labeling in 
the Meta-
analysis 

Cytoarchitectonic 
Assignment 

-46 -70 21 lIPL lSTG Area PGp 
-50 -56 31 lAG lSTG Area PGa 
-64 -44 -4 lMTG lMTG - 
-47 -24 -17 lMTG lFFG - 
-55 -3 -24 laMTG lMTG - 
-7 -57 17 lPrc lPCC - 

-20 36 44 lSFG lSFG - 
-31 29 45 lMFG lMFG - 
-53 26 -1 lIFG lMFG Area 45 
-39 17 44 lMFG lIFG - 
53 -59 29 rAG rSTG Area PGa 
43 -72 31 rpIPL rMTG Area PGp 
-1 51 -7 medFP lACC Area Fp2 
-5 56 24 lmSFG lSFG Area p32 

-31 -34 -16 lFFG lParaHippo - 
-8 29 -10 sACC lACC Area s32 

-46 25 23 lIFS lMFG IFS1/IFS2 
64 -41 -2 rMTG rMTG - 
-43 -53 55 rIPL lIPL Area PFm 
-1 -18 40 rMCC lCC - 
51 20 26 rIFJ rMFG IFJ1 
64 -38 32 raIPL rSMG Area PF 
-23 26 -16 rFP lIFG Area Fo3 

 
x, y and z coordinates denote the center of gravity in MNI space. 
Reference for probabilistic cytoarchitectonic mapping of amygdala and hippocampus 
(Amunts et al. 2005)); superior parietal cortex (Scheperjans et al. 2008); intraparietal sulcus 
(Choi et al. 2006); parietal operculum (Eickhoff et al. 2006); ventral extrastriate cortex 
(Rottschy et al. 2007); dorsal extrastriate cortex (Kujovic et al. 2013); gyrus fusiformis 
(Caspers et al. 2013); lateral occipital cortex (Malikovic et al. 2016); Broca’s regions 
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(Amunts et al. 1999); Cingulate cortex (Palomero-Gallagher et al. 2015). Cerebellar atlas 
(Diedrichsen et al. 2009). Thalamic connectivity atlas (Behrens et al. 2003). 
 
Abbreviations: r= right; l= left; a= anterior; p= posterior; s= sub-genual; m/med=medial; 
Tr.= pars; triangularis; Orb. = pars orbitalis; dmPFC= dorso-medial prefrontal cortex; SMA= 
supplementary motor area; MCC= middle cingulate cortex; ACC= anterior cingulate cortex; 
PCC= posterior cingulate cortex; Am= amygdala; Th= thalamus; Hippo= hippocampus; 
GP/Pal= globus pallidus; Prc= precuneus; mSFG= superior medial gyrus; Nac= nucleus 
accumbens; Put= putamen; PrG= pre-central gyrus; Ins= insula; IFS= inferior frontal sulcus; 
IFJ= inferior frontal junction; IFG= inferior frontal gyrus; MFG= middle frontal gyrus; 
SFG= superior frontal gyrus; OFC= orbito-frontal cortex; SOrbG= superior orbital gyrus; 
FP= frontal pole; STS= superior temporal gyrus; STG= superior temporal gyrus; MTG= 
middle temporal gyrus; ITG= inferior temporal gyrus; FFG= fusiform gyrus; SPL= superior 
parietal lobe; IPL= inferior parietal lobe; IPS= intra-parietal sulcus; fOP= frontal operculum; 
pOP= parietal operculum; TPJ= temporo-parietal junction; SMG= supramarginal gyrus; AG= 
angular gyrus; lOcC= lateral occipital cortex; OcPole= occipital pole; MOG= middle 
occipital gyrus; IOG= inferior occipital gyrus; Cb= cerebellum 
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Regions constituting the meta-analytically defined network defined according to the SPM 
anatomy toolbox 2.1 (Eickhoff et al. 2005, 2007). Red labels indicated regions already 
defined in previous sections. 
Supplement Fig S1: Meta-analytically derived networks 
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Supplement Fig 2: Comparison of the predictions across groups. Scatter plots of real 
and predicted personality score in the entire samples (all) as well as for males and 
females separately. Predictions are reported if they are significant in at least one out of 
the three groups.  
References: 
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Abstract 
 
The relationship between grey matter volume (GMV) patterns and age can be captured by 
multivariate pattern analysis, allowing prediction of individuals’ age based on structural 
imaging. Raw data, voxel-wise GMV and non-sparse factorization (with Principal 
Component Analysis, PCA) show good performance but do not promote spatially localized 
brain components for post-hoc examinations. Here we evaluated a non-negative matrix 
factorization (NNMF) approach to provide a reduced, but also interpretable representation of 
GMV data in age prediction frameworks in healthy and clinical populations.  
This examination was performed using three datasets: a multi-site cohort of life-span healthy 
adults, a single site cohort of older adults and clinical samples from the ADNI dataset with 
healthy subjects, participants with Mild Cognitive Impairment and patients with Alzheimer’s 
disease (AD) subsamples. T1-weighted images were preprocessed with VBM8 standard 
settings to compute GMV values after normalization, segmentation and modulation for non-
linear transformations only. Non-negative matrix factorization was computed on the GM 
voxel-wise values for a range of granularities (50 to 690 components) and LASSO (Least 
Absolute Shrinkage and Selection Operator) regression were used for age prediction. First, 
we compared the performance of our data compression procedure (i.e., NNMF) to various 
other approaches (i.e., uncompressed VBM data, PCA-based factorization and parcellation-
based compression). We then investigated the impact of the granularity on the accuracy of 
age prediction, as well as the transferability of the factorization and model generalization 
across datasets. We finally validated our framework by examining age prediction in ADNI 
samples.  
Our results showed that our framework favorably compares with other approaches. They also 
demonstrated that the NNMF based factorization derived from one dataset could be 
efficiently applied to compress VBM data of another dataset and that granularities between 
300 and 500 components give an optimal representation for age prediction. In addition to the 
good performance in healthy subjects our framework provided localized brain regions as the 
features contributing to the prediction, thereby offering further insights into structural 
changes due to brain aging. Finally, our validation in clinical populations showed that our 
framework is sensitive to deviance from normal structural variations in pathological aging. 
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1 Introduction 
 
The structural dynamics of the human brain during adulthood is a highly complex process. 
Machine-learning algorithms have been used to capture the multivariate pattern of structural 
brain changes (Franke et al. 2010) that relate to age with a brain-based age prediction 
framework. By suggesting an age for any individual based on his/her brain’s structural scan, 
such approaches can provide new insights into brain plasticity, into accelerating cerebral 
aging, as well as into the influence of several variables such as genes, pharmacological 
intervention and cognitive training in both healthy and clinical populations. Voxel based 
morphometry (VBM) is one of the most commonly used methods to measure grey matter 
volume (Good et al. 2001). It provides non-negative measures, which convey biologically 
meaningful information and capture brain changes related to age and pathology, as well as 
brain plasticity related to training (Good et al. 2001; Tisserand et al. 2002; May 2011). 
Previous studies have shown that machine-learning methods applied to VBM data allow 
prediction of brain age (Franke et al. 2010). In these studies, brain age was estimated by 
applying a support vector machine approach on the high dimensional voxels’ data (Erus et al. 
2015). However, in voxel-wise representation of structural data, features may convey 
redundant information and/or noise and may promote overfitting due to a higher number of 
features relative to the number of subjects (Guyon and Elisseeff 2003; Hua et al. 2009; 
Mwangi et al. 2014). To address this issue, Franke et al. (2010) examined brain age 
prediction based on the simple and fast application of the principal component analysis 
(PCA) to the data and subsequent brain age prediction with a relevance vector machine 
approach. This combination allowed them to predict the brain age with an absolute error of 5 
years. Ever since, Franke et al. 2010’s framework has been employed to investigate other 
concepts in relation to healthy aging (such as different age groups i.e., children and 
adolescents (Franke et al. 2012), gender differences (Franke et al. 2014)), as well as 
differences between healthy aging and various neurocognitive deviancies (such as cognitive 
impairments (Gaser et al. 2013) and psychiatric disorders (Koutsouleris et al. 2014)).  
 
Most of the above-mentioned studies have implemented principal component analysis (PCA) 
to counter the curse of dimensionality associated with multivariate analysis of neuroimaging 
data (Franke et al. 2010; Franke et al. 2012; Franke et al. 2013; Liem et al. 2017). PCA 
decomposes the entire non-negative representation into a low rank approximation with a 
combination of positive and negative weights (Jolliffe 2002), which does not promote 
spatially localized components. Furthermore, the signed components within the PCA 
decomposition engage complex cancellations during the reconstruction of the original 
representation. Therefore, the use of PCA-based dimensionality reduction on brain voxels 
hardly results in interpretable components, which can in turn prevent the interpretation of a 
predictive model based on PCA-derived components. Non-negative matrix factorization 
(NNMF) is an alternative decomposition method promoting spatially localized representation 
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that has gained more attention in the past years. NNMF can factorize a given dataset into 
low-ranking approximations capturing a parts-based representation (Lee and Seung 1999). 
The non-negativity constraint leads to only additive combinations of the components, which 
allows the factorization to reconstruct the original high dimensional data from the parts-
based representation. As a result, NNMF provides a more interpretable factorization 
compared to standard decomposition approaches such as PCA and ICA (Independent 
Component Analysis) (Lee and Seung 1999; Sotiras et al. 2015). Recently, Sotiras et al. 
(2015) investigated the application of NNMF to neuroimaging data, by decomposing the 
structural MRI data with an extended version of NNMF, the orthonormal projective non-
negative matrix factorization (OPNMF). This approach provided components that could be 
considered as a biologically more meaningful parts-based representation of the brain as 
compared to more standard approaches such as PCA and ICA. Accordingly, OPNMF 
promotes spatially localized brain components for post-hoc examinations. Hence, OPNMF 
could open new perspectives for dimensionality reduction of VBM data, in particular in a 
prediction framework. However, to the best of our knowledge, these perspectives have 
remained unexplored. Therefore, the current study aimed at examining the application of 
OPNMF to VBM data in a brain-age prediction framework. To note, we have used the term 
NNMF when denoting to the whole family of the technique, whereas, OPNMF when 
referring to the more the specific variant, which we have employed in this study. 
 
We first compared the performance of OPNMF-based factorization to the performance of 
plain VBM data for age prediction. Then, in order to provide direct comparison with 
previous studies, we evaluated different strategies combining either PCA or OPNMF as a 
data compression approach with either LASSO or RVM as sparse regression models. In 
addition to the sparseness inducting methods described above, several parcellations of the 
human brain have been proposed in the last two decades (Eickhoff et al. 2017), which could 
potentially offer another efficient approach for data compression into localized spatial units 
for age prediction. In particular, many whole-brain parcellations have been derived from 
voxels/vertex functional signal at rest (RS, e.g.: Bellec et al. 2010; Craddock et al. 2012; 
Gordon et al. 2016; Schaefer et al. 2017) and such RS-based parcellation has been used for 
the compression of RS functional connectivity (RSFC) data in a brain age prediction 
framework (Liem et al. 2017). However, we assume that such a representation based on 
functional parcellation is, by nature, less optimal than a representation based on the structural 
properties of the voxels as used in the current VBM-based framework. To investigate this 
hypothesis, we compared the pattern of representation, as well as the prediction performance 
of our data reduction approach OPNMF capitalizing on structural covariance with an 
independent brain representation derived from resting-state functional data in healthy adults.  
 
OPNMF is computationally more expensive than popular decomposition methods such as 
PCA (see methods). Nevertheless, transferring the factorization derived from one dataset 
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onto another dataset could save this computational cost. Furthermore, using factorization 
from an independent dataset for training or testing a prediction model can assess the 
robustness of the model. We, therefore, evaluated the transferability of the OPNMF onto an 
unseen dataset, that is, we examined the transferability of the components derived from one 
dataset onto an independent (new) dataset, hence avoiding the time-consuming step of 
factorization in the new dataset. Importantly, transferring the already computed components 
onto a new dataset is particularly useful in clinical and research practices, as the datasets 
often come from different sites and scanners and may have different demographic 
characteristics. Recently, Liem et al. (2017) suggested that combining datasets from different 
protocols could reduce the bias of the predictive model towards the characteristics of a single 
protocol. Therefore, the effect of data acquisition and demographic heterogeneity on the 
transferability of the components is an important aspect to evaluate in the perspective of 
application of our framework in future studies. Here, we examined a dataset from a uniform 
protocol constituting older subjects (age range 55-76) vs. a heterogeneous multi-site dataset 
whose age range covers the adult life span (19-81, Fig. 1A)). Thus, we assessed the 
performance of the prediction model trained on a dataset compressed using its own 
factorization, as well as, when this dataset was compressed based on an independent 
factorization (that is, when the dataset has been projected onto a factorization derived from a 
different dataset).  
 
