Member of the Helmholtz-Association

TuiTunividivuivivuiuviuvl tuu vl ol
0110010101001001100101
go101011001 ﬂ]DUlT[l]IFJ 0101

0 J!Ul 0o1o1n

Parallel 1/O strategies

Sebastian Luhrs
s.luehrs@fz-juelich.de

Julich Supercomputing Centre
Forschungszentrum Jalich GmbH

Ostrava, March 22nd. 2018

LRI AR A AL S

FORSCHUNGSZENTRUM

iation

Member of the Helmholtz-Assoc

Outline

Common I/O strategies
= One process performs 1/O

= Task-local files
= Shared files

|/O workflow

Pitfalls

= Parallel I/O software stack

= Course exercise description

= General exercise workflow

= Mandelbrot set description
= Exercise API

March 22nd, 2018

#) JULICH

FORSCHUNGSZENTRUM

#) J0LICH
One process performs I/O

P05

P06

PO8 | | PO9 || P10 | | P11

file system

P12 || P13 || P14 | | P15

iation

processes

Member of the Helmholtz-Assoc

March 22nd, 2018 .

#) JULICH
One process performs I/O

+ Simple to implement

- 1/0 bandwidth is limited to the rate of this single
process

- Additional communication might be necessary

- Other processes may idle and waste computing
resources during I/O time

March 22nd, 2018 4

. #) JULICH
Frequent flushing on small blocks

= Modern file systems in HPC have large file
system blocks (e.g. 4MB)

= Aflush on a file handle forces the file system to
perform all pending write operations

= |f application writes in small data blocks, the same
file system block it has to be read and written
multiple times

= Performance degradation due to the inability to
combine several write calls

March 22nd, 2018 5

iation

Member of the Helmholtz-Assoc

Task-local files

March 22nd, 2018

P00 | | PO1 || P02 || PO3
A 7
N~ /
R4 PO5 | | P06 | | P07
< P08 | | PO9 || P10 || P11
Eéi;iiz:;““ P12 || P13 || P14 || P15
processes

#) JULICH

FORSCHUNGSZENTRUM

Member of the Helmholtz-Association

_ #) J0LICH
Task-local files
+ Simple to implement
+ No coordination between processes needed

+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable

- Files often need to be merged to create a canonical
dataset

- File system might serialize meta data modification

March 22nd, 2018 7

R ~_ AyjiLcH
Serialization of meta data modification — ‘==

Example: Creating files in parallel in the same directory /ffe/

1000 . m /?

=@-Task-local file create
=0=SIONlib shared-file create
73.8
100 347
s 6.9 /
A e
£ \
S 10
Q
-E; 2.99
Q
G 2.02
1.38
0.79
1 0.68
- . Parallel file creation on JUQUEEN
c ' 0.5-28 racks, 64 tasks/node
5 W. Frings
2 0.1 4 t ' —
< —
3 32,768 131,072 524,288 1.835.008 2,097,152
£ # Tasks
£ The creation of 2.097.152 files costs 113.595 core hours on
: JUQUEEN!
=

March 22nd, 2018 8

iation

Member of the Helmholtz-Assoc

Shared files
POO || PO1 || P02 || PO3
P08 || P09 || P10 || P11
~
file system P12 || P13 || P14 || P15
processes

March 22nd, 2018

#) JULICH

FORSCHUNGSZENTRUM

Member of the Helmholtz-Association

#) JULICH
S h a re d fi I es FORSCHUNGSZENTRUM

+ Number of files is independent of number of
processes

+ File can be in canonical representation (no post-
processing)

- Uncoordinated client requests might induce time
penalties

- File layout may induce false sharing of file system
blocks

March 22nd, 2018 10

_ _ JULICH
False sharing of file system blocks

S

data block free file system block

data data

file system block B task 1 task 2

= Data blocks of individual processes do not fill up a
complete file system block

= Several processes share a file system block

= Exclusive access (e.g. write) must be serialized

c
kel
=
©

= The more processes have to synchronize the more
waiting time will propagate

Member of the Helmholtz-Assoc

March 22nd, 2018 11

= Meta-data wall on file level
= File meta-data management
= Locking

= Example Blue Gene/P

Jugene (72 racks)

