000845398 001__ 845398
000845398 005__ 20250314084117.0
000845398 0247_ $$2doi$$a10.3389/fphys.2018.00331
000845398 0247_ $$2Handle$$a2128/18300
000845398 0247_ $$2pmid$$apmid:29725303
000845398 0247_ $$2WOS$$aWOS:000430429900001
000845398 0247_ $$2altmetric$$aaltmetric:38561990
000845398 037__ $$aFZJ-2018-02669
000845398 082__ $$a610
000845398 1001_ $$0P:(DE-HGF)0$$aPatronis, Alexander$$b0
000845398 245__ $$aModeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature
000845398 260__ $$aLausanne$$bFrontiers Research Foundation$$c2018
000845398 3367_ $$2DRIVER$$aarticle
000845398 3367_ $$2DataCite$$aOutput Types/Journal article
000845398 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524743354_8485
000845398 3367_ $$2BibTeX$$aARTICLE
000845398 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845398 3367_ $$00$$2EndNote$$aJournal Article
000845398 520__ $$aDrug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.
000845398 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000845398 536__ $$0G:(EU-Grant)675451$$aCompBioMed - A Centre of Excellence in Computational Biomedicine (675451)$$c675451$$fH2020-EINFRA-2015-1$$x1
000845398 536__ $$0G:(EU-Grant)676553$$aPOP - Performance Optimisation and Productivity (676553)$$c676553$$fH2020-EINFRA-2015-1$$x2
000845398 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x3
000845398 588__ $$aDataset connected to CrossRef
000845398 7001_ $$0P:(DE-HGF)0$$aRichardson, Robin A.$$b1
000845398 7001_ $$0P:(DE-HGF)0$$aSchmieschek, Sebastian$$b2
000845398 7001_ $$0P:(DE-Juel1)132302$$aWylie, Brian J. N.$$b3$$ufzj
000845398 7001_ $$0P:(DE-HGF)0$$aNash, Rupert W.$$b4
000845398 7001_ $$0P:(DE-HGF)0$$aCoveney, Peter V.$$b5$$eCorresponding author
000845398 773__ $$0PERI:(DE-600)2564217-0$$a10.3389/fphys.2018.00331$$gVol. 9, p. 331$$p331$$tFrontiers in physiology$$v9$$x1664-042X$$y2018
000845398 8564_ $$uhttps://juser.fz-juelich.de/record/845398/files/fphys-09-00331.pdf$$yOpenAccess
000845398 8564_ $$uhttps://juser.fz-juelich.de/record/845398/files/fphys-09-00331.gif?subformat=icon$$xicon$$yOpenAccess
000845398 8564_ $$uhttps://juser.fz-juelich.de/record/845398/files/fphys-09-00331.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845398 8564_ $$uhttps://juser.fz-juelich.de/record/845398/files/fphys-09-00331.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845398 8564_ $$uhttps://juser.fz-juelich.de/record/845398/files/fphys-09-00331.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845398 8564_ $$uhttps://juser.fz-juelich.de/record/845398/files/fphys-09-00331.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845398 909CO $$ooai:juser.fz-juelich.de:845398$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000845398 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132302$$aForschungszentrum Jülich$$b3$$kFZJ
000845398 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000845398 9141_ $$y2018
000845398 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845398 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845398 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845398 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYSIOL : 2015
000845398 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000845398 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000845398 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845398 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845398 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845398 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845398 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845398 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845398 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845398 920__ $$lyes
000845398 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000845398 980__ $$ajournal
000845398 980__ $$aVDB
000845398 980__ $$aUNRESTRICTED
000845398 980__ $$aI:(DE-Juel1)JSC-20090406
000845398 9801_ $$aFullTexts