In addition, the difference in the sample characteristics of the two cohorts further offer the 
opportunity to investigate the extrapolation of the prediction model trained on one dataset 
onto an independent dataset. That is, in the present study, we investigated both, the 
transferability of the components among datasets and the generalization of the prediction 
among datasets, on the age prediction performance. Relatedly, one crucial objective in age 
prediction is the identification of aging trajectories deviating from normal range, i.e., 
pathological aging. Previous studies have shown dramatic brain structural alterations in 
patients with pathological aging such as Mild Cognitive Impairment (MCI) and Alzheimer’s 
Disease (AD) resulting in systematic overestimation of their age by an algorithm trained on 
healthy populations (Davatzikos et al. 2009; Gaser et al. 2013; Moradi et al. 2015). 
Therefore, as a validation of our framework for clinical research, we further evaluated its 
performance in age prediction of healthy and clinical samples from the Alzheimer's Disease 
Neuroimaging Initiative (ADNI) database.  
 
To sum up, in this study, we aimed to evaluate a new framework for brain-age prediction, 
which used dimensionality reduction of VBM data using OPNMF followed by a sparse 
regression model. In order to evaluate the advantages and limitations of this framework over 
the other approaches proposed in the previous studies, we compared the performance of our 
model with 1) model based on voxel-wise VBM data (uncompressed VBM data), 2) model 
based on PCA data reduction and 3) model based on data reduction based on RS-based 
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parcellation. In the sake of reducing computational cost in future studies, we examined the 
transferability of the OPNMF between two independent datasets differing in demographic 
characteristic and acquisition protocols. Importantly, the localized properties of the 
components in our framework allowed us to explore brain regions contributing to the 
predictiveness in the healthy samples. Finally, we tested the performance of our prediction 
model on a clinical sample, in order to validate the predictive utility of our framework in 
clinical research.  
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2 Material and Methods 
 
2.1 Sample characteristics and preprocessing 
We used structural MRI data from two large, independent datasets. The first was obtained 
from the population-based 1000BRAINS study (Caspers et al. 2014) and represents a single-
site assessment of 693 older adults (age: 55-75 years; 53% males) using the same imaging 
protocol for all subjects. The other “MIXED” dataset consists of 1,084 healthy adults (age: 
18-81 years; 51% males) that were derived by pooling data from many different individual 
studies at various sites (Fig. 1A; for further details see Supplementary methods). 
Furthermore, in order to validate our framework of age prediction on clinical data, we 
included a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
(www.loni.ucla.edu/ADNI). This ADNI dataset sample included 244 cognitively normal 
elderly subjects (HC, age: 55-90; 48% males), 64 mild cognitively impaired (MCI) subjects 
(age: 55-87; 60% males), and 163 Alzheimer’s disease (AD) subjects (age: 56-91; 56% 
males), for further details see Supplementary methods. 
 
 

 
Fig 1. The two healthy datasets and the non-negative matrix components derived the these 
datasets. A: Overview of the sample characteristics of the two datasets (i.e., range of age 
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distributed in each dataset, as well as the scanner protocol). B: Brain spatial representation of 
the factorization derived from the two datasets at two different resolutions. C: Similarity 
between the factorizations derived from the two datasets.  
 
Structural MRI data was preprocessed with the VBM8 toolbox (http://www.neuro.uni-
jena.de/vbm8) to derive voxel-wise grey matter volumes for each subject of the two datasets 
using standard settings. T1-weighted structural brain images were normalized by the high-
dimensional DARTEL normalization (Ashburner 2007) combined with tissue class 
segmentation and bias field correction. The normalized grey matter segments were 
modulated for non-linear transformations only and smoothed with an 8-mm FWHM 
Gaussian kernel. The local grey matter volumes (following adjustment of head size given 
that the affine part of the registration did not enter the modulation) were then extracted in a 
whole-brain grey matter mask (with a threshold of 0.2 to eliminate the voxels with partial 
volume effect (Ashburner et al. 1985)) and for each sample individually stored in a Number 
of subjects by Number of voxels matrix (with Number of voxels = 344,383). These matrices 
provided the input for the age-prediction model based on the full (uncompressed) VBM data 
as detailed in section 2.4 and the input to which matrix factorization (i.e., non-negative 
matrix factorization and principal component analysis) and resting-state (RS) based 
parcellation (see below) were applied. 
 
2.2 Data reduction 
2.2.1 Orthonormal projective Non-negative matrix factorization 
We used the same orthonormal projective non-negative matrix factorization (OPNMF) 
approach (Yang et al., 2007; Yang and Oja 2010) as described by Sotiras et al. 2015. 
OPNMF factorizes a data matrix ‘X’ into two non-negative sub matrices (W and H) 
representing the sparse components (the dictionary i.e., W of size, Number of voxels by 
Number of components) and the subject-specific loading coefficients (H of size, Number of 
components by Number of subjects) in the ensuing low-rank space, min

!!!,!!!
∥ X −WH ∥!!, 

which minimizes the squared Frobenius norm (i.e., reducing the reconstruction error), subject 
to the conditions H = W!X and W!W = I where, ∥. ∥!!  referred to the squared Frobenius 
norm and I denotes the identity matrix.  
  
To summarize the factorization process, W is first initialized through non-negative double 
singular value decomposition (NNSVD; cf. Boutsidis and Gallopoulos 2008)). Later, W is 
iteratively updated with the multiplicative update rule, until it converges to an optimum 
solution. The multiplicative update rule is modified as reported by Yang and Oja (2010), to 
satisfy the additional constraints of an orthonormal projection basis function, W!"

! =

W!"
!!!! !"

!!!!!!! !"
, where, i = 1…Number of voxels, j = 1…Number of components. Finally, 

projecting X onto W to obtain a solution that minimizes the reconstruction error yields H. 
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Following OPNMF, the VBM data are represented by two matrices, denoting the sparse 
components (W) and the corresponding subject-specific loading coefficients (H). The former 
(W) represent the latent structure in the data, the latter (H) represents the individual 
volumetric data in the low-rank space spanned by these components and provides the 
features for the age-prediction model. Of note, the highest possible OPNMF granularity is 
the lowest dimension of the input matrix (X) (which in our case is the number of the subjects 
in 1000BRAINS dataset being the smallest sample size). Accordingly, in this study, to 
explore the effects of different granularity, i.e., number of components, on prediction 
accuracy, we computed and evaluated compressions employing 50 to 690 components in 
steps of 25. 
 
2.2.2 Principal component analysis (PCA) 
PCA is one of the most commonly used dimensionality reduction techniques and, 
accordingly, has been used in previous studies examining age prediction based on structural 
MRI data. In order to provide a direct comparison of the OPNMF’s performance with the 
previous investigations, we ran PCA on the voxel-wise VBM data by using the PCA function 
implemented in MATLAB 2014. This transformed the high-dimensional voxel wise data 
(i.e., X) into low-rank approximations using an orthogonal linear transformation. The 
resulting PCA based low-rank approximations represented the principal components of the 
data (computed by solving an eigenvalue problem) arranged in descending order of the 
variance explained by each component (Jolliffe 2002). The subject-specific loading 
coefficients were obtained by projecting the high-dimensional voxel wise data onto the 
component space (eigenvectors, i.e., PCA based low-rank approximations) thereby providing 
the features for age-prediction model. Finally, we computed and evaluated the effect of PCA 
compressions on prediction accuracy, in the range of granularity aforementioned for OPNMF 
(i.e., 50 to 690 components in steps of 25.) 
 
2.2.3 Resting-state (RS) based parcellation 
Recently, Schaefer et al. 2017 reported a parcellation based on RS fMRI providing 
neurobiologically-valid brain parcels by capitalizing on a new hybrid approach integrating 
the local gradient approach for boundary-mapping with a global similarity approach. As this 
atlas does not cover subcortical and cerebellar structures, we added these from another 
widely used RS fMRI parcellation (BASC, Bellec et al. 2010). This resulted in a whole brain 
parcellation of 470 parcels that was used here as an alternative dimensionality reduction 
approach for VBM data. For each subject, an average grey matter volume within each parcel 
was computed and used as inputs for the age-prediction model. 
 
2.3 Sparse regression model 
We primarily used LASSO (Least Absolute Shrinkage and Selection Operator) for learning a 
(sparse) linear regression model predicting the subjects’ age from their structural data as 
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compressed in the loading coefficients (as implemented in the ‘glmnet’ package, 
https://www.jstatsoft.org/article/view/v033i01 (Tibshirani 1996)). LASSO regulates the 
parameters (alpha and lambda) to optimize the sparsity and the complexity of the regression 
model to improve the performance (i.e., prediction accuracy) and interpretability of the 
model (Zou and Hastie 2005; Zhang and Huang 2008). An inner loop was incorporated to 
optimize the hyper-parameter (lambda). LASSO with alpha set to 0.99 and lambda that gives 
minimum mean cross validation error of the inner loop was employed for predicting the age 
in our study.  
 
As an alternative approach to LASSO, Relevance Vector Machine (RVM; Tipping 2001) has 
been commonly implemented by the previous studies exploring prediction of age using 
structural MRI. Therefore, we in this study performed an additional comparison between 
LASSO and RVM regression models. For doing so, statistical learning of the sparse 
regression model employing RVM was implemented using the SparseBayes package 
(http://www.miketipping.com/index.htm).  This approach uses a probabilistic Bayesian 
framework with specific priors over the parameters, which favors sparse prediction model. 
The algorithm iteratively and automatically optimizes the parameters and hyper parameters, 
hence reducing prior control on the parameters. As kernel, we chose a multivariate zero-
centered Gaussian with standard deviation estimated by the algorithm. This RVM 
implementation from the SparseBayes package has been shown to improve the initialization 
procedure, which maximizes the likelihood function and hence accelerates the procedure 
(Tipping and Faul 2003).   
 
2.4 Prediction analyses  
Previous studies of age prediction from MRI data in life span cohorts have used linear 
regression model (Franke et al. 2010; Franke et al. 2012; Gaser et al. 2013; Mwangi et al. 
2013; Franke et al. 2014; Koutsouleris et al. 2014; Erus et al. 2015; Liem et al. 2017). For the 
sake of comparability, we likewise used a (sparse) linear regression model for predicting the 
subjects’ age from their structural data as compressed in the loading coefficients. 
Furthermore, in the present study, combining sparse decomposition method with a sparse 
regression model came with the advantage of providing an anatomically well interpretable 
model for estimating age based on a limited number of spatially compact structural features.  
 
Model generalization was evaluated by 10-fold cross-validation. That is, the dataset was 
randomly split in ten equal parts that each, in turn, served as the test set for the model fitted 
on the remaining 9/10th of the data. To reduce dependency on the cross-validation split, this 
procedure was replicated 100 times. Splitting the dataset into ten equal parts has been 
initiated every time within each repetition, which allowed us to train the model on different 
training samples in each repetition. Prediction accuracy was quantified by the mean absolute 
deviation (across subjects) between real age and predicted age (averaged across repetitions), 
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and also, the correlation between the real age and that average of the predicted (across 
repetitions) in previously unseen subjects from their VBM data.  
 
2.5 Assessed prediction approaches 
We note that performing OPNMF only on the training dataset in each cross-validation fold 
would be computationally expensive and hence practically infeasible. But prediction 
performed on loading coefficients obtained from the OPNMF decompositions including the 
entire sample (including the 1/10th that is denoted the test-set in the respective fold) could 
bias the cross-validation towards overly optimistic performance estimates. Given this 
consideration would also hold for all future uses of our approach, we were particularly 
interested in investigating whether components derived from one dataset were also good 
encoders (representative) for the structural features of another dataset.  
 
Consequently, we performed cross-validation analyses using the loading coefficients derived 
from OPNMF of that particular dataset as (an overly optimistic) reference (Fig. 2: A&B) but 
importantly focused on assessing the possibility to predict subjects’ age after projecting the 
raw VBM data on the component space estimated for the other dataset (Fig. 2 C&D). That is, 
we derived the OPNMF components of the 1000BRAINS dataset, and performed cross-
validation within the MIXED dataset projected onto the components estimated from the 
1000BRAINS. This approach has the advantage that the subjects in the test set were truly 
independent and have not been involved in any prior processing steps. In addition, we could 
investigate the effects of dataset (in-) homogeneity, as the 1000BRAINS data comes from a 
single-site study with uniform protocol, whereas the MIXED dataset was deliberately chosen 
to be very heterogeneous. We would thus expect that the components derived for the MIXED 
dataset show a better generalization than those from the 1000BRAINS dataset, i.e., 
projecting the 1000BRAINS data onto the components from the MIXED dataset will yield 
prediction models that are closer in performance to the (optimistically biased) analysis with 
the projection of the data components derived from the MIXED data itself.  
 
