
Enabling Scientific Workflow and Gateways using
the standards-based XSEDE Architecture

Shahbaz Memon and Morris Riedel
Jülich Supercomputing Centre

Forschungszentrum Jülich GmbH

Jülich, Germany

School of Engineering and Natural Sciences

University of Iceland

Reykjavik, Iceland

Andrew Grimshaw and Daniel Dougherty
Department of Computer Science

University of Virginia

Charlottesville, USA

Helmut Neukirchen and Matthias Book
School of Engineering and Natural Sciences

University of Iceland

Reykjavik, Iceland

Peter Kascuk, Márton István and Ákos Hajnal
Laboratory of Parallel and Distributed Systems

Hungarian Academy of Sciences, Budapest, Hungary

Abstract—The XSEDE project seeks to provide “a single
virtual system that scientists can use to interactively share com-
puting resources, data and experience.” The potential compute
resources in XSEDE are diverse in many dimensions, node
architectures, interconnects, memory, local queue management
systems, and authentication policies to name a few. The diversity
is particularly rich when one considers the NSF funded service
providers and the many campuses that wish to participate via
campus bridging activities. Resource diversity presents challenges
to both application developers and application platform develop-
ers (e.g., developers of gateways, portals, and workflow engines).

The XSEDE Execution Management Services (EMS) archi-
tecture is an instance of the Open Grid Services Architecture
EMS and is used by higher level services such as gateways and
workflow engines to provide end users with execution services
that meet their needs. The contribution of this paper is to provide
a concise explanation and concrete examples of how the EMS
works, how it can be used to support scientific gateways and
workflow engines, and how the XSEDE EMS and other OGSA
EMS architectures can be used by applications developers to
securely access heterogeneous distributed computing and data
resources.

Index Terms—Scientific computing, workflow, distributed com-
puting, XSEDE, gateways, architecture.

I. INTRODUCTION

The Extreme Science and Engineering Discovery Environ-

ment (XSEDE) project seeks to provide ”a single virtual

system that scientists can use to interactively share computing

resources, data and experience.”1 The XSEDE system software

This document was developed with support from National Science Foun-
dation (NSF) grant OCI-1053575 and partly supported by NordForsk as part
of the Nordic Center of Excellence (NCoE) eSTICC (eScience Tools for
Investigating Climate Change at High Northern Latitudes). Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of the NSF and
NordForsk.

1www.xsede.org, accessed 31 July 2017

architecture is use case driven. Each use case describes both

the core functional requirements of the use case as well as

the required quality attributes, e.g., that a particular service

must respond to queries within one second. There are a set of

use cases that appear again and again as components of more

complex use cases, e.g. authenticate, run a remote job, transfer

data. We call these use cases the canonical use cases. We

believe these use cases are not unique to XSEDE, rather they

are common across any wide area execution environment. The

canonical use cases are designated as UCAN X, where UCAN

stands for canonical use case, and X is the number. Currently,

there are 12 canonical use cases. Unsurprisingly, many of the

use cases involve computation in one form or another. The

first ”canonical” use case, UCAN 1 is ”Run a Remote Job”

[1]. Campus Bridging [2] has three computational use cases:

CBUC 5 ”Support for distributed workflows spanning XSEDE

and campus-based data, computational, and/or visualization

resources”, CBUC 6 ”Shared use of computational facilities

mediated or facilitated by XSEDE”, and CBUC 7 ”Access

to private cyberinfrastructure resources on a service-for-funds

basis.” Others include the High Throughput Computing use

cases, the High Performance Computing use cases, and the

Federation and Interoperation use cases. (These later three

have not yet been formally published.) In order to under-

stand how XSEDE implements the use cases one can take

one of two approaches using documentation targeted at two

different audiences. The first approach is to look at the use

cases from an end-user perspective. The second approach

is to look at the XSEDE architecture documents and what

are known as the XSEDE architectural response documents.

The XSEDE Architecture Level 3 Decomposition document

[3] is the master architecture document. It describes all of

the software protocols, interfaces, and interaction paradigms

of the core architectural components. This document, often

referred to as the L3D, is regularly updated and has been

thoroughly reviewed by XSEDE stakeholders including, but

not limited to, operations, security, and Software Development

and Integration (SD&I).

The L3D document contains a description of the core

XSEDE Execution Management Services (EMS) architecture.

It also includes an abstract description of how third party

gateways and workflow engines can utilize the XSEDE EMS

infrastructure. The contribution of this paper is to provide a

concise explanation and concrete examples of how the EMS

works, how it can be used to support scientific gateways and

workflow engines, and how the XSEDE EMS and other OGSA

EMS architectures can be used by applications developers to

securely access heterogeneous distributed computing and data

resources.

The remainder of the paper is organized as follows. In

Section II we present the XSEDE architecture web services

and authentication/delegation mechanisms that underlie the

Execution Management Services architecture. We then proceed

to give concrete examples of how the architecture is used to

support a simple grid queue (Section III), a DAGMAN-like

workflow engine (Section IV), the WS-PGRADE/gUSE portal

and workflow engine [4] (Section V), and Apache Airavata [5]

Section VI which is used in scientific gateways. In Section

VII we discuss related work and conclude with a discussion

of deployment status.

II. XSEDE ARCHITECTURE BACKGROUND

A. Three-Layered Architecture

The XSEDE EMS has a three-layer architecture with an

access layer, a service layer, and a physical layer [6]. While the

service layer is defined in terms of standard web service port-

types (interfaces), the access layer, that part of the architecture

that defines how clients interact with the system, is not.