I/O forwarding nodes (ION)
GPFS client on ION

One file per ION

bandwidth [MB/s]

Member of the Helmholtz-Association

March 22nd, 2018

400

350

300

250

200

150

100

50

Number of Tasks per Shared File

FS blocks

#) JULICH

FORSCHUNGSZENTRUM
file i-node
indirect
> > > blocks

- Fs1210r1/1 [i

ad: POSIX individual

| Read: SION shared —_—
Read: POSIX shared
| Write: POSIX individual —&— | |
WVrite: SION shared —-

Write: POSIX shared —_—

2 4 8 16 24 32

IONs
12

#) J0LICH
IIO WO rkfl OW FORSCHUNGSZENTRUM

——

data post processing /___

(merge files, switch to sualizati
different file format) visualization

data creation u

= Post processing can be very time-consuming (> data creation)

= Widely used portable data formats avoid post processing
= Data transportation time can be long:

iation

= Use shared file system for file access, avoid raw data
transport

= Avoid renaming/moving of big files (can block backup)

Member of the Helmholtz-Assoc

March 22nd, 2018 13

M) 0LICH
Portability < 1oLt

= Endianness (byte order) of binary data

little end 2’712’8_47’316
10100001 10110010 11000011
Address Little Endian Big Endian
1000 10100001
< 1001 11000011 10110010
. big end 1002 10110010 11000011
1003 10100001

iation

= Conversion of files might be necessary and expensive

Member of the Helmholtz-Assoc

March 22nd, 2018 14

iation

Member of the Helmholtz-Assoc

#) 0LICH
Portability < JoLier

= Memory order depends on programming language

Address row-major order column-major order

(e.g. C/C++) (e.g. Fortran)
1 2 3 1000 1 1
1001 2 4
4 o 6 1002 3 7
71819 1003 4 2
1004 5 5

= Transpose of array might be necessary when using different
programming languages in the same workflow

= Solution: Choosing a portable data format (HDF5, NetCDF)

March 22nd, 2018 15

iation

Member of the Helmholtz-Assoc

How to choose the I/O strategy?

= Performance considerations
= Amount of data
= Frequency of reading/writing
= Scalability
= Portability
= Different HPC architectures
= Data exchange with others
= Long-term storage
= E.g. use two formats and converters:

= |nternal: Write/read data “as-is”
- Restart/checkpoint files

= External: Write/read data in non-decomposed format
(portable, system-independent, self-describing)

#) J0LICH

FORSCHUNGSZENTRUM

- Workflows, Pre-, Post-processing, Data exchange

March 22nd, 2018

16

iation

Member of the Helmholtz-Assoc

#))OLICH
Parallel /O Software Stack

Parallel application

g ¢
P-HDF5 @8 NetCDF-4 Hi,

PNetCDF

co———

T [[-7 |5
Parallel file system

data stored in global view in local view

March 22nd, 2018 17

Member of the Helmholtz-Association

. . #) JULICH
/0 Profiling with Darshan

= 1/O profiler by Argonne National Lab:
http://www.mcs.anl.gov/research/projects/darshan/
= Darshan module (Salomon)
= module load darshan-runtime

= Tell to use Darshan (in submit script)
export LD PRELOAD=SEBROOTDARSHANMINRUNTIME/1lib/libdarshan.so \
export DARSHAN LOG PATH=/path/to/your/logile \
exportDARSHAN LOGFILE=darshan.log \
mpiexec ./executable

= Analyse output
= module load darshan-util
= darshan-parser darshan.log
= darshan-job-summary.pl darshan.log (needs pdflatex)

March 22nd, 2018 18

= Average and statistical
information on |/O patterns

= Relative time for I/O
= Most common access sizes

= Additional metrics
= File count
= 1/O size histogram

= Timeline for read / write per
task

Member of the Helmholtz-Association

March 22nd, 2018

Darshan: Interpret the summary

Percentage of run time

B
o

#) JULICH

FORSCHUNGSZENTRUM

Average I/O cost per process

QQ
o

(=}]
o

20

K)OG
”

Read s

Write ===

Metadata

Other (including application compute)

Most Common Access Sizes
access size count
4194304 256

19