Later, we also tested whether the actual models transfer between datasets by deriving the 
OPNMF components in one dataset (e.g., MIXED), fitting the sparse regression model in 
that same dataset (MIXED), projecting the other dataset (1000BRAINS) onto the 
factorization of the former (MIXED) and applying the prediction model trained on that 
(MIXED) data (Fig. 2: E, F&G). In this context, we note that the 1000BRAINS dataset has a 
more restricted age-range (55-76) than the MIXED dataset (18-81). Therefore, we evaluated 
the model transfer between the portion of MIXED subjects corresponding to 1000BRAINS 
age range (55-75; i.e., OldMIXED), see Fig. 2: E&F. The computational times for each 
prediction approach at different levels of granularity are reported in supplementary material 
(Table S3). 
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Fig 2. Different prediction approaches evaluated in the study. A&B illustrate the procedure 
of a 10 fold cross-validation when compressing a dataset using the components derived from 
itself (A) MIXED dataset (B) 1000BRAINS. C&D illustrate the procedure of a 10 fold cross-
validation performed on features extracted by using the components derived from the other 
dataset (C) MIXED dataset projected on to 1000BRAINS based factorization, and (D) 
1000BRAINS projected on to factorization derived from MIXED. E,F&G illustrate the 
approaches utilizing an independent dataset to validate the model trained on the dataset 
compressed using the components derived from itself (E) training the model on 
1000BRAINS dataset projected on to its own factorization and later validate the model on 
OldMIXED dataset, (F) training the model on OldMIXED dataset projected on to 
OldMIXED based factorization and later validate the model on 1000BRAINS and (G) 
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training the model on MIXED dataset projected on to MIXED based factorization and later 
validate the model on 1000BRAINS. 
 
Finally, our age estimation framework was validated using the ADNI database. Here we 
compared the estimated BrainAGE between healthy controls (HC=, subjects with mild 
cognitive impairment (MCI) and Alzheimer’s disease (AD), given that apparent older brains 
have been previously demonstrated in the latter two groups. As AD patients sample mainly 
consisted of older subjects, the prediction model was trained on the aforementioned samples 
of elderly subjects (i.e., 1000BRAINS or MIXED_55-90). In detail, all data (training sample 
and ADNI) were projected onto the factorization derived from the respective training sample 
(either the 1000BRAINS or MIXED). The model was trained on the each of the training 
sample (1000BRAINS or MIXED_55-90 (i.e., Subjects above 55 years from MIXED 
dataset)) and then evaluated it in the ADNI data. In line with previous studies (Davatzikos et 
al. 2008; Franke et al. 2010; Franke and Gaser 2012; Moradi et al. 2015), we hypothesized, 
that for the ADNI controls, the brain age gap estimation (BrainAGE), i.e., the difference 
between the predicted age and the chronological age, should be centered around zero. In turn, 
MCI subjects and in particular AD patients were expected to show an increased BrainAGE 
score.   
 
2.6 Identification of the regions influencing the prediction 
As noted above, combining a sparse decomposition yielded compact regional modes with a 
sparse regression model (LASSO) has the advantage of providing regionally specific relevant 
features. As a final step allowing the neurobiological interpretation of our age-prediction 
model, we identified those parts of the brain that underpinned the reported predictions. As we 
performed 100 replications of a 10-fold cross-validation, in total 1000 models were 
computed per granularity (number of components). We then quantified the contribution of 
each component by the fraction of these 1000 models in which the coefficients assigned by 
the predictive model for the respective component was non-zero. The components that 
contributed in at least 95% of all models were identified as the components that were 
robustly part of the predictive model (Fig 3 (5)). Concretely, we first identified the 
components consistently contributing to the prediction as defined by non-zero beta value in 
95% of the models. Second, the components were mapped to the brain space at each 
respective level of granularity. That is, we built a “contributor map” at each level of 
granularity, in which the voxel values represent their (binary) contribution (Fig 3 (5)). 
Combining those maps (by summing up the values) resulted in a contributor “summary” map 
in which a non-zero value represents a contribution in at least 95% of the 1000 prediction 
models) and higher value represent more overlap across different granularities (Fig 3 (6)). As 
we found that prediction performance stabilizes after around a granularity of 300 components 
(Fig 6), only the contributor maps of granularity > 300 components were merged into a 
summary map. Given that the relationship between the OPNMF components at high 
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granularities could be hierarchically inconsistent, this approach yielded a higher effective 
resolution of the relevant brain areas than the actual granularity of the factorizations itself, 
and hereby alleviated the reliance of the spatial inference on any particular set of 
components.  
 

 
Fig 3. Main processing steps for age prediction based on GMV and the post-hoc examination 
of regions contributing to the prediction. 1) Voxel-based morphometric (VBM) data for each 
subject are used as input for OPNMF 2) Following OPNMF, the VBM data are represented 
by two matrices, denoting the corresponding subject-specific loading coefficients (H) and the 
sparse components (W). 3) Application of sparse regression model, in which H provides the 
features for the prediction model 4) Evaluation of the prediction model using a test sample 
(different prediction models described in section 2.5 & Fig 2). 5&6) Identification of the 
regions contributing in the prediction analysis; 5) First the respective components with non-
zero coefficients assigned by the prediction models were identified. Then, we built a 
“contributor map” at each level of granularity, in which the voxel values represent their 
(binary) contribution in at least 95% of the models. 6) Combining those maps (by summing 
up the values) resulted in a contributor “summary” map in which a non-zero value represents 
a contribution in at least 95% of all the prediction models) and higher value represent higher 
overlap across different granularities. As our analyses revealed that prediction performance 
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stabilizes around 300 components (Fig 6), only the contributor maps of granularity > 300 
components were merged into the summary map. 
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3 Results 
 
3.1 Brain age estimation using the uncompressed VBM data 
Training LASSO models on the full, i.e., uncompressed voxel-wise VBM data allowed to 
predict the age of previously unseen subjects with relatively high accuracy. For the 
1000BRAINS data, the mean absolute error (MAE) between real and predicted age of the test 
set was 3.4 years. While for the MIXED dataset, the MAE was 4.9 years. While these 
numbers compare favorably with previous reports, Fig. 4 illustrated the critical drawback of 
using sparse regression models on voxel-wise data. That is, isolated voxels scattered across 
the brain were selected as relevant features by the prediction model. In addition to being 
computationally prohibitive, the ensuing models are basically uninterpretable as the 
predictions were driven by individual voxels (Fig. 4). 
 

Fig 4. Chronological age plotted against the age predicted using the high-dimensional VBM 
data. The lower figure exhibits the isolated voxels that contributed in the prediction analysis. 
Here, the voxels, which contributed in all the models across 25 replications of 3-fold cross-
validation, are displayed. 
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3.2 Compression of Brain age estimation using different compression methods and 
sparse regression models 
Fig 5 illustrated the performance of each of the four combinations of approaches. Across 
different cross-validation approaches (Fig 5A), OPNMF either slightly outperformed or 
remained analogous to PCA, especially at higher level of granularity. In particular, when the 
factorization has been transferred from one dataset to another dataset (Fig 5A: plots on the 
right compared with plots on the left), OPNMF reported more accurate age prediction with 
stable performance across different levels of granularity compared to PCA. Thus, we could 
infer from our results that OPNMF derived from one dataset could provide a better 
representation of the structural data of an independent dataset than PCA. With respect to the 
sparse regression approach, LASSO and RVM resulted in comparable cross-validation 
accuracies, but LASSO was shown to yield superior performance when predicting age across 
samples (Fig 5B), irrespective of the employed factorization. Additionally, the application of 
LASSO together with OPNMF performed better than the other combinations in most of the 
scenarios, supporting the combination of LASSO with OPNMF for age prediction analyses. 
Accordingly, we focused on investigating the brain age prediction using LASSO sparse 
regression model, in the subsequent analyses (such as, comparison of OPNMF with a 
previous RS-parcellation, examination of the OPNMF transferability, identification of the 
localized features contributing to the prediction analyses in healthy datasets and finally 
validation of our framework (i.e., combination of OPNMF with sparse regression model) in a 
clinical dataset).  
 
As suggested by our comparative analyses, based on the prediction accuracies reported by 
the LASSO (sparse) regression model, we compared the performance of the OPNMF 
factorization with a RS-parcellation of the brain (Bellec et al. 2010; Schaefer et al. 2017; cf 
Section 2.2.3). As illustrated in Fig 6, at comparative levels of granularity (i.e., 475 OPNMF 
factors vs. 470 brain parcels), the age prediction model tended to be more accurate when the 
data have been compressed with OPNMF than when the data have been compressed based on 
an independent representation derived from RS fMRI signal. Nevertheless, it has to be noted 
that the latter also compressed data into localized brain parcels, which by itself showed 
surprisingly good performance, suggesting that different spatial representations into local 
components can be efficient (see discussion). In the scope of the current study, altogether, 
our preliminary comparative analyses supported the use of OPNMF for data compression in 
an age prediction framework.   
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Fig 5. Illustration of the mean absolute error of the prediction models using different 
compression methods with various sparse regression models (LASSO+OPNMF in black; 
LASSO+PCA in blue; RVM+OPNMF in red; RVM+PCA in magenta) at different levels of 
granularity, and separately for each prediction approach. A) represents the approach where 
10 fold cross-validation is performed and B) illustrates the approaches in which an 
independent dataset is used to validate the model trained on the dataset compressed based on 
the components derived from itself.  
 
3.3 Influence of different datasets on the OPNMF & age prediction  
As previously reported, OPNMF provided sparse and spatially compact components, which 
essentially reflect local structural covariance (Fig. 1B). While not the primary focus of this 
work, we noted that labeling each grey-matter voxel by the most strongly reflected 
component, provided a map of the human brain that in many aspects seemed to resemble 
those derived from other modalities. Across the whole range of granularity, although there 
seems to be a decent agreement, these maps were slightly different between both investigated 
datasets (1000BRAINS and MIXED) as reflected in the adjusted rand index (aRI, Fig. 1C). 
This latter quantifies the similarity between the clusters (Hubert and Arabie 1985; Santos and 
Embrechts 2009)) between the respective parcellation and can range between +1 and -1, with 
1 reflecting perfect spatial correspondence, 0 indicating spatial agreement with certain 
probability, and smaller than 0 representing disagreement which is worse than contingency 
(Hubert and Arabie 1985)). However and more importantly, both factorization 
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(1000BRAINS and MIXED) at the similar level of granularity (i.e., 475 granules) showed 
good convergence with the RS-parcellation (470 parcels) with, respectively, aRI = 0.28  and 
aRI = 0.29 (Fig. 6). 
 
3.4 Brain age estimation using the OPNMF-compressed VBM data 
Considering the models based on the loading coefficients for components derived from the 
(full) data of the same sample (rendering data compression not independent from the latter 
cross-validation), several important observations can be made. First, while very low-rank 
approximations only yielded poor prediction accuracy, the mean absolute error (MAE) 
quickly declines with increasing granularity, i.e., higher number of components. Once the 
number of components passes approximately 300 – 400 (Fig. 6), however, prediction 
accuracy seems to remain stable or at best improve asymptotically.  
 

Fig 6. Illustration of the mean absolute error of the prediction models using different 
spatially localized compression models (OPNMF and RS-parcellation) with sparse (LASSO) 
regression model at different levels of granularity, and separately for each prediction 
approach. A) represents the approach where 10 fold cross-validation is performed and B) 
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illustrates the approaches in which an independent dataset is used to validate the model 
trained on the dataset compressed based on components derived from itself. 
 
3.4.1 Model validation within the same dataset using a cross-validation approach 
In details, these unbiased models yielded an overall MAE of 3.6 years (males: 3.7 and 
females: 3.6) and an overall correlation of 0.65 (male: 0.62 and female: 0.61) between real 
and predicted age in the 1000BRAINS data (using components derived from the MIXED 
dataset; Table S1 & Table S2). For the MIXED data, we found an overall MAE of 6.1 years 
and a correlation of 0.88 (MAE of 6 and r = 0.88 in the males and MAE of 6.3 and r = 0.86 
in the females) when using components derived from the 1000BRAINS dataset (see Table S1 
& Table S2 for detailed results). Further examining the prediction performance across the 
different scanning sites forming the MIXED dataset (16 different sites) revealed that in most 
of them (14 sites) the MAE varied between 5 to 7 years and the MAE from the two other 
sites were 4 years and 9 years (of note, the scanning protocols used in these latter remained 
analogous to the 14 other sites, i.e., we did not note any specific technical factor accounting 
for the differences in prediction accuracies). Overall, these results showed the stability of our 
prediction framework across genders and scanning sites.   
 