The access layer mechanisms to interact with the XSEDE

EMS and authentication services include, but are not limited

to, graphical user interfaces (GUIs), command line interfaces

(CLIs), application programming interfaces, and file systems

interfaces. For most of our discussion here we will use the

CLI to illustrate interactions because they are easier to read

and come with less syntactic baggage. We refer to the XSEDE

L3D architecture [3] and the Omnibus Manual [7] for more

information about more technical APIs as well as direct

interaction capabilities via a virtualized file system.

B. Web Service Basics

The XSEDE EMS is based on service oriented architecture

using a set of standard XML-rendered data structures and

interfaces. Access to the XSEDE EMS services is via web

services using the OGSA WSRF Basic Profile 1.0 [8]. The

OGSA-BP in turn uses the Web Services Interoperability

profiles, including the WSI Basic Security Profile [9]. What

this means is that interaction with XSEDE EMS services

is done using an interaction pattern realized using SOAP

over HTTPS that essentially represent XML-based Remote

Procedure Calls (RPCs).

Embedded in the SOAP header is a credential wallet, i.e.

a set of identity tokens. The identity tokens represent both

individual user identities as well as group membership and role

assertions. Several identity token types are currently supported:

username/password and signed Security Assertion Markup

Language (SAML) [10] assertion chain being the two most

frequently used today. In the near future OAUTH2 tokens [11]

will also be supported.

While web services are used for client-service and service-

service interactions, it is important to note that end users and

application developers are unlikely to ever see a web services

interface, because this involves dealing with complex XML

structure, or understand the intricacies of properly inserting

identity tokens into SOAP headers. This is critical as XML/-

SOAP is not for human consumption.

C. Authentication, Authorizaton and Delegation

As described above the XSEDE’s main data and compute

services such as the Global Federated File System (GFFS)

and EMS use security tokens embedded in the SOAP headers

for authentication purposes. These tokens are typically signed

SAML assertion chains. Credential wallet items can be used by

the service to make authorization decisions. For example, the

service might look them up in an authorized user file (e.g.,

a gridmap file), or use an access control list to determine

authorization.

Providing secure authentication alone is not sufficient for

many use cases. Suppose for example that the client requests

that a broker perform some action, say scheduling a job on an

execution service, on its behalf. Simply passing authentication

tokens is insufficient unless they are bearer credentials. Simi-

larly, if the execution service in turn wants to stage data in or

out on behalf of the client that represents a key challenge.

To address these use cases, the EMS and GFFS security

model support the notion of identity delegation. A user U1

may delegate to service S1 the right to perform actions on

U1’s behalf. Similarly, S1 might further delegate to S2 (as in

our above example where the broker may further delegate to

an execution service so that it can stage files.)

We accomplish this using a pre-delegation protocol in

which clients pre-delegate to services the credentials in their

credential wallet that they want the service to be able to use

on their behalf.

From a programmer’s perspective simply authenticate once

to the XSEDE identity resource via the CLI or API and this

will set the credential wallet. Figure 1 depicts an example of

the CLI usage.

In the example, user Andrew Grimshaw has authenticated

and received a MyProxy end-entity certificate to be used as

a session certificate. The grimshaw identity as well as two

group identities have been delegated to the session certificate.

Additional credentials, e.g., group credentials, can be acquired

at any time, and individual items of the credential wallet can

be deleted.

Fig. 1. Demonstration of the CLI showing a user authenticating to the XSEDE
identity resource.

The credential wallet (security context) is persisted to disk

in the directory $GENII USER DIR. Thus, a program such

as a gateway can keep multiple separate identities in different

directories and simply change GENII USER DIR before each

CLI call to select the appropriate security context. Similar

tools are available in-memory in the API.XSEDE Execution

Management Services (EMS).

Fig. 2. Clients interact with the job manager via some un-specified protocol.
JMs interact with BES using standard protocols. BESes stage data in/out using
a variety of protocols.

To provide a layer of virtual homogeneity for execution

management at the access layer, XSEDE uses Open Grid

Forum (OGF) job management specifications and profiles. The

OGSA 1.5 Architecture Description [12], [13] and OGSA ISV

Primer [14] provide good descriptions of Execution Manage-

ment Services (EMS). Parts of the EMS architecture section

come directly from the OGSA 1.5 Architecture Description

and the XSEDE Architecture Level 3 description.

The EMS architecture is illustrated in Figure II. The user

interacts with an access layer (Client) to run jobs, plan and

execute workflows, or specify the computation they need. The

client in turn interacts with a job manager (JM). The JM in

turn interacts with information services (optional, not shown)

and standard OGSA Basic Execution Services (BES) [15]. JMs

specify the activities (single jobs or parameter sweep jobs)

they want the BESes to execute using standard Job Submission

Description Language documents (JSDL) [16]. JMs interact

with the BESes via standard interfaces using web services.

D. Execution Management Services (EMS) Components

Execution Management Services are concerned with the

problems of instantiating, and managing to completion, units

of work, so called jobs to be executed on a cluster, that may

consist of single activities, sets of independent activities, or

workflows. More formally, EMS addresses problems with exe-

cuting units of work including their placement, “provisioning,”

and lifetime management. These problems include, but are not

limited to, the following:

1) Finding execution candidate locations. The service needs

to determine the locations at which a unit of work

can execute given resource restrictions such as memory,

CPU, available libraries, and available licenses.

2) Selecting execution location. Once it is known where a

unit of work can execute, the service must determine

where it should execute to optimize some objective

function.

