

Parallel I/O strategies

Sebastian Lührs s.luehrs@fz-juelich.de Jülich Supercomputing Centre Forschungszentrum Jülich GmbH

Ostrava, March 22nd, 2018

Outline

- Common I/O strategies
 - One process performs I/O
 - Task-local files
 - Shared files
- I/O workflow
- Pitfalls
- Parallel I/O software stack
- Course exercise description
 - General exercise workflow
 - Mandelbrot set description
 - Exercise API

Member of the Helmholtz-Association

One process performs I/O

One process performs I/O

+ Simple to implement

- I/O bandwidth is limited to the rate of this single process
- Additional communication might be necessary
- Other processes may idle and waste computing resources during I/O time

Frequent flushing on small blocks

- Modern file systems in HPC have large file system blocks (e.g. 4MB)
- A flush on a file handle forces the file system to perform all pending write operations
- If application writes in small data blocks, the same file system block it has to be read and written multiple times
- Performance degradation due to the inability to combine several write calls

Member of the Helmholtz-Association

Task-local files

Task-local files

- + Simple to implement
- + No coordination between processes needed
- + No false sharing of file system blocks

- Number of files quickly becomes unmanageable
- Files often need to be merged to create a canonical dataset
- File system might serialize meta data modification

Serialization of meta data modification

Example: Creating files in parallel in the same directory

The creation of 2.097.152 files costs 113.595 core hours on JUQUEEN!

Member of the Helmholtz-Association

Shared files

March 22nd, 2018

9

ember of the Helmholtz-Associatio

Shared files

- Number of files is independent of number of processes
- + File can be in canonical representation (no post-processing)

- Uncoordinated client requests might induce time penalties
- File layout may induce false sharing of file system blocks

- Data blocks of individual processes do not fill up a complete file system block
- Several processes share a file system block
- Exclusive access (e.g. write) must be serialized
- The more processes have to synchronize the more waiting time will propagate

March 22nd, 2018 11

Number of Tasks per Shared File

JÜLICH FORSCHUNGSZENTRUM

- Meta-data wall on file level
 - File meta-data management
 - Locking
- Example Blue Gene/P
 - Jugene (72 racks)
 - I/O forwarding nodes (ION)
 - GPFS client on ION
 - One file per ION

I/O Workflow

13

- Post processing can be very time-consuming (> data creation)
 - Widely used portable data formats avoid post processing
- Data transportation time can be long:
 - Use shared file system for file access, avoid raw data transport
 - Avoid renaming/moving of big files (can block backup)

Portability

JÜLICH FORSCHUNGSZENTRUM

Pitfall 5

Endianness (byte order) of binary data

2,712,847,316

=

10100001 10110010 11000011 11010100

Address	Little Endian	Big Endian
1000	11010100	10100001
1001	11000011	10110010
1002	10110010	11000011
1003	10100001	11010100

Conversion of files might be necessary and expensive

Portability

JÜLICH FORSCHUNGSZENTRUM

Pitfall 6

Memory order depends on programming language

1	2	3	
4	5	6	
7	8	9	

Address	row-major order (e.g. C/C++)	column-major order (e.g. Fortran)
1000	1	1
1001	2	4
1002	3	7
1003	4	2
1004	5	5

- Transpose of array might be necessary when using different programming languages in the same workflow
- Solution: Choosing a portable data format (HDF5, NetCDF)

JÜLICH FORSCHUNGSZENTRUM

How to choose the I/O strategy?

- Performance considerations
 - Amount of data
 - Frequency of reading/writing
 - Scalability
- Portability
 - Different HPC architectures
 - Data exchange with others
 - Long-term storage
- E.g. use two formats and converters:
 - Internal: Write/read data "as-is"
 - → Restart/checkpoint files
 - External: Write/read data in non-decomposed format (portable, system-independent, self-describing)
 - → Workflows, Pre-, Post-processing, Data exchange

mber of the Helmholtz-Associati

Parallel I/O Software Stack

March 22nd, 2018 17

nber of the Helmholtz-Associatic

I/O Profiling with Darshan

- I/O profiler by Argonne National Lab: http://www.mcs.anl.gov/research/projects/darshan/
- Darshan module (Salomon)
 - module load darshan-runtime
- Tell to use Darshan (in submit script)

```
export LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \
export DARSHAN_LOG_PATH=/path/to/your/logile \
exportDARSHAN_LOGFILE=darshan.log \
mpiexec ./executable
```

- Analyse output
 - module load darshan-util
 - darshan-parser darshan.log
 - darshan-job-summary.pl darshan.log (needs pdflatex)

March 22nd, 2018 18

ber of the Helmholtz-Associ

Darshan: Interpret the summary

- Average and statistical information on I/O patterns
 - Relative time for I/O
 - Most common access sizes
- Additional metrics
 - File count
 - I/O size histogram
 - Timeline for read / write per task
 - •

Most Common Access Sizes		
access size	count	
4194304	256	