3.4.2 Model validation with prediction in independent datasets 
Transfer of the whole pipeline (factorization and model training) was evaluated by predicting 
the age of the subjects in the respective other, independent sample (Fig 6B & Fig 7B). In our 
study, transferability of the prediction model was evaluated in two different aspects, 
extrapolation of the prediction model onto an independent dataset, which differs in subjects’ 
demographic characteristics, such as age, and then onto an independent dataset, which differs 
in scanner protocols. In the context of dataset (in-) homogeneity from different age groups, 
models trained on broader age range of the heterogeneous dataset (MIXED) showed reduced 
precision of age prediction in an independent dataset (1000BRAINS) while the model trained 
on a restricted age range for this restricted heterogeneous dataset (OldMIXED) was more 
accurate in predicting the age of the latter independent dataset (1000BRAINS). In the context 
of dataset (in-) homogeneity from different protocols, our results surprisingly showed that 
models trained on single-site study (1000BRAINS) also performed efficiently, when 
predicting the age of highly heterogeneous dataset (OldMIXED). In contrast, models trained 
on the 1000BRAINS data consisting exclusively of older subjects showed a very poor 
performance when trying to predict age of the younger subjects in the MIXED sample (Fig 
S2). While the model correctly predicted the young subjects to be younger than the young 
examples in the training set, it was grossly inaccurate in predicting how much younger they 
actually were. Put pointedly, having no information about how a 20-year old brain looks like, 
a model trained on subjects aged between 55 and 76 can only derive that the subject in 
question should be younger than the youngest it has seen in the training data (Fig S2). Thus, 
testing for generalization of the model to an independent dataset showed good prediction 
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accuracy for the subjects within the training sample’s age range (Fig 6B & Fig 7B), but also 
indicated that the prediction model cannot extrapolate to the subjects whose age is (far) 
beyond the training samples age distribution (Fig S2). 
 
As ultimately one main application of our framework will be research in clinical populations, 
we also tested our framework in the ADNI dataset. Here, the mean BrainAGE scores 
(reflecting, for each subject, the discrepancy between brain-based estimated age and 
chronological age) was zero in the healthy control group (for models trained on either the 
1000BRAINS or the MIXED_55-90 datasets). In contrast, BrainAGE scores were 6.2 years 
(for models trained on 1000BRAINS) and 5.4 years (for model trained on MIXED_55-90) in 
the MCI group, indicating that these subjects’ brains looked about 5-6 years older. Finally, 
the BrainAGE scores reached 8.5 years (for models trained on 1000BRAINS) and 10.7 years 
(for models trained on MIXED_55-90) in the group of patients diagnosed with Alzheimer’s 
disease. These results, illustrated in Fig 8 demonstrated that our framework can accurately 
capture the range of normal structural variation relating to age in healthy subjects and 
building on this normal range, captures dramatic deviance in both patients with Mild 
Cognitive Impairment and patients with Alzheimer’s disease.  
 
 

Fig 7. Chronological age plotted against the age predicted using the VBM data compressed 



	 173	

with OPNMF. The predicted age plotted in this figure is an average of the predicted age 
across different levels of granularity. 
 

Fig 8. Validation approach in ADNI samples. BrainAGE scores (reflecting the difference 
between predicted age and the chronological age) are showed for all the three subsamples 
(i.e., Healthy controls (HC), Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD). 
The left plot refers to the approach in which the model was trained on OldMIXED sample 
compressed using factorization derived from the whole MIXED sample. The right plot refers 
to the approach in which the model was trained on 1000BRAINS compressed using 
factorization derived from 1000BRAINS. 
 
 
3.5 Identification of the regions influencing the prediction 
The framework we examined in this paper, i.e., applying a sparse regression model onto the 
sparse decompositions, should yield rather confined and hence neurobiologically 
interpretable maps of brain regions contributing to the age prediction. In more detail, as 
previously noted, the OPNMF components themselves were circumscribed rather than 
representing a mixture of voxel-wise positive and negative weights as would be the case for 
PCA (cf. Sotiras et al., (2015)). LASSO then selected a small number of these spatially 
confined components for the actual prediction. This allowed us to identify, which brain 
regions consistently contributed to the age estimation. As illustrated in Fig 9, more brain 



	 174	

regions were engaged in estimating age in the MIXED as compared to the 1000BRAINS 
dataset, which could be expected given the much broader age distribution.  
 
More specifically, the regions contributing to the prediction model in the 1000BRAINS 
cohort (older subjects) included regions around the central sulcus, the inferior temporal 
cortex, the occipital and posterior temporal cortices and area 44. Regions contributing to the 
predictions in this older adult cohort also included bilateral midline areas such as, the 
superior medial frontal gyrus, the medial fronto-orbital regions, the anterior and middle 
cingulate cortices and the retrosplenial cortex. Furthermore, the pattern of regions weighting 
in the prediction model in this cohort further included bilateral subcortical regions such as 
the thalamus, the basal ganglia and the posterior hippocampus, as well as the bilateral 
cerebellum.  On the lateral surface, the pattern included regions in prefrontal regions (frontal 
areas anterior to the precentral gyrus), oribitofrontal regions and temporal poles. In contrast, 
the pattern of regions for age prediction in the MIXED dataset (heterogeneous dataset 
covering the whole life span) was less spatially specific, covering most of the brain lateral 
surface bilaterally (including for example the whole bilateral middle and superior frontal 
gyri, as well as the bilateral posterior superior and inferior parietal cortices), almost the entire 
medial structures, and, the bilateral anterior hippocampus and amygdala. In other words, the 
prediction models of age in this heterogeneous dataset built on most of the brain regions.  
 
 

Fig 9. Summary map of the regions that contributed in the prediction analysis when 
performing 10-fold cross-validation and compressing the dataset using the components 
derived from the other dataset, in which brighter shade represents more frequently used parts 
of the brain. Plain anatomical slices are displayed as reference in the top raw. The middle 
raw illustrates the MIXED dataset compressed with the 1000BRAINS-based factorization 
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while the bottom row illustrates 1000BRAINS dataset compressed with the MIXED-based 
factorization. 
 
3.6 Supplementary Analysis 
Spatial smoothing on the VBM data promotes homogeneity of the data by attenuating small 
differences between individuals. In turn, age prediction may rely on those subtle effects. 
Thus, we also evaluated, whether the subjects’ age could be predicted based on the 
unsmoothed VBM. As could be expected from the aggregation of individual voxels into 
components, refraining from smoothing prior to projection resulted in highly similar results 
as shown above for the smoothed data (see Supplement, Table S4 & Fig. S1). 
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4 Discussions 
 
In this study, we showed that non-negative sparse coding through the combination of data 
compression using OPNMF with LASSO regression could predict age of previously unseen 
subjects in an unbiased manner from structural neuroimaging data.  Several key observations 
emerged from this work. i) The precision of age prediction compares well to that based on 
uncompressed, i.e., voxel-wise VBM data and to that based on non-sparse factorization 
(PCA). ii) Even though the components estimated for the two datasets differed from each 
other, the (unbiased) prediction accuracy after projection onto the respective other set of 
components is only slightly worse than the (biased) accuracy obtained when performing 
factorization of the entire dataset that was later used for cross-validation. iii) OPNMF-based 
brain partitions show some convergence with an independent parcellation based on resting-
state (RS) fMRI, but the former gave slightly better prediction performance iv) Finally, in 
contrast to approaches used in previous age prediction studies, combination of data 
compression using OPNMF with sparse (LASSO) regression yields a superior interpretability 
of the weight maps allowing interpretations about the mechanisms underlying the prediction.  
 
4.1 Prediction from uncompressed VBM data  
Our results showed that age prediction of unseen subjects using the full (uncompressed) 
VBM data reported only slightly better prediction accuracies than one based on the 
(OPNMF) compressed (Table S1). This comparable level of performance for compressed and 
uncompressed data has also been observed in previous brain age studies employing PCA 
compression (Franke et al. 2010; Liem et al. 2017). However, in the current study, predicting 
age using sparse regularization (LASSO) prediction model on uncompressed VBM data is 
highly inefficient in terms of memory usage, especially for large datasets (for example, 
MIXED dataset with 1,084 subjects). In particular, the memory load of this high-dimensional 
approach (>700 subjects x 344383 voxels) only allowed a 3-fold cross-validation on a high-
performance server. While high dimensional voxel wise data could also lead to overfitting of 
prediction model, due to the larger number of features than subjects (i.e., several models 
potentially could fit the same data), comprehensively investigating this issue was not 
possible in the present study due to the computational limitations. Beside this still open issue, 
the recent availability of MRI data in very large sample sizes, i.e., for thousands of subjects 
(e.g., (Miller et al. 2016)) and the growing interest for the prediction of phenotype or 
behavioral measures from MRI data, dramatically underpin the need of dimensionality 
reduction preserving prediction accuracy (Davatzikos 2016).  
 
The key limitation of voxel-wise analysis, however, is the poor interpretability of the 
relevant features. As shown in Fig. 4, the sparse regression model on the voxel-wise data in 
our study highlighted isolated voxels scattered over the brain as relevant features for 
predicting subjects’ age. Nevertheless, the individual anatomical correspondence of a 
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particular voxel chosen by the prediction model, can be variable across subjects (Davatzikos 
2004). In addition, LASSO regression is known to perform reliable feature selection, 
providing that the features have followed “irrepresentable condition” (Zhao and Yu 2006). 
That is, features should be independent of each other in order to obtain reliable outcomes. 
Therefore, when LASSO is applied to voxel-wise VBM data, the isolated voxels from the 
highly correlated voxel-wise VBM data contributing to the prediction cannot really be 
interpreted. In other words, voxel-wise sparse regression models pose a decoding problem 
(Kampa et al. 2014). Thus, the poor interpretability of prediction models based on raw VBM 
data (Lakkaraju et al. 2016), in addition to their computational costs, advocate for data 
compression, ideally with a factorization approach that offers interpretability of the 
representations such as the current implementation of OPNMF on VBM data for prediction 
of brain age.  
 
4.2 Compression of Brain age estimation using different compression methods with 
various sparse regression models 
When comparing the performance of OPNMF with PCA, particularly at higher level of 
granularity, our results demonstrated that OPNMF either slightly outperformed or remained 
analogous to PCA. Any data reduction procedure aims to address the curse of dimensionality 
without any loss of information. In this context, both PCA and OPNMF provide low rank 
approximations representing the most influential structure within the original data, however, 
each decomposition method captures different aspects of the similar information (PCA 
captures the components with the most variance explained across the dataset, while OPNMF 
captures the spatially localized components that consistently co-vary across the dataset), 
leading in the present study to comparable performance of both approaches in age prediction. 
Importantly, our results also further showed that OPNMF provided more stable performance 
at high granularities (> 200), when compression is transferred across datasets (Fig 5A: cf. 
right vs. left plots). This finding confirms previous hypotheses that the ‘projectivity’ of 
OPNMF supports the efficient transferability of the factorization onto a new unseen dataset 
(Yuan et al. 2007). Therefore, we would argue that OPNMF, compared to PCA, enhances the 
generalizability of the low rank approximations onto an independent dataset. Thus, OPNMF 
not only promotes localized brain representation, but also yields the more generalizable low-
rank approximation than PCA.  
  
Our evaluation further revealed that LASSO regularization performed either similarly or 
slightly better than RVM.  Both LASSO and RVM yield sparse regression models with the 
advantage of performing feature selection by capitalizing only on the features that improve 
the prediction accuracy and allow comparable accuracies. However, an additional argument 
for the use of LASSO, this model allows the selection of the regularization parameter. 
Hence, LASSO optimizes the trade-off between stability and interpretability of the prediction 
model (i.e., optimizing the sparsity) by tuning the regularization parameter (i.e., alpha), 
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which linearly combines the L1 and L2 penalties (cf. Zou and Hastie 2005 for more technical 
details). Therefore, the LASSO regression model can convert the sparse regression model 
into a purely non-sparse model (using the elastic net regularization model) and can therefore 
be considered as a relatively more flexible regression model than RVM. Furthermore, Bunea 
et al. 2011 demonstrated that LASSO could be implemented in many conditions including 
when the feature size is exceeding the sample size for prediction analyses. Indirect support 
for this property of LASSO can be seen in top left plot of Fig 5B, in which LASSO works 
particularly better than RVM after crossing the granularity level of 250 (with the training 
sample size approximating 230 subjects in this specific case). As reduction techniques have 
shown best prediction accuracies at higher level of granularity and given previous 
considerations, we focused on LASSO for subsequent prediction analyses. 
 
4.3 Compression of OPNMF with resting-state based brain parcellation (RS-
parcellation) 
The well above chance level (≈.30) adjusted rand index between the RS-parcellation and the 
OPNMF indicates that the spatial representations derived form OPNMF based on structural 
covariance converge well with the spatial representation derived from resting-state functional 
signal in health adults. Of note, the used RS-parcellations have both been extensively 
evaluated in their respective studies, namely with regards to stability and convergence with 
histological mapping and alternative parcellations (Bellec et al. 2010; Schaefer et al. 2017). 
Thus, the similarity between the brain partitions derived from OPNMF and the “optimized” 
RS-parcellation that we found in the current study allows us to assume that our OPNMF 
brain partitions have some biological validity. Similar observations have been reported 
recently by Sotiras et al. 2017 who showed that at low granularity (< 60), the components 
derived by OPNMF resembles previously evidenced functional brain networks. Together, 
these findings thus suggest that OPNMF of VBM data to some extend captures meaningful 
patterns of brain functional organization, both at the network and areal level.  
 
