
M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

Parallel I/O strategies

Sebastian Lührs

s.luehrs@fz-juelich.de

Jülich Supercomputing Centre

Forschungszentrum Jülich GmbH

Ostrava, March 22nd, 2018

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 2

Outline

Common I/O strategies

One process performs I/O

Task-local files

Shared files

I/O workflow

Pitfalls

Parallel I/O software stack

Course exercise description

General exercise workflow

Mandelbrot set description

Exercise API

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 3

One process performs I/O

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 4

One process performs I/O

+ Simple to implement

- I/O bandwidth is limited to the rate of this single

process

- Additional communication might be necessary

- Other processes may idle and waste computing

resources during I/O time

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 5

Frequent flushing on small blocks

Modern file systems in HPC have large file

system blocks (e.g. 4MB)

A flush on a file handle forces the file system to

perform all pending write operations

If application writes in small data blocks, the same

file system block it has to be read and written

multiple times

Performance degradation due to the inability to

combine several write calls

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 6

Task-local files

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 7

Task-local files

+ Simple to implement

+ No coordination between processes needed

+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable

- Files often need to be merged to create a canonical

dataset

- File system might serialize meta data modification

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 8

Serialization of meta data modification

The creation of 2.097.152 files costs 113.595 core hours on

JUQUEEN!

Example: Creating files in parallel in the same directory

Parallel file creation on JUQUEEN

0.5-28 racks, 64 tasks/node
W. Frings

3 seconds

13 minutes

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 9

Shared files

P00P00 P01P01 P02P02 P03P03

P04P04 P05P05 P06P06 P07P07

P08P08 P09P09 P10P10 P11P11

P12P12 P13P13 P14P14 P15P15

processes

file system

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 10

Shared files

+ Number of files is independent of number of

processes

+ File can be in canonical representation (no post-

processing)

- Uncoordinated client requests might induce time

penalties

- File layout may induce false sharing of file system

blocks

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 11

False sharing of file system blocks

Data blocks of individual processes do not fill up a

complete file system block

Several processes share a file system block

Exclusive access (e.g. write) must be serialized

The more processes have to synchronize the more

waiting time will propagate

file system block

data block free file system block

FS Block FS Block FS Block

data

task 1

data

task 2

lock

t1 t2

lock

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 12

Number of Tasks per Shared File

Meta-data wall on file level

File meta-data management

Locking

Example Blue Gene/P

Jugene (72 racks)

I/O forwarding nodes (ION)

GPFS client on ION

One file per ION

T/F: 4096/1

T/F: 16384/1

T/F: 512/1 or 1/1

file i-nodefile i-node
indirect

blocks

indirect

blocksI/O-

client

I/O-

client

FS blocksFS blocks

file i-node
indirect

blocksI/O-

client

FS blocks

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 13

I/O Workflow

Post processing can be very time-consuming (> data creation)

Widely used portable data formats avoid post processing

Data transportation time can be long:

Use shared file system for file access, avoid raw data

transport

Avoid renaming/moving of big files (can block backup)

data creation

data post processing

(merge files, switch to

different file format) visualization

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 14

Portability

Endianness (byte order) of binary data

2,712,847,316

=

10100001 10110010 11000011 11010100

Address Little Endian Big Endian

1000 11010100 10100001

1001 11000011 10110010

1002 10110010 11000011

1003 10100001 11010100

Conversion of files might be necessary and expensive

little end

big end

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 15

Portability

Memory order depends on programming language

Address row-major order

(e.g. C/C++)

column-major order

(e.g. Fortran)

1000 1 1

1001 2 4

1002 3 7

1003 4 2

1004 5 5

1 2 3

4 5 6

7 8 9

Transpose of array might be necessary when using different

programming languages in the same workflow

Solution: Choosing a portable data format (HDF5, NetCDF)

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 16

How to choose the I/O strategy?

Performance considerations

Amount of data

Frequency of reading/writing

Scalability

Portability

Different HPC architectures

Data exchange with others

Long-term storage

E.g. use two formats and converters:

Internal -

Restart/checkpoint files

External: Write/read data in non-decomposed format

(portable, system-independent, self-describing)

Workflows, Pre-, Post-processing, Data exchange

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 17

Parallel I/O Software Stack

Parallel application

Parallel file system

POSIX I/O

P-HDF5

MPI-I/O

PNetCDF

S
h
a
re

d

fi
le

Task-

local

files
NetCDF-4

SIONlib

data stored in global view in local view

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 18

I/O Profiling with Darshan

I/O profiler by Argonne National Lab:

http://www.mcs.anl.gov/research/projects/darshan/

Darshan module (Salomon)

module load darshan-runtime

Tell to use Darshan (in submit script)
export LD_PRELOAD=$EBROOTDARSHANMINRUNTIME/lib/libdarshan.so \

export DARSHAN_LOG_PATH=/path/to/your/logile \

exportDARSHAN_LOGFILE=darshan.log \

mpiexec ./executable

Analyse output

module load darshan-util

darshan-parser darshan.log

darshan-job-summary.pl darshan.log (needs pdflatex)

M
e
m

b
e

r
o

f
th

e
 H

e
lm

h
o
lt
z
-A

s
s
o
c
ia

ti
o
n

March 22nd, 2018 19

Darshan: Interpret the summary

Average and statistical

information on I/O patterns

Relative time for I/O

Most common access sizes

Additional metrics

File count

I/O size histogram

Timeline for read / write per

task