3) Preparing for execution. Preparation could include de-

ployment and configuration of binaries and libraries,

staging data, or other operations to prepare the local

execution environment.

4) Initiating the execution. Once everything is ready, the

execution must be started.

5) Managing the execution. Once the execution is started,

it must be managed and monitored to completion to

deal with potential job failures or failure to meet its

agreements.

The solution to these five problems consists of a standard

job description mechanism and the use of set of services

that decompose the EMS problem into multiple, replaceable

components that all enable specific architecture functions. Job

Submission Description Language [19] documents describe

jobs, OGSA Basic Execution Services (BES) [18] to discover

resource properties and execute jobs, GFFS directory paths

[5] and resource registries (L3D section 5.2.3) to discover

resources, and job managers to implement application-specific

functionality. Below we briefly expand on each.
JSDL [16], [17]: JSDL is a standard XML-based language

used to describe jobs. A JSDL 1.0 document has three main

components: a resource requirements section, an application

information section, and a data staging section.
The JSDL resources section contains information on appli-

cation requirements such as operating system version, mini-

mum amount of memory, number of processors and nodes,

wall clock time, file systems to mount, and so on. It consists

both of a standardized set of descriptions, as well as an open-

ended set of matching requirements that are arbitrary strings.
The JSDL application information section includes items

such as the command line to execute, the parameters, the job

name, account to use, and so on.
The JSDL staging section consists of a set of items to

stage-in before the job is scheduled in the local environment,

and a list of items to stage-out post-execution. Each staging

defines the protocol to use, the local file(s) to use as the source

or target, and URIs for the corresponding source or target.

Supported protocols include http(s), ftp, scp, sftp, GridFTP,

mailto, and the XSEDE GFFS.
A new version of JSDL is under development in the Open

Grid Forum to address issues uncovered over the last several

years. These include the ability to specify client-directed

staging (as opposed to only server-based staging in 1.0), pre-

and-post processing tasks to be executed in addition to the

specified application, and additional resource descriptions to

capture modern architectural features such as co-processors,

e.g. GPGPUs, and detailed interconnection network require-

ments for large scale parallel jobs (e.g. use of torus topologies).

A non-standards track extension, JSDL++ has also been de-

veloped to address the short-coming that each JSDL document

describes exactly one set of possible resource matches with

exactly one corresponding application execution description.

For example, “the job requires 8 nodes, each with 8 cores,

64 GB memory, and MPICH 1.4: in that environment stage-in

executable Y and execute ’Y 1024 -opt1’ ”. But what if an

equally suitable option is “ the job requires 1 nodes, each with

64 cores, 256 GB memory, and pthreads: in that environment

stage-in executable Z and execute ’Z -opt2’ ”? JSDL++ allows

the specification of an arbitrary list of options and the JSDL

processing agent is free to use any one of the options for which

it can find the resources.

OGSA Basic Execution Services (BESs) [15]: OGSA

BES service endpoints represent the ability to execute jobs,

specifically, to execute JSDL documents. The BES interfaces

combined with JSDL create a virtual execution environment

(EE) for XSEDE in which all execution resources, desktops,

department servers, campus clusters, clouds, and supercom-

puters provide the same standard interface. It enables core

functions of the XSEDE architecture.

The BES port types define both Factory Attribute and Activ-

ity Management interfaces. The Factory Attributes interface,

getFactoryAttributes(), is used to discover the properties of the

resource that the BES provides access to such as operating

system, number of nodes, memory per node, and so on.

The Activity Management interfaces include createActivity,

getActivityStatus, and terminateActivity porttypes.

CreateActivity takes as a parameter a JSDL document and

returns (on success) a Web Services Addressing EndPoint

Reference (EPR) [18]. The EPR is used as a handle to interact

with the job. The BES is responsible for staging in data

specified in the JSDL, starting and monitoring the job, keeping

track of the exit code, and staging data out post execution.

getActivityStatus takes as a parameter the EPR of an activity

created on the BES and returns the activity state (Pend-

ing, Running, Running:Stage-In, Running:Stage-Out, Run-

ning:Queued, Running:Executing, Canceled, Failed, and Fin-

ished).

terminateActivity takes as a parameter the EPR of an activity

created on the BES and moves the activity to the Canceled

state and cleans up any temporary files that may have been

created.

Each of the above can operate on a single item, i.e., a

JSDL document or an EPR, or on a vector of items. Thus,

the execution environment consists of a set of BESs EE =

{BES0, BES1, BES2, ... BESN-1}, each of which virtualizes a

resource and implements the BES interface. Note that not all

jobs can execute on all BESs, nor may all jobs have permission

or allocation to execute on all BESs. Any given job being

executed by a user may be executed on a subset of EE.

Access to the BESs is via the appropriate Web Services

calls with authentication tokens carried in the SOAP header

as described earlier, via the API, the GUI, the file system, or

via the CLI.
1 grid run -jsdl=/path/to/jsdl/ls.jsdl /path-to-BES/besName

The first parameter is the path to the input JSDL file, either

in the GFFS or in the local file system. The second parameter

is the GFFS path to the BES on which to execute the job. The

command is synchronous and will block till completion.

The asynchronous variant allows job status notifications

to be stored on the GFFS space. The user can check on

the status of the job by examining the status file. For the

asynchronous execution user has to specify the -async-name

attribute (-async-name=/path/to/jobName), an additional entity

to the grid run statement mentioned above.

In the above, the command returns immediately after sub-

mission. The job’s status is stored in the file specified by the

grid path /path/to/jobName. Eventually this file should list the

job as FINISHED, FAILED or CANCELLED.

