001     845398
005     20250314084117.0
024 7 _ |a 10.3389/fphys.2018.00331
|2 doi
024 7 _ |a 2128/18300
|2 Handle
024 7 _ |a pmid:29725303
|2 pmid
024 7 _ |a WOS:000430429900001
|2 WOS
024 7 _ |a altmetric:38561990
|2 altmetric
037 _ _ |a FZJ-2018-02669
082 _ _ |a 610
100 1 _ |a Patronis, Alexander
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Modeling Patient-Specific Magnetic Drug Targeting Within the Intracranial Vasculature
260 _ _ |a Lausanne
|c 2018
|b Frontiers Research Foundation
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1524743354_8485
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a CompBioMed - A Centre of Excellence in Computational Biomedicine (675451)
|0 G:(EU-Grant)675451
|c 675451
|f H2020-EINFRA-2015-1
|x 1
536 _ _ |a POP - Performance Optimisation and Productivity (676553)
|0 G:(EU-Grant)676553
|c 676553
|f H2020-EINFRA-2015-1
|x 2
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Richardson, Robin A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmieschek, Sebastian
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wylie, Brian J. N.
|0 P:(DE-Juel1)132302
|b 3
|u fzj
700 1 _ |a Nash, Rupert W.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Coveney, Peter V.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.3389/fphys.2018.00331
|g Vol. 9, p. 331
|0 PERI:(DE-600)2564217-0
|p 331
|t Frontiers in physiology
|v 9
|y 2018
|x 1664-042X
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/845398/files/fphys-09-00331.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/845398/files/fphys-09-00331.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/845398/files/fphys-09-00331.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/845398/files/fphys-09-00331.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/845398/files/fphys-09-00331.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/845398/files/fphys-09-00331.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:845398
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)132302
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT PHYSIOL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21