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Outline

Common I/O strategies
= One process performs 1/O

= Task-local files
= Shared files

|/O workflow

Pitfalls

= Parallel I/O software stack

= Course exercise description

= General exercise workflow

= Mandelbrot set description
= Exercise API
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One process performs I/O
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One process performs I/O

+ Simple to implement

- 1/0 bandwidth is limited to the rate of this single
process

- Additional communication might be necessary

- Other processes may idle and waste computing
resources during I/O time
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Frequent flushing on small blocks

= Modern file systems in HPC have large file
system blocks (e.g. 4MB)

= Aflush on a file handle forces the file system to
perform all pending write operations

= |f application writes in small data blocks, the same
file system block it has to be read and written
multiple times

= Performance degradation due to the inability to
combine several write calls
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Task-local files
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Task-local files
+ Simple to implement
+ No coordination between processes needed

+ No false sharing of file system blocks

- Number of files quickly becomes unmanageable

- Files often need to be merged to create a canonical
dataset

- File system might serialize meta data modification
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Serialization of meta data modification — ‘==

Example: Creating files in parallel in the same directory /ffe/

1000 . m /?

=@-Task-local file create
=0=SIONlib shared-file create
73.8
100 347
s 6.9 /
A e
£ \
S 10
Q
-E; 2.99
Q
G 2.02
1.38
0.79
1 0.68
- . Parallel file creation on JUQUEEN
c ' 0.5-28 racks, 64 tasks/node
5 W. Frings
2 0.1 4 t ' —
< —
3 32,768 131,072 524,288 1.835.008 2,097,152
£ # Tasks
£ The creation of 2.097.152 files costs 113.595 core hours on
: JUQUEEN!
=
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Shared files
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+ Number of files is independent of number of
processes

+ File can be in canonical representation (no post-
processing)

- Uncoordinated client requests might induce time
penalties

- File layout may induce false sharing of file system
blocks
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False sharing of file system blocks

S

data block free file system block

data data

file system block B task 1 task 2

= Data blocks of individual processes do not fill up a
complete file system block

= Several processes share a file system block

= Exclusive access (e.g. write) must be serialized

c
kel
=
©

= The more processes have to synchronize the more
waiting time will propagate
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= Meta-data wall on file level
= File meta-data management
= Locking

= Example Blue Gene/P

Jugene (72 racks)

I/O forwarding nodes (ION)
GPFS client on ION

One file per ION

bandwidth [MB/s]
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data post processing /___

(merge files, switch to sualizati
different file format) visualization

data creation u

= Post processing can be very time-consuming (> data creation)

= Widely used portable data formats avoid post processing
= Data transportation time can be long:

iation

= Use shared file system for file access, avoid raw data
transport

= Avoid renaming/moving of big files (can block backup)
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Portability < 1oLt

= Endianness (byte order) of binary data

little end 2’712’8_47’316
10100001 10110010 11000011
Address Little Endian Big Endian
1000 10100001
< 1001 11000011 10110010
. big end 1002 10110010 11000011
1003 10100001

iation

= Conversion of files might be necessary and expensive
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Portability < JoLier

= Memory order depends on programming language

Address row-major order  column-major order

(e.g. C/C++) (e.g. Fortran)
1 2 3 1000 1 1
1001 2 4
4 o 6 1002 3 7
71819 1003 4 2
1004 5 5

= Transpose of array might be necessary when using different
programming languages in the same workflow

= Solution: Choosing a portable data format (HDF5, NetCDF)
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How to choose the I/O strategy?

= Performance considerations
= Amount of data
= Frequency of reading/writing
= Scalability
= Portability
= Different HPC architectures
= Data exchange with others
= Long-term storage
= E.g. use two formats and converters:

= |nternal: Write/read data “as-is”
- Restart/checkpoint files

= External: Write/read data in non-decomposed format
(portable, system-independent, self-describing)
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- Workflows, Pre-, Post-processing, Data exchange
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Parallel /O Software Stack

Parallel application

g ¢
P-HDF5 @8 NetCDF-4 Hi,

PNetCDF

co———

T [ [-7 |5
Parallel file system

data stored in global view in local view
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/0 Profiling with Darshan

= 1/O profiler by Argonne National Lab:
http://www.mcs.anl.gov/research/projects/darshan/
= Darshan module (Salomon)
= module load darshan-runtime

= Tell to use Darshan (in submit script)
export LD PRELOAD=SEBROOTDARSHANMINRUNTIME/1lib/libdarshan.so \
export DARSHAN LOG PATH=/path/to/your/logile \
exportDARSHAN LOGFILE=darshan.log \
mpiexec ./executable

= Analyse output
= module load darshan-util
= darshan-parser darshan.log
= darshan-job-summary.pl darshan.log (needs pdflatex)
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= Average and statistical
information on |/O patterns

= Relative time for I/O
= Most common access sizes

= Additional metrics
= File count
= 1/O size histogram

= Timeline for read / write per
task
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Darshan: Interpret the summary

Percentage of run time
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Average I/O cost per process
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