Performance: In a local environment the time for a client to

call grid run is approximately 70mS, in the wide area between

100-800mS. The vast majority of the time for local calls is

in serializing/deserializing and validating the security context.

Both BES implementations used in XSEDE can handle many

concurrent calls. On an single core machine the Genesis II

implementation can handle two or three concurrent callers

without a performance degradation. On an eight core machine

with sufficient memory (more than 4GB), the Genesis II

implementation can handle approximately 20 concurrent calls.

Job Manager

The Job Manager (JM) sits directly above the BESs and

information services and often sits between and mediate in-

teractions between clients (end users or end user applications)

and EMS services as shown in Figure II.

The JM is a higher-level service that encapsulates all aspects

of executing a job or a set of jobs from start to finish. A set of

jobs may be structured (e.g., a workflow or dependence graph)

or unstructured (e.g., an array of non-interacting jobs). The JM

may be a portal that interacts with users and manages jobs on

their behalf such as a science gateway or portal. The JM is

the only intentionally unspecified, non-standard component of

EMS, a condition that encourages the development of different

styles and capabilities.

The JM is responsible for orchestrating the services used

to start a job or set of jobs, by negotiating agreements,

interacting with containers, and configuring monitoring and

logging services. It may also aggregate job resource properties

from the set of jobs it manages.

In XSEDE, two Job Managers are deployed: the grid client

GUI Create Job tool and the grid queue service. There are

also other JMs that are not following the XSEDE architecture,

but still deployed in the XSEDE infrastructure, and are in use

by different communities. They all follow the same pattern

which we stated, but the details vary. It is our belief that

many communities or tool developers may want to develop

their own job management tools that are very customized to

their environment and application requirements, but they can

interact with the XSEDE EMS or XSEDE EMS compliant

systems through standards-based interfaces.

To facilitate understanding in the sections below we briefly

describe how Job Managers interact with BESes to perform

their function: the Genesis II grid queue, the Genesis II

DAGMAN workflow engine, the SCIBUS G-USE gateway and

workflow engine, and the Airavata Gateway.

III. SIMPLE GRID QUEUE

The grid queue interface is part of the GenesisII middleware,

L3D §5.2.1.3 gives more comprehensive of view of its inter-

faces and capabilities. Each grid queue is configured to use a

set of resources. Users submit jobs to the queue. The queue

matches job resource requirements with BES factory attributes.

Because sometimes jobs fail for no fault of their own, they are

retried several times in order to provide an improved quality

of service for users.

Fig. 3. The GenesisII’s Simple Grid Queue interface provides job-queue-like
interfaces familiar to users of queuing systems, e.g., submit, kill, etc.

The queue is configured to use a subset of deployed BES

resources using either the qconfigure command or the GFFS

directory ln command. For each BES resource associated

with a grid queue a maximum number of jobs that may be

concurrently scheduled on the resource is set. This is called

the number of slots for the BES. The grid queue keeps a list

of available BESs and their associated FactoryAttributes and

is used to match jobs to BESs.

Users submit jobs to the grid queue using either the BES

createActivity interface, the queue submitJobs interface, or by

copying a JSDL file into the submission-point pseudo-file.

Whichever mechanism is used for submission, the result is

the same. The job is added to the priority-ordered job queue.

The job queue exists both on disk in a transactional relational

database (for availability, reliability, etc.) and in an in-memory

representation for performance.

When the JSDL specifies a parameter sweep job [19], e.g.

used in bioinformatics [28], wherein a single JSDL file can

generate tens to thousands of individual activities, the grid

queue asynchronously expands the single JSDL into individual

activities and places them in the RDBMS.

The information maintained in the database for each job

includes the JSDL document, the serialized security context

(i.e. the signed, delegated SAML chains), whether the job has

been scheduled on a BES, the BES EPR and the activity EPR,

and the number of times the job has been restarted.

The in-memory representation is much smaller. It includes

the job name, the job owner certificates, the state, the name

on the BES to which it is scheduled (if any), and the number

of times it has been executed.

The grid queue scheduler is event-driven. There are three

types of events: a job-arrival event, a BES status-change event,

and a job-status change event.

A job-arrival event first stores the job in the database and

then expands the job if it is a parameter sweep. Once safely

stored, the grid queue scans the list of available BESs looking

for matches between the jobs resource requirements and the

BES factory attributes. “Available” here means that the queue

has not submitted more than “slots” jobs to the BES.

A BES-status-change event occurs when either the number

of slots for a BES is changed or periodic polling indicates that

the BES is no longer accepting jobs. If the slots for a BES

is increased the list of queued jobs is searched in order for a

job that matches the BESs factory attributes. When a match is

found the job is asynchronously started on the BES, and the

scan continues until either all of the new slots are consumed

or there are no more jobs to examine in the queue.

A job-status change event causes an update in the job status

in the in-memory and on disk status. If the job has completed

the in-use slot count for the BES is decremented, and if the

in-use slot count is less than the slot count, a BES scheduling

activity is started as described above. If the job has failed, the

jobs’ retries field is incremented. If it has reached a threshold

it is marked as failed, otherwise it will be retried later. We

also increment a failed job counter (that is aged) for the BES,

and if it crosses the threshold we stop submitting jobs until it

is back under threshold.

Note that job-status change events can happen one of two

ways– either via periodic polling of job status using the BES’s

getActivityStatus method, or by asynchronous WS-Notification

events sent by BESes that support notification subscriptions.

