001     845415
005     20240711085653.0
024 7 _ |a 10.1021/acsenergylett.8b00264
|2 doi
024 7 _ |a WOS:000430369600034
|2 WOS
024 7 _ |a altmetric:34831772
|2 altmetric
037 _ _ |a FZJ-2018-02683
082 _ _ |a 540
100 1 _ |a Ferraresi, Giulio
|0 0000-0003-2436-6093
|b 0
245 _ _ |a Electrochemical Performance of All-Solid-State Li-Ion Batteries Based on Garnet Electrolyte Using Silicon as a Model Electrode
260 _ _ |a Washington, DC
|c 2018
|b American Chemical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525354178_15480
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Owing to improved safety, all-solid-state batteries based on the garnet Ta-substituted Li7La3Zr2O12 solid electrolyte are promising alternatives to conventional Li-ion batteries with organic electrolytes. However, to date, the viability of such all-solid-state batteries is uncertain because their performance is limited by the problematic electrode−electrolyte interface. Herein, we report the viability to use Si anodes facilitated by enhancement of this interface. Before depositing Si as a thin film electrode (50 nm) on the smooth surface of the solid electrolyte, we treated the electrolyte surface by argon plasma etching to reduce the amount of resistive species. This approach enabled the cycling of Si/garnet/Li all-solid-state cells, achieving an initial capacity of ~2700 mAh/g followed by partial fading and stabilization for more than 100 cycles. Electrochemical measurement, coupled with morphological and chemical investigations, demonstrate that Si is a viable anode in combination with garnet electrolyte and emphasize the importance of controlling the solid/solid interface.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a El Kazzi, Mario
|0 0000-0003-2975-0481
|b 1
700 1 _ |a Czornomaz, Lukas
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 3
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 4
700 1 _ |a Villevieille, Claire
|0 0000-0001-8782-4800
|b 5
|e Corresponding author
773 _ _ |a 10.1021/acsenergylett.8b00264
|g Vol. 3, no. 4, p. 1006 - 1012
|0 PERI:(DE-600)2864177-2
|n 4
|p 1006 - 1012
|t ACS energy letters
|v 3
|y 2018
|x 2380-8195
856 4 _ |u https://juser.fz-juelich.de/record/845415/files/acsenergylett.8b00264.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845415/files/acsenergylett.8b00264.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845415/files/acsenergylett.8b00264.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845415/files/acsenergylett.8b00264.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845415/files/acsenergylett.8b00264.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845415/files/acsenergylett.8b00264.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845415
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129580
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21