While OPNMF-based factorization and RS-parcellation showing good convergence, they did 
not show a perfect agreement. This is in line with the few multi-modal mapping studies 
showing that brain maps from different features (such as structure and function) converge 
towards similar brain partition schemes, but also suggesting that each feature targeting a 
specific aspect of the brain tissue, each feature can capture an unique aspect of brain 
organization (Kelly et al. 2012; Genon et al. 2016; Glasser et al. 2016; Genon et al. 2017). In 
other words, different features (i.e. modalities) are to some extend sensitive to different 
aspects of brain organization (for a more detailed discussion see Eickhoff et al. 2017). From 
the perspective of data compression, the most efficient partitions should thus come from the 
same modality. And indeed, RS-parcellations provides more homogeneous parcels when 
assessing resting-state images than histologically defined brain regions (Craddock et al., 
2012). This leaves the question, whether the amount of transferable information is still 
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sufficient for a useful representation. Our results also provided evidence that this is the case 
by showing that a more accurate age prediction model is built from VBM data when this data 
is compressed directly as compared to representing it based on a functional parcellation of 
the brain (Fig 5) even if the latter yields very good accuracies. Overall, in the context of 
multivariate pattern analysis, we suggest that brain parcellation derived from one modality is 
transferable to another modality for data reduction even though it does not reach within-
modality performance. 
 
4.4 Influence of different datasets on the OPNMF  
Despite the brain topographical pattern of the OPNMF components derived from the two 
different datasets show similar convergence with the independent RS-parcellation and 
general good agreement between them, they are not perfectly similar (Fig. 1B & 1C; Fig S5), 
However, it has to be noted that the similarity between the factorizations derived from the 
two datasets has been measured at a level of granularity that does not favor reproducibility 
(even between datasets which are age, gender and site matched) according to previous work 
(Sotiras et al. 2015; Sotiras et al. 2017; Fig S5). As the granularity increases, the resolution 
of structural covariance increases resulting in a finer representation of covariance patterns, 
but that are, in turn, more influenced by covariance trends specific to the dataset used. Thus, 
we assumed that the difference in sample characteristics between the two cohorts could 
explain the slight differences in the brain topographical pattern of the factorizations.  
 
4.5 Impact of granularity on age prediction 
Importantly, our study showed that despite the fact that reproducibility may decrease at high 
level of granularity (Sotiras et al. 2017), prediction performance did increase as granularity 
increases (as previously suggested by Sotiras et al., 2015). Our results demonstrated that 
when the number of components reaches approximately 300-400, prediction accuracy 
remains largely stable, particularly when the factorization is derived from the same dataset. 
However, when the factorization is derived from an independent dataset, a somewhat higher 
granularity (i.e., a few more than 400 components) might be required to reach stability. At a 
level of granularity around 300-400 components, OPNMF seemed to factorize the entire 
voxel-wise data into efficient subdivisions, which allowed the LASSO regression model to 
capture only the relevant features (i.e., ~116 features when predicting MIXED sample and 
~52 features when predicting 1000BRAINS sample) and ignore the unnecessary/noisy 
features relatively better than at coarser granularity. Our finding converges with the study of 
Franke et al. (2010), in which the data compression was performed using PCA. These 
authors found that the lowest mean absolute error of the prediction analysis was reached at 
around 350 components. Of note, this level of granularity (or factorization) seems also 
convergent with the range of subdivisions of the brain that emerged as stable in functional 
MRI data, which lies between 200 and 500 parcels (Tucholka et al. 2008; Thirion et al. 2014; 
Gordon et al. 2016, Schaefer et al., in press). We could assume that a lower level of 
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subdivision (i.e., < ≈200 components) provides less homogeneous regions (i.e., regions 
mixing different functional and structural properties, cf. Eickhoff et al. 2017), while a higher 
level of subdivisions (>≈ 500 components) might spatially narrow the components but 
without importantly improving the homogeneity within regions. Thus, the current study 
suggests that a factorization of VBM data into 300 to 500 components optimally organizes 
voxel-wise structural data into homogeneous brain regions for age prediction.  
 
4.6 Model validation within the same dataset using a cross-validation approach 
In the model validation within the same dataset, our study showed that the performance of 
the brain age prediction using the framework of non-negative sparse coding (i.e., non-
negative matrix factorization with LASSO regression model) was similar to the prediction 
accuracy found in previous studies (Franke et al. 2010; Liem et al. 2017). It is important to 
note that predicting the age of subjects compressed using the components derived from the 
same dataset violates the test set independence. Even though the subjects in the test dataset 
were separated from the training dataset at the prediction level, the used factorization reflects 
the best factorization of the entire dataset, including the test dataset (Yuan et al. 2007; Liu et 
al. 2010). In other words, the test dataset cannot be considered as strictly unseen because the 
test data has been “optimally spatially organized” with its own factorization scheme. Hence, 
performing the brain age estimations on the dataset compressed using the same dataset’s 
factorization facilitates optimistic predictions. Therefore, in this study we compared the 
performance of the proposed prediction framework with this later over-optimal approach. 
 
Our results demonstrated that the LASSO regression, when applied on the dataset 
compressed with components derived from an independent dataset, estimated the brain age 
with a precision comparable to that achieved when compressing the dataset with its own 
factorization. This finding confirms the previous literature arguing that the ‘projectivity’ of 
OPNMF allows the efficient transferability of the factorization onto a new unseen dataset 
(Yuan et al. 2007). Our results showed that the differences between the factorizations derived 
from the two datasets (cf. section 4.3) did not influence the prediction of brain age when 
transferring the components onto the other dataset. Furthermore, our supplementary results 
(Fig. S3) illustrated that the pattern of regions selected by the prediction approach remained 
similar when the factorization was derived from another dataset. That is, the prediction 
model recollected the same anatomical regions regardless of which factorization scheme was 
applied. Again, this pattern of findings converges with what has been previously observed in 
data reduction of fMRI data for subsequent functional connectivity analyses. Those 
parcellation studies have observed that at an optimal resolution, parcellation from one dataset 
can provide a relevant spatial representation of the functional signal in other datasets, despite 
the topographical pattern of the parcellation between the datasets being different (Bellec et 
al. 2010; Finn et al. 2015; Gordon et al. 2016). Similarly, OPNMF factorization based on a 
different dataset did not prevent an optimal compression of the data for age prediction or the 
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selection of the relevant (anatomical) features. Thus, overall, our results demonstrated that 
despite the fact that factorization results from different datasets may comprise slightly 
different spatial components, any of the stable factorizations offers an efficient data 
compression for prediction analyses.  
 
4.7 Model validation on an independent dataset 
In the context of dataset (in-) homogeneity from different protocols, we observed that the 
prediction model extrapolated quite well to an independent dataset (Fig 6B & Fig 7B: Top 
left & bottom left plots). Firstly, model trained on a highly heterogeneous dataset, better 
predicted the subjects’ age in an independent dataset. Thus, our study supported Liem et al. 
2017’s recent suggestions that merging datasets from multiple protocols could avoid fitting 
the model to the characteristics of a particular scanner protocol. In other words, 
heterogeneous datasets allow the model to encounter a wider range of variations, helping it to 
disentangle non-relevant inter-individual variations from relevant variations for prediction. 
Surprisingly, model trained on single-site study also performed efficiently, when predicting 
the age of highly heterogeneous dataset (OldMIXED). To note, the single-site study consists 
of 693 subjects between 55 to 75 years (Fig 1A). Therefore, the model trained on this dataset 
encountered a wide range of variation at each age point. We suppose that this exposure to 
wide range of variation might have allowed overcoming the scanner effects with a robust 
regression model. Thus, we would recommend to train a given prediction model on a 
heterogeneous dataset (either with multi-sited examples or with multiple examples, ideally 
both) to ensure that true relevant variations are learned, which in turn may support good 
prediction performance. Importantly, the two cohorts also differed in their age distribution. 
Therefore, in addition to the generalizability over different protocols, these datasets also 
allowed us to evaluate the generalization of the prediction model over different age 
distributions (Fig 6B & Fig 7B: Top row plots). Not unexpectedly, models trained on 
restricted age range of the heterogeneous dataset (OldMIXED) provided better age prediction 
for test sample coming from an independent dataset within the age range of the training 
sample (1000BRAINS) when compared to the model trained on broader age range (MIXED). 
Again to be expected, models trained on narrow age range single-site study (1000BRAINS) 
failed to predict the age of subjects (MIXED) that were out of the training sample’s age 
range. Together, these observations further confirmed the general recommendation for the 
prediction model to be trained on data comprising variations due to distinct parameters (such 
as the acquisition protocol and demographic characteristic). Despite the fact that this 
recommendation might sound trivial, it actually complements previous recommendations 
emphasizing the importance of sample size for good prediction performance (Varoquaux et 
al. 2012; Varoquaux et al. 2017), but further points out that, not the size per se matters, but 
the range of variations that are covered.  
 
When applied in a clinical context, i.e. when evaluated on the ADNI dataset, the proposed 
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framework not only showed good age-prediction for the healthy subjects but in particular 
also captured premature aging in the context of MCI and dementia as indicated by positive 
BrainAGE scores (Fig 8). More specifically, the dramatic atrophy of AD patients was 
reflected by a mean BrainAGE score of almost 10 years, which is comparable to the findings 
of a previous study conducted by Franke et al. (2010). The sensitivity of our framework to 
brain structural changes in clinical populations was underscored by the likewise elevated 
BrainAGE for MCI patients, which was lower than for those with AD but still on average in 
the rage of 5-6 years, i.e., above the MAE in the population-based samples (Davatzikos et al. 
2008; Franke and Gaser 2012). In other words, our framework accurately ranked the HC, 
MCI and AD groups with regards to their pathological and clinical progression from healthy 
to demented (considering MCI as a transitional stage between normal aging and dementia; 
Petersen, 2010).  However, statistically discriminating those individuals among MCI patients 
who will progress towards Alzheimer’s disease is a challenging issue (Davatzikos et al. 
2009; Petersen 2010; Gaser et al. 2013; Moradi et al. 2015). While a classification approach 
could be more powerful for such purpose than age prediction (Franke and Gaser 2014; Wang 
et al. 2016; Beheshti et al. 2017), the latter could be combined with the former to quantify 
deviations from normal aging trajectories across clinical stages.  
 
4.8 Brain Age estimation using our framework 
Overall, our results demonstrate that models trained on highly heterogeneous life span 
sample (MIXED) can predict the age of any unseen subject with a precision of 6 years 
(irrespective of approach i.e., either on a cross-validation on MIXED dataset or on an 
independent dataset). Given the broad age range of the training sample (18 to 81 years), a 
precision of 6 years can be considered as a good performance from the technical side. 
Importantly, all previous brain age prediction studies likewise reported a precision of 
approximately 5 – 6 years in the context of life-span samples. The relationship between 
GMV and the chronological age is modulated by many factors (both environmental and 
genetic factors (Burgmans et al. 2009; Giedd et al. 2010; Harada et al. 2013; Luders et al. 
2016; Cole et al. 2017)). When aiming to identify the relationship between brain structural 
pattern and age, those factors may introduce noise obscuring the systematic effects of age on 
brain structure. In addition to these factors, inclusion of participant with certain 
characteristics (such as, participants in younger age with unidentified subclinical brain 
alterations, or older adults representing above-normal (i.e. “super healthy”) aged participants) 
might as well deviate the prediction model to capture the systematic effect of age on brain 
structure (Burgmans et al. 2009). Accordingly, these factors and the noise they introduce 
could account for the precision gap of 5 - 6 years in brain age prediction studies. That is, the 
limited precision of life-span age prediction may less relate to technical limitations but rather 
indicate that structural changes over a period of around 5 years are smaller than variations 
related to confounding factors that would represent “non-relevant” noise to the model. 
However, this hypothesis might not hold true for all life periods. For instance, one can 
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observe dramatic age-related structural changes in childhood (cf. Erus et al. 2015) the late 
life periods (cf. the higher precision of ~4 year MAE for 1000BRAINS or MIXED_55-90), 
while age-related grey matter changes could be relatively minor during early and middle 
adulthood (Schippling et al. 2017). Further examinations of these issues in future studies 
could provide better understanding of neurobiological aging. Nevertheless, in the scope of 
the present study, these confounding factors do not prevent our framework (combining 
OPNMF with sparse regression model) to accurately capture normal variations related to age 
and deviance from normal variations in clinical populations. 
 