The key aspects of the grid queue example are the interac-

tion patterns with both the client and XSEDE services. The

client interacts with the grid queue using the Web Services

interfaces, the GFFS, or the CLI. The grid queue interacts

with XSEDE BESes via Web Services: BES factory attributes

for resource discovery, BES Activity Management interfaces to

start and manage jobs, and WS-Notification for asynchronous

job state change notification.

Performance: Grid queue performance is very similar to

BES performance, approximately 70ms per call in a local

environment. qstat operations can take significantly longer de-

pending on the number jobs in the queue. qsubmit commands

where activity is a JSDL parameter sweep also take about

70ms. However that only counts the time to submit the sweep.

Expanding the sweep progresses at a rate that varies from 10

jobs/second on slow machines with very slow disks, to 50 jobs

a second with fast machines and SSDs.

IV. DAGMAN-LIKE WORKFLOW ENGINE

Condor’s DAGMan [20] uses a simple textual syntax to

define workflows as Directed Acyclic Graphs (DAGs), where

each node in the DAG represents a data transfer or compu-

tational task, or references another DAG to embed within

the parent. DAGMAN is a well-known workflow graph

representation mechanism and is used by scientists either

directly or via other tools such as Pegasus [21] that are layered

on top of it.

In DAGMan, jobs are defined using the Condor job descrip-

tion format [22]. XSEDE, on the other hand, uses the JSDL

standard job description format, and uses the BES interface

for job management on computing elements.

Our goal in the DAGMAN emulator for XSEDE was to

execute DAGMAN-style workflows in XSEDE where job

descriptions are in JSDL.

We defined a workflow non-standard execution engine inter-

face known as a WorkFlowPortType which manages workflows

defined using the same syntax as DAGMan. However, rather

than using Condor job files as the vertices, WorkFLowPort-

Type expects JSDL files2. Hereafter we will call instances of

WorkFlowPortType work flow managers (WFMs).

Fig. 4. WorkFlowPortType interface. WorkFlowPortType instances are bound
to a grid queue when they are created. In other words, they will submit all of
their jobs to an associated grid queue which will do the actual job placement.

WFMs accept and execute workflow DAGs from the client

via submitWorkflow(WorkflowDAGType) and return a ticket

string (essentially a short GUID) that can be used to refer to

the workflow. Workflows can be paused, removed, persisted,

and resumed (see Figure 4 above).

WFMs can be instantiated on any Genesis II container

(server), including containers on the clients machines in their

lab, department, or university.

WFMs offer typical functions of workflow managers, they

keep track of which jobs are running, which are ready to run,

which have finished, and further basic functions.

Each WFM is associated when initialized with a grid

queue using the pathname of the grid queue, e.g., /re-

sources/xsede.org/queues/mainQ. When a job becomes ready

to run, the WFM submits the job to its associated grid queue

and subscribes to job status notifications. To guard against

2There is also a Condor-to-JSDL translator.

notification failure the WFM periodically polls the grid queue

for status. The WFM essentially delegates all aspects of

job management to the grid queue, awaits notifications, and

focuses on the work-flow-specific aspects of the problem.

V. GATEWAY/WORKFLOW–

SCIBUS/WS-PGRADE/GUSE

WS-PGRADE/gUSE is a science gateway framework that

can be easily adapted by scientific user communities in order

to create their own domain-specific gateway for XSEDE

and other DCIs including major Grid types (Globus [23],

UNICORE [24], gLite, ARC, BOINC), major cloud types

(Amazon, OpenStack, OpenNebula) and major cluster types

(Torque, SLURM, MOAB). In a similar way data access is

extended to interact with major storage interfaces (HTTP,

HTTPS, SFTP, GSIFTP, SRM, iRODS and S3) where large

scientific data can be stored and processed by WS-PGRADE

workflows. In WS-PGRADE workflows, nodes can be exe-

cuted in any type of DCIs mentioned above and the workflow

nodes at run time can access any types of storages mentioned

above no matter of which type of DCI the workflow node is

allocated and executed.
WS-PGRADE/gUSE [4] combines gateway and workflow

technologies in a flexible way. WS-PGRADE presents a graph-

ical user interface layer that supports the graphical creation of

DAG-like workflows and provides visualization for workflow

and job execution monitoring. gUSE is a high-level middle-

ware layer that hides the low-level details of the underlying

Distributed Computing Infrastructures (DCIs) and storage by

using two major services: DCI Bridge for job submission [25]

and Data Avenue for file transfers [26].
In terms of the EMS model of Figure 2 WS-PGRADE is

acting as an access layer client tool and gUSE is playing the

role of a job manager. WS-PGRADE and gUSE communicate

via a proprietary non standard mechanism.
WS-PGRADE/gUSE was developed a European research

project. More than 30 application-specific science gateways

have been developed using SCI-BUS. The five layers of the

SCI-BUS architecture are shown in Figure 5.

Fig. 5. The SCI-BUS Architecture: Application specific gateways, WS-
PGRADE UI, two gUSE layers and production e-infrastructures.

DCI Bridge is a generic job submission service that im-

plements the OGF BES interface on top of various DCIs

(mentioned above). Therefore any workflow system or gateway

that uses the standard BES interface can submit jobs to all

these DCIs via the DCI Bridge. Since the XSEDE EMS also

uses the BES interface it was straightforward to integrate WS-

PGRADE/gUSE and XSEDE via the DCI Bridge service.

In order to support the integration with XSEDE architecture,

the DCI bridge’s XSEDE extension plugin has been devel-

oped to facilitate the job submission and status monitoring

scenarios. Below we describe more the integration approach

employed and the functions supporting XSEDE requirements.

Integration Approach: The integration of a new type of

DCI to WS-PGRADE/gUSE (such as one needed in XSEDE)

requires the creation of a new plugin for the new DCI [26].

Henceforth we will refer to the new plugin as XSEDE-plugin.

For XSEDE-plugin we extend the Middleware class via the

Plugin class and override the necessary (abstract) methods.

These methods are call-backs, called by the DCI Bridge on

Web service calls (job submit, abort job), or periodically

(query job status).

Job submission: Since the most typical job execution type

in a scientific workflow is a parameter sweep execution, where

the same job should be executed with many different inputs,

we apply an optimization for calling the “grid” command to

submit the jobs. This is particularly important since starting

the XSEDE client by invoking the “grid” command is slow3.

Therefore we execute the commands in “batch” mode. We

collect the submit commands of the same user in a command

file. Each user has a separate job submission file. Before

submitting the user’s job submission file through the “grid”

command, the DCI Bridge XSEDE-plugin checks if a new job

for the same user arrived at the DCI Bridge input queue. If it

is arrived, the new job is added to the user’s job submission

file. After a short waiting time (100 ms) this check is repeated.

If there are no more jobs of the same user in the DCI Bridge

input queue the user’s job submission file is submitted to

XSEDE through the “grid” command that will execute the

job submissions listed in the job submission file one after

the other. If the number of job submissions reached a certain

threshold (100 in the current implementation), the XSEDE-

plugin immediately submits the user’s job submission file to

XSEDE.

Status request: The XSEDE-plugin requests the user job’s

status with the command “./grid qstat queuename”. It returns

the status of every job of the user stored in the resource

queue so we do not need to request every job’s status with

separate command invocations. After this step, the XSEDE-

plugin selects those jobs that have status “Finished” and with

another single CLI call gets the results of these jobs.

Data staging: The data movement process is extremely easy

thanks to the XSEDE architecture. The JSDL generated by

gUSE contains the location of the input and output files needed

3When this work was done the “grid” command took 4-10 seconds on every
call, depending on platform. This was due to the load time of an extensive
Java library stack. A new implementation, fastgrid starts a persistent process
that takes 4-10 seconds only for the first time. Subsequent invocations take
˜70ms.

for the job execution. The DCI Bridge XSEDE-plugin passes

this information to standard-based middleware in XSEDE

which takes care of data staging based on this information.

This solution works only if the data storage has the protocol

that is known by the XSEDE server. If this is not the case,

the other service of gUSE called as Data Avenue can be used

to realize data staging.

One of the key features that Data Avenue provides is its

HTTP tunneling capability: For any remote file residing on a

storage resource that Data Avenue supports an HTTP URL can

be requested that can be read or written via simple HTTP GET

or PUT operations by the clients. The created HTTP URL,

called an HTTP alias points to the Data Avenue server, which

will actually connect to the related storage resource at the time

when the client initiates an HTTP GET/PUT operation. Bytes

sent over HTTP PUT to the Data Avenue server are forwarded

over the storage-related protocol by Data Avenue and written

into the remote file on the remote storage. Similarly, bytes

read from the remote file are forwarded as an HTTP stream

in response to the GET operation of the client.

If user would like to use XSEDE as computation infrastruc-

ture, but with a data storage not supported by XSEDE, she

should specify at workflow configuration time that a certain

input or output file should be handled by the Data Avenue

service, and also should provide the location of the file in the

remote storage. Based on this information, the DCI Bridge can

request an HTTP alias from the Data Avenue service for the

given file. The DCI Bridge replaces the file staging information

in the JSDL with the alias received from the Data Avenue

service. The XSEDE server now can and will use this alias to

access the file from the given remote storage using the HTTP

tunneling function of Data Avenue service.

Note that PUT and GET operations are actually executed by

the usual XSEDE data staging operations without modifying

the XSEDE server middleware code after such an HTTP alias

has been created. Notice that remote file contents can be

read or written without additional authentication except the

basic data exchange that is performed through a secure HTTP

(SSL/TLS) connection. This kind of mediation service how-

ever requires allowing Data Avenue to connect to the storage

resource on behalf of the user, thus the necessary credentials

must be delegated while creating aliases. Depending on the

authentication mechanisms, the credentials (such as passwords,

X.509 proxies, secret keys) required by the storage has to to

passed during the workflow submission stage. Thus, it is in

most cases required to configure them before the submission.

Furthermore, the Data Avenue deployments should strictly

ensure that the credentials are not exposed by HTTP aliases

in any way.

VI. APACHE AIRAVATA

Science gateways provide seamless and community driven

interfaces for their often non technically-savvy users. As

application-oriented interfaces provide domain specific inter-

faces with rich set of widgets and controls, science gateway

developers prefer to choose a generic gateway framework for

their users. Integration of these gateway frameworks use a

set of client APIs to access backend computing and data

services such as those provided in the above described XSEDE

architecture.

Apache Airavata framework [5] is such a kind of framework

that supports different scientific communities by providing

connectors to various resources through which they can access

data and run compute jobs. Since running a job is considered

to be a vital element of the XSEDE architecture’s L3D, we

developed a dedicated connector for Airavata that enables the

framework to access the resources with open standards which

are the building blocks of the XSEDE architecture. Figure 5

illustrates the integration architecture of our implementation.

The standards used are OGSA-BES and JSDL.

The specific point of our API integration is the Airavata

GFAC component, which lies at the Airavata server side.

GFAC is a meta-library that combines different kinds of com-

puting and data services clients, such as Hadoop and Amazon

S3 etc. The application runs are carried out as follows.