4.9 Identification of the regions influencing the prediction 
As previously highlighted, our prediction model promotes interpretability of the prediction 
by inducing sparsity on the OPNMF representation. The OPNMF based low-rank 
approximations are more localized than the PCA components. Accordingly, using PCA-
based compression of VBM data, Franke et al. 2012 observed that the features that 
contributed to the estimation of brain age constituted a pattern spread across the whole brain. 
In contrast, the framework examined in our study induces sparsity on the localized 
components, highlighting regions that are relevant for the prediction model. Our results 
revealed that the regions involved in the age prediction model in 1000BRAINS were sparser 
than those underlying the prediction of age in MIXED. In contrast, most of the brain regions 
(representing 73% of the total grey matter volume) seemed to underpin the prediction when 
the model was trained in the MIXED dataset (which covers the adult lifespan with subjects 
between 18 to 81 years old). Put simply, the model cannot be consistently restricted to a few 
regions for inferring subjects’ age when the cohort covers the adult lifespan. Such a pattern 
could argue for a more complex pattern of grey matter variations across the whole adult life 
span than in the later life periods. Previous studies have demonstrated that many different 
patterns of changes occur across the adult life span in grey matter volume with notably some 
regions showing monotonic decrease of GM and other showing a clear inverted U-shape grey 
matter volume (GMV)-age relationships or a “delayed decline” (Ziegler et al. 2012; Douaud 
et al. 2014; Ziegler et al. 2014). Furthermore, as aforementioned, several factors may induce 
brain structural variations in the young and middle-aged adult brain, such as life style and 
environmental factors (Miller et al. 2016)) complicating the relationship between age and 
grey matter. In our study, in addition to the regions highlighted for age prediction in older 
sample, some regions, such as the amygdala, and the superior parietal lobule further 
contributed to age prediction when the model was trained on the young and middle age 
adults (MIXED) dataset. Interestingly, the amygdala is one region where GMV has been 
found to increase with age in relatively younger samples (8 to 30 years old; (Ostby et al. 
2009)) and some authors have noted no age-related GMV changes in the amygdala in older 
samples (Good et al. 2001). Furthermore, structural covariance of the amygdala (with other 
brain regions) is known to be modulated by several factors such as gender (Mechelli 2005). 
Thus, we could assume that, in a prediction model mixing genders, the amygdala could be 
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selected as an indicator modulating the pattern of relationship between other brain regions 
and age, despite this region per se does not show a strong, linear and universal GMV 
decrease with age. Accordingly, when examining the pattern of association between GMV 
and age, we observed a mild general linear decline of grey matter volume with age, but with 
a high variance across the subjects in the MIXED sample (see Fig. S4) suggesting that very 
different age-related grey matter change patterns might be observed in this brain region. Such 
a pattern allows us to assume that the GMV in the amygdala, taken as isolated information, 
cannot significantly contribute to the age prediction, particularly in the case of older 
participants. In other words, we assume that the grey matter changes in the amygdala are 
diverse and occur mainly in the young and middle age adult lifespan rendering this specific 
region informative for predicting age in the whole adult life span sample in combination with 
information from other regions. However, on its own, this region would not be particularly 
informative for age prediction in older populations.  
The superior parietal cortex is another example of regions contributing to the prediction 
analysis when the training sample consisted of young adults in addition to the older adults, 
but not when the model was trained on older adults only. Terribilli et al. (2011) conducted a 
study mainly focusing on young and middle age adults (18 to 50 years old), in which GMV 
of the lateral parietal cortex (i.e., supramarginal, angular and superior parietal cortex) 
exhibited a nonlinear relationship with age. The non-linear trend reported by the authors 
could be explained by a quadratic fit, that is, GMV followed a linear decline until the end of 
the fourth decade and then showed a mild increase. When examining the relationship 
between GMV and age in the superior parietal region in our study, we observed a similar 
trend (see Fig. S4), in which the mean GMV of the superior parietal region showed a sharp 
decrease until 40 years of age, but less pronounced change with age in later life. Thus, 
despite the fact that prediction models in general, (specially LASSO regression models) are 
inherently linear, identification of GMV in the superior parietal cortex as relevant for age 
prediction converges with previous data demonstrating that structural changes in this region 
occur mainly in the first decades of adult life, but not in periods later in life. Thus, visually 
examining the pattern of associations between GMV and age in regions contributing to the 
prediction in MIXED suggest that some regions may be informative for their relatively 
systematic changes in the first period of adult life (such as the superior parietal cortex) while 
others regions could contribute by introducing complementary information (such as the 
amygdala) despite not exhibiting a clear linear relationship with age across the sample.  
 
The pattern of regions consistently contributing to the prediction in the older sample 
appeared more spatially specific. Many of the regions highlighted by these analyses such as 
the hippocampus, the temporo-occipital region and the medial superior frontal gyrus have 
been shown to be strongly affected by aging in the older life period and more specifically, to 
follow a strong linear decrease in this life period (after 40-50 years old; Raz et al. 2010a; 
Douaud et al. 2014). However, some other regions, such as the regions around the central 
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sulcus are not known to show systematic change with age in later life period. Thus, the 
pattern of regions contributing to the predictions in 1000BRAINS suggests that when the 
training sample is restricted to older populations, the model can be restricted to a few 
regions, whose grey matter volumes is systematically affected by the aging process in the 
later life period, as well as other regions that might not appear particularly informative form 
a neurobiological point of view but complement the information conveyed by the former 
regions.   
 
Interpreting the multivariate brain pattern weighting in the prediction is usually not 
recommended (e.g. (Haufe et al. 2014) since the prediction is underlined by the combination 
of several element/feature (i.e. voxels in a voxel-wise representation of the data and 
components in the present study) and that the individual elements on themselves, taken in 
isolation, may not convey any neurobiological relevant information. However, we would 
argue that the relationship between the brain and the predicted variable should not be kept as 
a conceptually locked black box, that is, the multivariate aspect of the prediction does not 
imply that we should not at least try to understand why the given pattern is relevant for the 
model. As a metaphor, if a model uses the variable “number of children” and “country” for 
predicting the age of a person, obviously the variable “country” on its own is not informative 
for predicting the age of a person, in contrast, the number of children is partly informative. 
Hence, examining the combination of those two variables for predicting the age of a person 
can provide us more insight by suggesting that the relationship between age and the number 
of children is modulated by cultural factors. Similarly, the pattern of relationship between 
grey matter volume and age is assumed to be modulated by several factors, but whose 
influence remained relatively poorly understood.  However, the current framework 
promoting spatially localized component as relevant features could help to explore this issue 
in future studies (such as how the complex pattern of structural variations in the amygdala 
influenced by gender can contribute to age prediction in healthy adults).   
 
5 Conclusions and practical considerations for future studies 
In conclusion, our study, which evaluated OPNMF-based compression of VBM data for age 
prediction in two different healthy adult cohorts, opens several new perspectives. First, we 
demonstrated that OPNMF compression allows age prediction with a precision that is well 
comparable to that achieved following PCA compression but yields substantially more 
interpretable results. It also outperformed an atlas-based approach based on resting-state 
whole-brain parcellation, even though the precision obtained by cross-model atlas based data 
compression is in itself remarkable. Considering the declining return of investment when 
going to higher granularities, we would thus suggest that OPNMF at a granularity of 300 and 
500 components may provide the optimal data compression for age prediction.  
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While the exact OPNMF solution obviously depends on the examined sample, we here 
showed that prediction accuracies are basically uncompromised when employing a 
factorization derived from an independent dataset. That is, a factorization derived from one 
dataset can be used to efficiently compress VBM data of a second, independent dataset in a 
prediction framework. To note, the MIXED dataset used in the current study covers a wide 
range of variation over a broad age range while the (single-site) 1000BRAINS datasets can 
be assumed to capture structural covariance in older populations. Accordingly, the 
factorization derived from MIXED could be used for data compression in age prediction 
studies across adulthood whereas the factorization derived from 1000BRAINS may be 
particularly well suited for studying the aging brain. In addition to structural covariance-
based factorization, our study offers robust prediction models trained on life span sample 
from heterogeneous sites (MIXED), an advantage on which future studies could capitalize to 
better understand the effects of different factors on the neurobiological aging.  
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I. Supplementary methods 
 
I.1. Scanning parameters:  
The dataset termed “1000BRAINS” was obtained from a unique data collection [Caspers et 
al., 2014] of 693 healthy older adults (age: 55-75 years) that were scanned on a 3T scanner. 
Scanning parameters for the 1000BRAINS dataset were as given: Repetition time = 2.25 s, 
Echo time = 3.03 ms, Inversion time= 900ms, Field of view = 256 x 256 mm2, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3.  
Whereas, the dataset termed “Mixed” comprised 1084 healthy adults (age: 18-81 years) that 
were collected by merging samples of healthy adults from multiple sites. Scanning 
parameters for the individual samples that were merged to form the Mixed dataset were as 
following. 

Dataset-1: No of subjects = 91, Repetition time = 2.25 s, Echo time = 3.03 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-2: No of subjects = 83, Repetition time = 2.4 s, Echo time = 2.14 ms, flip angle = 80, 
voxel resolution = 0.7 x 0.7 x 0.7 mm3, 3T Skyra Siemens scanner. 

Dataset-3: No of subjects = 306, Repetition time = 1.9 s, Echo time = 2.52 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-4: No of subjects = 127, Repetition time = 2.5 s, Echo time = 3.5 ms, flip angle = 80, 
voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-5: No of subjects = 50, Repetition time = 2.25 s, Echo time = 3.26 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-6: No of subjects = 26, Repetition time = 3 s, Echo time = 4 ms, flip angle = 80, 
voxel resolution = 1 x 1 x 1 mm3, Philips Achieva 3T scanner. 

Dataset-7: No of subjects = 42, Repetition time = 2.25 s, Echo time = 3.82 ms, flip angle = 
90, voxel resolution = 1.04 x 1.04 x 1 mm3, 3T Siemens scanner. 

Dataset-8: No of subjects = 78, Repetition time = 2.3 s, Echo time = 2.92 ms, flip angle = 90, 
voxel resolution = 1 x 1 x 1.1 mm3, 3T TimTrio Siemens scanner. 

Dataset-9: No of subjects = 13, Repetition time = 2.3 s, Echo time = 3.03 ms, flip angle = 90, 
voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-10: No of subjects = 17, Repetition time = 1.9 s, Echo time = 2.52 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1.1 mm3, 3T Magnetom Prismatit Siemens scanner. 

Dataset-11: No of subjects = 72, Repetition time = 2.53 s, Echo time = 1.64 ms, flip angle = 
70, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 

Dataset-12: No of subjects = 35, Repetition time = 2.25 s, Echo time = 3.26 ms, flip angle = 
90, voxel resolution = 1 x 1 x 1 mm3, 3T TimTrio Siemens scanner. 
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Dataset-13: No of subjects = 31, Repetition time = 2.4 s, Echo time = 4.6 ms, flip angle = 
300, voxel resolution = 1 x 1 x 1 mm3, PHILIPS Intera Achieva 3T scanner. 

Dataset-14: No of subjects = 16, Repetition time = 10 ms, Echo time = 4.6 ms, flip angle = 
80, voxel resolution = 1 x 1 x 1 mm3, 3T IRM Philips scanner. 

Dataset-15: No of subjects = 77, Repetition time = 7.2 s, Echo time = 3.3 ms, flip angle = 80, 
voxel resolution = 0.89 x 0.89 x 0.9 mm3, PHILIPS Achieva 3T scanner. 

Dataset-16: No of subjects = 20, Repetition time = 9.86 s, Echo time = 4.6 ms, flip angle = 
80, voxel resolution = 0.875 x 0.875 x 1 mm3, PHILIPS Achieva 3T scanner. 