Initially, a user fetches her short lived X.509 credential from

XSEDE’s MyProxy service via her community user name and

password token. The gateway client then uploads any data to

a shared storage. In this case, the data transfer is achieved

through UNICORE’s storage management service, which is

proprietary, but is based on the ByteIO and HTTP(s) standard

data transfer protocols. Once the data is uploaded, a JSDL-

compliant job request is constructed. The request contains the

amount of resources required, application details, arguments,

environment variables, and data staging points from where

the data will be staged before and after execution. At this

stage a job request has been prepared and the input data

should be available at the execution site. The client then

invokes the operation that tells UNICORE’s standard OGSA-

BES-compliant execution management service endpoint to run

the job. The gateway client pulls the status until the job has

completed. It then retrieves the application-generated output

files and downloads them to the Airavata deployment. This

output is stored for a gateway portal so that the gateway users

can access it later.

Unlike the gUSE, which uses the Genesis II CLI to interact

with the backend XSEDE BES services, the Airavata integra-

tion was carried out using the UNICORE 7 Java libraries to

interact with the XSEDE backend BES implementation. The

benefits of the tighter integration are faster service invocation,

i.e., lower overhead. The disadvantage is the library requires

the API users to integrate using Java.

Our implementation is deployed and currently used in

production by the Ultrascan science gateway [27] community

that spans the US and Europe. As one of the compute sites is

the , it demonstrates the enormous capabilities of the XSEDE

architecture to enable interoperability. In [27] we described

more details on our implementation and demonstrated it using

a production JURECA cluster located at Juelich Supercom-

puting Centre with real usage numbers.

The integration with the Airavata API will not only help the

gateway instances of Ultrascan, but can serve a wide range of

Fig. 6. Integrated Architecture showing Scientific-area specific clients like the
Ultrascan scientific gateway, the Apache Airavata API, and standards based
middleware services being part of the XSEDE architecture.

scientific disciplines intending to access resources through a

uniform layer of abstractions. Hence, instead of using a CLI as

described above, the access to XSEDE resources is given by

an API that can be re-used in various other scientific gateways,

workflow engines, or domain-specific GUI clients.

VII. RELATED WORK

There is a rich literature in both computational grids and

workflows. Computational grid technology (formerly Meta-

systems [28], [29] flourished in the 1990’s and early 2000’s.

Systems such as Legion [30], Globus [23], UNICORE [24],

gLite [31], NetSolve [32], and many others were developed

to support remote execution across heterogeneous platforms

and administrative domains. The basic capabilities in all of

these systems were similar: execute some job with a particular

set of parameters, perhaps with pre-and-post staging, using a

particular set of credentials, on a remote host.

By the early 2000’s, the concepts were well understood

and standardization efforts for remote job execution began in

the Open Grid Forum (then the Global Grid Forum) Open

Grid Services Architecture (OGSA) working group and in the

Job Submission Description Language (JSDL) working group.

These and other working groups in the OGF brought together

stakeholders from industry, academia, and government in to

agree on the fundamental features of grids. The OGSA-

BES standards are themselves layered upon a whole set of

industry standards in Web Services, security, and metadata

management.

The XSEDE Execution Management Services architecture

described here is different from previous remote execution

systems insofar that it is built on the OGSA-BES, JSDL, and

other open standards as opposed to a proprietary architectures.

The advantages of a standards-based architecture are stability

in the interfaces and protocols (a benefit for developers),

avoidance of vendor lock-in (a benefit for organizations),

and ease of integration of standards-compliant components.

Ease-of-integration due to standards was particularly the case

when integrating gUSE with XSEDE. gUSE/DCI were using

JSDL/BES internally for their communication. Extending them

to integrate with XSEDE BES was trivial. With respect to

avoiding vendor lock-in, within XSEDE we regularly use two

different BES implementations within XSEDE.
Workflow tools have been around for decades. Simple tools

such as scripting languages, e.g., bash, and build tools, e.g.,

make, are still extensively used. More sophisticated tools such

as DAGMAN, Makeflow, Pegasus, Kepler, Taverna, Swift, and

BPL are in widespread use as well. Further, just about every

gateway or science package, e.g., Galaxy, has an embedded

workflow engine.
Despite these similarities, standardization in the scientific

computing community has been difficult. Several unsuccessful

attempts were made in the Open Grid Forum. All failed due

a lack of consensus on even how to scope the problem.
The XSEDE architecture explicitly avoids workflow stan-

dardization because there seemed to be no consensus. Instead,

the architecture is designed to support a variety of workflow

tools. One of the goals of this paper has been to test the

hypothesis that the XSEDE EMS can support many different

workflow tools. One of the lessons learned is that some

workflow tools prefer to manage their own file transfers.

VIII. CONCLUSION AND FUTURE WORK

The contribution of this paper is to provide a concise expla-

nation and concrete examples of how the job management and

submission in the form of XSEDE EMS works, how it can be

used to support scientific gateways and workflow engines, and

how the XSEDE EMS and other OGSA EMS architectures

can be used by applications developers to securely access

heterogeneous distributed computing and data resources. This

was done by first laying out the core components of the

XSEDE EMS architecture and then demonstrating how the

components are used by higher level gateways and workflows.
The examples demonstrated the functionality via the use of

the command line interface for clarity. While the command

line interface is fully functional, using the CLI is not as fast

as using libraries. For high-volume production use, the API

available from UNICORE [24] is preferable.
The XSEDE EMS is based upon open standards devel-

oped and brought into production over the last ten years.