 

I.2. ADNI dataset 

For the clinical validation of our framework, we used data from the “ADNI” (Alzheimer's 
Disease Neuroimaging Initiative) database (www.loni.ucla.edu/ADNI) including the subjects 
that was scanned on a 3T scanner. The entire ADNI sample collection consists of three 
different phases i.e., ADNI-1, ADNI-GO and ADNI-2, with various modifications in the 
study design across phases. Hence, 3-0T MRI image acquisition scheme of ADNI-2 was 
modified according to the upgraded systems over the period of time. The subjects included in 
the current study were obtained from both ADNI-1 and ADNI-2 datasets. Scanning 
parameters for the ADNI-1 dataset were as follow: Repetition time = 0.65 s, Echo time = min 
full, Field of view = 256 x 256 mm2, flip angle = 80, slice thickness = 1.2mm and scanning 
parameters for the ADNI-2 dataset were as follow: Repetition time = 0.4 s, Echo time = min 
full, Field of view = 256 x 256 mm2, flip angle = 110, slice thickness = 1.2mm. General 
inclusion criteria and classification of the participants are described here: 
https://adni.loni.usc.edu/wp-content/uploads/2008/07/adni2-procedures-manual.pdf. Briefly, 
cognitively healthy participants do not report any specific memory complaints, neither show 
objective memory dysfunction. MCI, have both a subjective and an objective memory 
concern measured by education adjusted scores on Wechsler Memory Scale Logical Memory 
II, but an absence of significant levels of impairment in other cognitive domains, essentially 
preserved activities of daily living, and an absence of dementia. Finally, AD subjects who 
meet NINCDS/ADRDA criteria for probable AD were selected. 
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II. Supplementary results 

 
Fig S1. Illustration of the mean absolute error at different levels of granularity using 
smoothed and unsmooth VBM data 
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Fig S2. Illustration of the mean absolute error of the prediction model approach: 
1000BRAINS à train on 1000BRAINS & test on MIXED: Training the prediction model on 
1000BRAINS dataset projected on to its own factorization and later tested on MIXED 
dataset 
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Fig S3. Summary map of the regions that contributed in the prediction analysis when 
performing 10-fold cross-validation and compressing the dataset using the components 
derived from its own dataset or their respective other group’s dataset. 

A) MIXED dataset compressed, a) with its own factorization, b) projected onto the 
factorization derived from 1000BRAINS.  

B) 1000BRAINS dataset compressed, a) with its own factorization, b) projected onto 
factorization derived from MIXED. 
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Fig S4. Scatter plots of the mean grey matter volume (GMV) of superior parietal lobule 
(SPL; top left) and amygdala (top right) across distinct age groups in the MIXED dataset 
(middle panel) and the full age range of the 1000BRAINS dataset (bottom panel). These 
regions were highlighted in the age prediction when the model was trained on the MIXED 
dataset, but were not selected when the model was trained on the 1000BRAINS dataset. The 
age range (y axis) on the scatter plots was displayed separately for the early adulthood (18-40 
years) and the second life period (41-81) in the MIXED dataset illustrating different trends 
across the two life periods. The reported r values suggest a moderate negative correlation 
between superior parietal GMV and age in early adulthood and a weaker correlation in later 
life periods. In contrast, amygdala GMV show no GMV decrease with age in the early 
adulthood.  
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Fig S5. Similarity between factorizations from two datasets measured with adjusted Rand 
Index. Red: 1000BRAINS and MIXED; Cyan: 1000BRAINS and OldMIXED. Note: due to 
the small size of the OldMIXED (n = 239), granularity in this sample has been limited to 225 
components. 
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Fig S6. Predicted age plotted against chronological age, with fitted regression lines. In the 
bottom panel, both individual top plots have been combined together for subjects aged 
between 55 and 75. 
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Fig S7. Summary map of the regions that contributed in the prediction analysis, when 
performing the cross-validation approach in either of the datasets (i.e., MIXED and 
1000BRAINS). a) Summary map of the regions that contributed in the prediction analysis, b) 
Regions whose loading coefficients showed high correlations with age (among the regions 
contributing in age prediction) 

 
Table S1: Mean absolute error averaged across different levels of granularity 
 

Components 
derived 

Training Test 
Whole 
sample 

Males Females 

1000BRAINS 

1000BRAINS 1000BRAINS 3.6 3.7 3.5 

MIXED MIXED 6.1 6 6.3 

1000BRAINS OldMIXED 3.7 3.7 3.7 

MIXED 

1000BRAINS 1000BRAINS 3.6 3.7 3.6 

MIXED MIXED 6.3 6 6.5 

MIXED 1000BRAINS 6.1 6 6.2 

OldMIXED 1000BRAINS 3.8 3.8 3.8 

Raw VBM 
1000BRAINS 1000BRAINS 3.4 3.4 3.3 

MIXED MIXED 5 4.9 5.1 
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Table S2: Correlations (predicted age with real age) averaged across different levels of 
granularity 

Components 
derived Training Test 

Whole 
sample Males Females 

1000BRAINS 

1000BRAINS 1000BRAINS 0.63 0.63 0.62 

MIXED MIXED 0.87 0.88 0.86 

1000BRAINS OldMIXED 0.53 0.53 0.53 

MIXED 

1000BRAINS 1000BRAINS 0.62 0.62 0.61 

MIXED MIXED 0.86 0.87 0.85 

MIXED 1000BRAINS 0.55 0.55 0.54 

OldMIXED 1000BRAINS 0.54 0.54 0.54 

Raw VBM 
1000BRAINS 1000BRAINS 0.69 0.68 0.69 

MIXED MIXED 0.91 0.91 0.91 

Table S3: Computational time for each assessed prediction approach with 100 repetitions 
(in hours) 

 
Cross-validation approaches Out of Sample approach 

OPNMF 
from 

1000BRAINS MIXED 1000BRAINS MIXED MIXED 1000BRAINS MIXED 

Granularity 

CV 1000BRAINS CV MIXED 

Train 
MIXED 

Test 
1000BRAINS 

Train 
1000BRAINS             

Test 
OldMIXED 

Train 
OldMIXED 

Test 
1000BRAI

NS 

25 0.25 0.22 0.21 0.21 0.02 0.03 0.01 

50 0.39 0.47 0.44 0.38 0.03 0.03 0.03 

75 0.57 0.78 0.57 0.53 0.04 0.04 0.04 

100 1.09 1.31 1.59 1.16 0.09 0.99 0.10 

125 1.88 1.92 2.29 1.88 0.15 0.12 0.23 

150 2.21 2.22 2.73 2.02 0.13 0.16 0.34 

175 4.43 3.07 3.99 3.30 0.22 0.30 0.92 

200 5.39 3.94 4.94 4.31 0.28 0.34 0.67 

225 8.79 5.03 6.46 6.25 0.41 0.55 0.29 

250 8.46 6.44 8.07 6.94 0.41 0.51 0.25 

275 10.91 7.83 10.41 8.96 0.53 0.76 0.27 

300 20.36 8.21 13.07 11.55 0.57 1.44 0.24 

325 30.79 12.29 18.08 22.84 0.79 2.10 0.26 
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350 31.09 17.99 19.50 31.16 1.24 2.06 0.26 

375 58.08 21.64 29.39 40.62 1.59 3.99 0.29 

400 60.23 27.17 30.70 54.32 1.96 4.58 0.30 

425 86.04 36.04 39.61 90.69 2.16 5.38 0.31 

450 111.19 51.88 48.85 118.91 3.35 7.49 0.31 

500 236.95 115.08 139.27 275.45 7.83 15.58 0.33 

525 242.68 110.21 136.26 288.07 6.98 13.27 0.31 

550 320.67 133.47 167.08 252.93 6.12 15.62 0.31 

575 249.60 155.10 169.46 240.85 9.82 14.50 0.35 

600 272.75 139.47 179.44 217.41 8.98 11.82 0.30 

625 26.48 155.89 210.86 21.04 9.55 1.50 0.33 

650 25 159.82 190.28 21.15 10.55 1.38 0.29 

690 27.8 215.78 220.66 22.45 9.50 1.52 0.32 

 

Table S4: Mean absolute error averaged across different levels of granularity 

Components 
derived 

Train Test 

Raw predictions Adjusted predictions 

Unsmoothed 
data 

Smoothed 
data 

Unsmoothed 
data 

Smoothed 
data 

1000BRAINS 

1000BRAINS 1000BRAINS 3.6 3.6 4.6 4.5 

MIXED MIXED 6.3 6.2 6.9 6.7 

1000BRAINS MIXED 18.8 18 12.7 12 

Mixed 

1000BRAINS 1000BRAINS 3.6 3.6 4.6 4.55 

MIXED MIXED 6.4 6.3 7 6.9 

MIXED 1000BRAINS 6.1 6.1 8.1 8 

Raw VBM 
1000BRAINS 1000BRAINS 3.4 3.3 3.3 3.4 

MIXED MIXED 4.92 5 4.86 5 
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General Discussion 
 
1 Extraction of functional connectivity measure in a reliable fashion 
 
The first study was dedicated to investigate the influence of various confound removal 
procedures and signal extraction approaches on the reliability of the functional connectivity 
scores in a priori defined canonical networks. The results related to the extraction of the 
signal demonstrated that implementation of the grey matter masking based on the group-
averaged GM probabilities improved the reliability of the connectivity measures for larger, a 
priori defined clusters, while no grey matter masking seems favorable when using smaller, 
spherical ROIs. In details, when using larger, a priori defined clusters, restricting the 
extraction of the signal from the grey matter masking based on individual GM probabilities 
has shown to improve the reliability at the connection level (i.e., within-subject 
connectivity). In turn, group grey matter masking enhances the reliability of the connectivity 
measures at group level. This finding argues for best fit of spatial correspondence reflecting 
individual subject’s anatomy to produce reliable measure within a single subject. When 
performing a multivariate approaches, connectivity measures characterizing dynamics of the 
spatial information on individual basis is essential to improve the performance of the analysis 
(Davatzikos 2016). Therefore, individual grey matter masking seems advisable for 
optimizing the performance of a machine-learning algorithm on the larger, a priori defined 
clusters.  
 
Our results further demonstrated that the confound removal strategy which retains the most 
variance is the most reliable strategy. One assumption behind this outcome was the that 
highest retained variance presumably included structured noise, such as reliable nuisance 
signals induced by physiological processes hence contributing to the reliability. In line with 
this assumption, Birn et al. 2014 reported a reduction in the test-retest reliability particularly 
after elimination of artifacts induced by physiological processes (i.e., cardiac and respiratory 
processes) and suggested reducing the spatially structured fluctuations in order to improve 
the validity of the functional connectivity measures. Therefore, we infer that structured noise 
caused by the systematic and cyclic physiological processes might have contributed to the 
highest reliability for the connectivity measures with no confound removal. Nevertheless, 
influence of physiological noise correction on the reliability of functional connectivity 
measures was not explicitly investigated in our study 1, due to the lack of physiological 
recordings of parameters such as heartbeat and breathing. In turn, we investigated PCA de-
noising which has been introduced by Behzadi et al. (2007) as an alternative de-noising 
strategies and was shown to effectively eliminate the influence of physiologically induced 
artifacts (Chai et al. 2012). Even though, our main findings indicated that PCA denoising 
reduced the reliability of the connectivity measures, implementation of PCA denoising led 
high reliability at the connection level (i.e., within subject connectivity; RoCO) for within 
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network connections (only). Importantly, Shirer et al. in a study investigating the test-retest 
reliability of the connectivity measures has reported an increase in the group discriminability 
(i.e., an increase in the machine learning classification accuracy between Alzheimer’s 
patients and healthy controls) after regressing out the PCA components. Together, we could 
assume that PCA denoising has a potential to reduce the intra-subject variability, preferably 
by eliminating the structured noise. Nevertheless, it has to be noted that PCA denoising 
aggressively remove the variance, which could make the time series reach a flat line, hence, 
resulting in a higher reliability at the connection level reported in our study. Thus, excessive 
removal of variance using PCA denoising might not be advisable. In sum, removal of 
physiological noise allow us to improve the validity of the measure by diminishing the 
detrimental structured noise, however, PCA denoising might not be the suitable approach. 
Furthermore, we note that physiological recordings are rarely acquired in standard (clinical) 
resting-state acquisitions, and hence remain challenging to precisely model the physiological 
noise regressors. Recently, Salimi-Khorshidi et al. 2014 proposed an ICA based FIX 
denoising strategy, which performs an automatic identification of confounds addressing the 
structured noise and regress them out. However, FIX denoising approaches require effective 
individual segmentation from high-resolution T1 images, which were not available for the 
data used in study 1. Hence, unfortunately, our study 1 failed to explicitly investigate the 
impact of the FIX denoising strategy on the reliability of the connectivity measures. 
However, we assume this automated denoising approach could efficiently model the true 
noise components in the existing data, given the main strength of this automated denoising, 
to detect the noise components based on machine-learning approach using data-driven 
feature selection strategy. Therefore, along with the confound removal suggested in our study 
1 (i.e., 24 motion regressors and mean signal from WM and CSF), we suggest to improve the 
validity by eliminating the accurately modeled physiologically induced nuisance regressors 
either by using pre-acquired physiological recordings or by an automated data driven 
approaches (such as ICA-based FIX denoising).  
 
2 Sparsity induced feature reduction 
 
In this section, we discuss the results from study 4 based on the anatomical data, focusing on 
the performance and interpretability of a sparse supervised regression model employed with 
three different form of the data representation, i.e., 1) high-dimensional Voxel Based 
Morphometric (VBM) data without any implementation of data reduction procedure 
(uncompressed data), 2) Non-negative matrix factorization (NMF) based VBM data 
reflecting a sparse decomposition of the data and 3) PCA based VBM data representing a 
non-sparse data reduction procedure (implemented by the previous studies).  
 
An interesting outcome of study 4 is that prediction accuracy remains analogous employing 
the three forms of data representation (i.e., using the full (uncompressed) VBM data, sparse 
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NMF compressed data and non-sparse PCA decomposition from the previous studies). 
However, investigation of underlying pattern within the prediction revealed that isolated 
voxels scatter all over the brain were identified as relevant features by the sparse regression 
model on the voxel-wise (uncompressed) data rather than forming clusters in definite 
regions. In addition, as reported in the Table 1, on an average each regression model selected 
236 and 508 voxels (i.e., features) for 1000BRAINS and MIXED, nevertheless, only 5 and 
24 features (for 1000BRAINS and MIXED) among these selected features remain consistent 
over (only) 50 percent of the regression models. This observation clearly suggest that high 
dimensional voxel wise data due to the highly correlated features allowed several potential 
models accurately fitting on the same data. This problem reveals lack of stability in the 
prediction model due to the multicollinearity of the data (Zhao and Yu 2006), which 
implicitly questions the interpretability of the pattern associated with the features contributed 
in the prediction model. In addition to this issue, as suggested by Wang et al. 2010, the small 
sample size relative to the high dimensional voxel-wise data (commonly known as small-n-
large-p issue) can challenge the computation of a regression model. Thus, implementation of 
dimensionality reduction procedure, prior to the sparse supervised machine-learning 
algorithm is recommended to avoid the above-mentioned issues (namely, multicollinearity 
and small-n-large-p issues) and enhance the accuracy and stability of the results. In support 
to the above discussion, our study 2 focusing on functional MRI data actually had reported 
an increase in the classification accuracy for a non-sparse supervised machine-learning 
algorithm using a meta-analytically derived networks (domain knowledge based data 
reduction method) compared to the whole brain functional connectivity networks. This result 
further supports the argument of implementing a feature reduction method before the 
supervised learning to reduce the detrimental impact of the redundant, as well as noisy 
features.  
 
Although, efficient feature reduction or dimensionality reduction has been the biggest 
concern in the field (Hua et al. 2009; Chu et al. 2012), deeper understanding on the pattern 
associated with the regions contributed within the supervised learning remains an open 
question which deserve equal attention (Franke et al. 2012). Thus, our project intended to 
evaluate an alternative dimensionality reduction method (i.e., NMF) that converts the high 
dimensional voxel-wise data into biologically plausible spatial units of the brain. As stated 
above, accuracy of the brain age prediction using NMF (sparse) data compression favorably 
compares with previous reports employing PCA (non-sparse) data compression. 
Furthermore, as reported in the study 4, NMF attempted to capture the most influential 
spatial information among the entire high-dimensional representation (Kim and Tidor 2003; 
Sotiras et al. 2015). Therefore, NMF has a potential for being less affected by the 
measurement and processing artifacts. Most importantly, study 4 demonstrated that 
implementation of a sparse regression model on to the sparse decomposition method (in 
particular, NMF) allowed us to investigate the underlying pattern contributing to the 
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prediction analysis. As enlightened by Davatzikos 2016, and supported by Wang et al. 2010, 
categorizing spatially consistent brain voxels (i.e., voxels of similar signals) across 
individuals into each component allowed us to partly articulate which groups of components 
(or features) provide discriminative information about the variable of interest. Thus, deeper 
and better understanding of the underlying biological processes can be achieved by 
Generative-discriminative methods (i.e., combination of sparse unsupervised feature 
reduction with a sparse supervised learning (Davatzikos 2016)), particularly when generative 
method promotes biologically plausible factorization of brain data.  
 
In addition, results from study 3 focusing on the functional MRI data implementing domain 
knowledge based data reduction procedure (i.e., a-priori defined meta analytical networks) 
allowed us to strengthen our assumptions. Here, implementation of meta-analytically derived 
networks on a sparse regression model offered a deeper interpretation of the neurobiological 
underpinnings of personality traits. Our a-priori defined meta-analytically derived networks 
have a great potential in improving the signal to noise ratio of the feature space, which is a 
representation of relatively small number of brain regions implicated in the functional 
processing of the variable of interest. Relatedly, Chu et al. 2012 has evaluated the influence 
of different sample sizes along with different feature selection methods on classification 
accuracy and demonstrated that feature selection procedure capitalizing on the prior 
knowledge (with a prerequisite of high reliability) resulted in an improvement in the 
performance of the regression model. Most importantly, even though, study 2 has employed 
non-sparse supervised regression model (meaning when there isn’t any explicit feature 
selection method implemented), application of the prior knowledge based functionally 
relevant features (i.e., meta-analytically defined networks as a feature reduction step) has 
partly allowed us to interpret the underlying pattern across the neurodegenerative biological 
processes. Altogether, feature reduction with an inherent or indirectly induced sparsity is 
highly beneficial for understanding the pattern associated within the analysis. 
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Table 1: proportion of features contributing in the prediction analysis on high dimensional 
voxel wise 

No of features 
(i.e., voxels) 

Cross validation in 
1000BRAINS Cross validation in MIXED 

Average No 
of features 

selected per 
model 

(among 75 
models) 

Features 
contributed 

consistently in 
50 % of the 

models 

Average No of 
features 

selected per 
model (among 

75 models) 

Features 
contributed 

consistently in 
50 % of the 

models 

344383 236 5 508 24T 

 
 
 
3 To what extent do we need to reduce the features? 
 
Furthermore, study 4 demonstrated that prediction accuracy improves with an increase in the 
level of granularity. To note, sparse and non-sparse unsupervised models encounter a 
downside of the procedure, which is user-specified definition of the level of granularity as a 
prerequisite (Mwangi et al., 2015). In this context, study 4 suggested an optimal choice of 
granularity at 300 to 400 components using NMF (sparse representation), particularly for the 
VBM data in a prediction’s purpose. Consistent with our finding, Franke et al. 2010 reported 
a comparable level of factorization (i.e., 350) using PCA (non-sparse representation). 
Importantly, the level of granularity reflecting a stable subdivision of the brain in functional 
MRI data also converged with our findings (i.e., ranging between 200 and 500 parcels 
(Tucholka et al. 2008; Thirion et al. 2014; Gordon et al. 2016)). Thus, granularities between 
300 and 400 components might optimally compresses the voxel-wise structural MRI data 
into homogeneous spatial components. Importantly, this level of compression could also 
favorably subdivide the brain into stable functionally homogenous when considering fMRI 
data (Schaefer et al., 2017). Of note, sparse descriptive (supervised) models applied on the 
low rank approximations has a potential to enforce an automated selection of as many 
features as required by the regression model to provide relevant discriminative information 
about the variable of interest (Tipping and Faul 2003; Zhao and Yu 2006). Nevertheless, 
study 4 demonstrated that accuracy of the descriptive models improves with an increase in 
the level of granularity for the generative models. In addition, Table 2 depicts that the 
relevant number of features consistently contributing among 95 % of the prediction models 
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reaches a plateau after a certain level of granularity. These observations strengthen our 
assumption that determining a precise granularity for the generative reduction step is a 
fundamental requirement to achieve better precision of the descriptive models. Therefore, 
even though the descriptive models can perform an automated feature selection, an optimal 
a-priori definition of granularity for the feature reduction is imperative.  

 
Table 2: proportion of features contributed in the prediction analysis on NMF based VBM 

data 

Total No of 
features  

(Granularity) 

Comp FZJ Cross Mixed  Comp Mixed Cross FZJ  

Average No 
of features 

selected per 
model 

Features 
contributed 

consistently in 
95 % of the 

models 

Average No 
of features 

selected per 
model 

Features 
contributed 

consistently in 
95 % of the 

models 
25 24 21 24 20 
50 48 40 39 27 
75 65 51 42 29 

100 91 75 49 25 

125 113 86 74 35 
150 124 83 90 40 

175 136 88 98 53 

200 142 92 94 46 
225 149 91 106 55 

250 175 113 103 49 
275 186 115 106 45 
300 181 114 111 51 
325 195 118 111 50 

350 206 120 117 50 

375 220 124 127 46 

400 215 113 118 53 
425 210 105 121 46 
475 237 110 138 52 

500 225 114 128 43 

525 255 126 147 57 

550 233 110 142 57 
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575 229 111 131 50 

600 252 122 130 52 

625 258 109 155 48 

650 275 126 143 56 
690 248 111 167 64 

 
4 Generalizability 
 
It has been emphasized in the previous section that outcomes of the generative models (i.e., 
models enforcing unsupervised learning of the data by inferring a hidden pattern of the data 
across the observations) can impact the accuracy of the descriptive models (i.e., models 
learning the data in a supervised fashion). However, generative or unsupervised models 
based solutions aim to discover groups that share similar information across the individuals 
(i.e., observations) without any pre-defined regulations, which might raise a question of 
generalizability. In support to this assumption, study 4 reported a slightly different NMF 
estimated from two different datasets with distinct parameters (such as the acquisition 
protocol and demographic characteristic). As discussed in the Study 4, these differences 
might have been driven from the inter-individual variations in the topographical patterns of 
the brain. However, the most important observation from the study 4 is that factorization 
derived from one dataset can be efficiently implemented to reduce the dimensions of an 
independent dataset in a (sparse supervised learning) prediction framework. This observation 
advocates for the generalizability of the unsupervised learning (particularly, NMF) for an 
unseen data, which is not only independent but also, differs with acquisition protocol and 
demographic characteristics. In contrast, Study 4 also demonstrated that supervised learning 
or descriptive models failed to generalize for the test sample with target variable out of the 
range of variations covered by the training samples. However, supervised prediction model 
trained on data comprising largely heterogeneous variations due to divergent and wide range 
of parameters (such as acquisition protocol and demographic characteristic), efficiently 
performed the predictions on an independent dataset. Therefore, our results emphasize the 
importance of big sample sizes with large and heterogeneous range of target variables for 
effectively improving the generalizability of the supervised learning or descriptive modeling.   
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5 Summary 
 
In the current thesis, best combination of confound removal strategies and signal extraction 
approaches to compute reliable functional connectivity measures were examined along with 
the evaluation of various data reduction methods. Firstly, to summarize the outcomes of the 
test-retest reliability study, when implementing meta-analytic approach as a feature reduction 
method, extraction of the signal by employing the grey matter masking has shown to 
improve the reliability of the connectivity measures for large, a priori defined clusters, in turn 
there is no requirement of implementing a grey matter masking for smaller, spherical ROIs. 
Along with the 24 motion regressors and mean signal from WM and CSF, physiologically 
induced noise regression should also be given adequate consideration. Now coming to the 
summary of the data reduction strategies, prior to the supervised machine-learning 
application, reduction of high dimensional data into fewer dimensions seems promising. In 
addition, feature reduction procedure with an inherent or indirectly induced sparsity resulting 
biologically plausible reduced units is highly beneficial to interpret the underlying pattern of 
the biological processes. Definition of a precise optimal latent dimension of the entire voxel 
wise representation is crucially required to attain reliably meaningful results from generative-
descriptive methods. Generalization of the unsupervised learning (particularly, NNMF) for 
an unseen data, which is not only independent but also, differs with acquisition protocol and 
demographic characteristics seems achievable. Finally, we proposed that not only the size of 
the observation (i.e., sample size), but also heterogeneity on the variations associated to the 
range of target variables is crucial for enhancing the generalizability of the machine learning 
approach.  
 
6 Future work 
 
While this thesis has demonstrated the potential of sparse feature reduction techniques to 
better understand the prediction analysis, many opportunities for extending the scope of this 
thesis remain open. The following ideas could be explored in future studies.  
 
1. Given the main objective of this dissertation was to investigate approaches that would 
promote biologically meaningful compression of the high-dimensional space in the context 
of multivariate analysis. A linear regression model was preferred for the sake of comparison 
and complementation of previous studies, as most of the previous studies have implemented 
linear regression models. Despite the potential benefits of the linear regression models, it is 
indeed interesting to implement a non-linear regression model, which might increase the 
accuracy of the multivariate approaches, an issue that should be further investigated in future 
work.  
 



	 211	

2. Even though, application of prior knowledge based meta-analytically defined 
networks has allowed us to efficiently perform the prediction or classification analysis. It is 
crucial to perceive for the global effects of the multivariate approaches based on whole-brain 
FC patterns. Therefore, in future studies, it will be interesting to evaluate the performance of 
multivariate approaches on whole brain FC pattern compressed using Non-negative matrix 
factorization (yielding spatially localized sub units).  
 
3. One major aspect that could be investigated as an extension to this dissertation is to 
address the curse of dimensionality at multimodal level. The fundamental issue underlying 
this aspect is the data fusion, which requires compressed representation in identical forms for 
all the modalities. Thus, either standardizing the low-rank approximations at each modality 
or implementing the same data compression method on all the modalities could support to 
explore this issue in future studies. 
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