Unsurprisingly, along the way the implementers and users of

these standards have uncovered some minor gaps in the spec-

ifications. These additional JSDL/BES requirements include,

client-centric staging, i.e., staging under control of the client

rather than the BES support pre-and-post processing stages

and states. Further, a consistent mechanism to interact with

jobs/activities as first class endpoints and with the session

directory of a running job/activity. These lessons have been

taken back into the OGF standards process, where updated

versions of JSDL, BES and other specifications are in their

final stages of the process.

REFERENCES

[1] I. Foster and et al., “XSEDE Canonical Use Case 1: Run a Remote
Job,” 2013.

[2] C. A. Stewart and et al., “ XSEDE Campus Bridging Use Cases,” 2012.
[3] F. Bachmann and et al., “ XSEDE Architecture Level 3 Decomposition,”

2012.
[4] P. Kacsuk and et al., “Ws-pgrade/guse generic dci gateway framework

for a large variety of user communities,” Journal of Grid Computing,
vol. 10, no. 4, pp. 601–630, Dec 2012.

[5] S. Marru and et al., “Apache airavata: a framework for distributed
applications and computational workflows,” in Proceedings of the 2011

ACM workshop on Gateway computing environments, New York, NY,
USA, 2011, GCE ’11, pp. 21–28, ACM.

[6] F. Bachmann and et al., “ XSEDE Architecture: Level 1 and 2
Decomposition,” 2012.

[7] Chris Koeritz, “GenesisII Omnibus Reference Manual 10.9,” 2016.
[8] I. Foster and et al., “OGSA WSRF Basic Profile 1.0,” May 2006.
[9] K. Ballinger and et al., “WS-I, Basic Profile Version 1.0,” http://www.

ws-i.org/profiles/basicprofile-1.0-2004-04-16.html, [Online; accessed
31-July-2017].

[10] R. Monzillo and et al., “Web Services Security: SAML Token Profile
1.1,” Feb 2006.

[11] D. Hardt and et al., “The OAuth 2.0 Authorization Framework,” https:
//tools.ietf.org/html/rfc6749, [Online; accessed 31-July-2017].

[12] A. Savva and et al., “OGSATM EMS Architecture Scenarios, Version
1.0,” April 2007.

[13] C. Jordan and H. Kishimoto, “Defining the Grid: A Roadmap for
OGSATM Standards, Version 1.1,” Feb 2008.

[14] S. Newhouse and A. Grimshaw, “Independent Software Vendors (ISV)
Remote Computing Usage Primer,” Oct 2008.

[15] I.Foster and et al., “OGSA Basic Execution Service (BES), Version
1.0,” Nov 2008.

[16] A. Anjomshoaa and et al., “Job Submission Description Language
(JSDL), Version 1.0,” July 2008.

[17] A. Savva and et al., “JSDL SPMD Application Extension,” 2007.
[18] D. Box and et al., “Web Services Addressing (WS-Addressing),” http:

//www.w3.org/Submission/ws-addressing/, [Online; accessed 31-July-
2017].

[19] M. Drescher and et al., “JSDL Parameter Sweep Extension,” May 2009.
[20] P. Couvares and et al., Workflow Management in Condor, pp. 357–375,

Springer London, London, 2007.
[21] E. Deelman and et al., “Pegasus, a workflow management system for

science automation,” Future Generation Computer Systems, vol. 46, pp.
17 – 35, 2015.

[22] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor-a hunter of idle
workstations,” in [1988] Proceedings. The 8th International Conference

on Distributed, Jun 1988, pp. 104–111.
[23] I. Foster and C. Kesselman, “Globus: a metacomputing infrastructure

toolkit,” The International Journal of Supercomputer Applications and

High Performance Computing, vol. 11, no. 2, pp. 115–128, 1997.
[24] A. Streit and et al., “Unicore 6 - recent and future advancements,”

Annals of telecommunications, vol. 65, pp. 757 – 762, 2010.
[25] M. Kozlovszky and et al., DCI Bridge: Executing WS-PGRADE

Workflows in Distributed Computing Infrastructures, pp. 51–67, Springer
International Publishing, Cham, 2014.

[26] Á. Hajnal, Z. Farkas, P. Kacsuk, and T. Pintér, Remote Storage Resource

Management in WS-PGRADE/gUSE, pp. 69–81, Springer International
Publishing, Cham, 2014.

[27] S.Memon and et al., “Advancements of the ultrascan scientific gate-
way for open standards-based cyberinfrastructures,” Concurrency and

Computation: Practice and Experience, vol. 26, no. 13, pp. 2280–2291,
2014.

[28] A. Grimshaw, A. Ferrari, G. Lindahl, and K. Holcomb, “Metasystems,”
Commun. ACM, vol. 41, no. 11, pp. 46–55, Nov. 1998.

[29] L. Smarr and C.E. Catlett, “Metacomputing,” Commun. ACM, vol. 35,
no. 6, pp. 44–52, June 1992.

[30] A. S. Grimshaw and A. Natrajan, “Legion: Lessons learned building
a grid operating system,” Proceedings of the IEEE, vol. 93, no. 3, pp.
589–603, March 2005.

[31] M. Cecchi and et al., “The glite workload management system,” Journal

of Physics: Conference Series, vol. 219, no. 6, pp. 062039, 2010.
[32] H. Casanova and J. Dongarra, “Netsolve: A network-enabled server for

solving computational science problems,” The International Journal of

Supercomputer Applications and High Performance Computing, vol. 11,
no. 3, pp. 212–223, 1997.

