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Large-scale network dynamics in multiple visuomotor areas is of great

interest in the study of eye-hand coordination in both human and

monkey. To explore this, it is essential to develop a setup that allows

for precise tracking of eye and hand movements. It is desirable that it

is able to generate mechanical or visual perturbations of hand trajec-

tories so that eye-hand coordination can be studied in a variety of

conditions. There are simple solutions that satisfy these requirements

for hand movements performed in the horizontal plane while visual

stimuli and hand feedback are presented in the vertical plane. How-

ever, this spatial dissociation requires cognitive rules for eye-hand

coordination different from eye-hand movements performed in the

same space, as is the case in most natural conditions. Here we present

an innovative solution for the precise tracking of eye and hand

movements in a single reference frame. Importantly, our solution

allows behavioral explorations under normal and perturbed conditions

in both humans and monkeys. It is based on the integration of two

noninvasive commercially available systems to achieve online control

and synchronous recording of eye (EyeLink) and hand (KINARM)

positions during interactive visuomotor tasks. We also present an eye

calibration method compatible with different eye trackers that com-

pensates for nonlinearities caused by the system’s geometry. Our

setup monitors the two effectors in real time with high spatial and

temporal resolution and simultaneously outputs behavioral and neu-

ronal data to an external data acquisition system using a common data

format.

NEW & NOTEWORTHY We developed a new setup for studying

eye-hand coordination in humans and monkeys that monitors the two

effectors in real time in a common reference frame. Our eye calibra-

tion method allows us to track gaze positions relative to visual stimuli

presented in the horizontal workspace of the hand movements. This

method compensates for nonlinearities caused by the system’s geom-

etry and transforms kinematics signals from the eye tracker into the

same coordinate system as hand and targets.

arm/hand kinematics; common workspace; eye-hand coordination;
eye tracking; perturbation

INTRODUCTION

In natural behavior, humans and animals perform motor
actions in response to environmental stimuli. For example,
reaching movements are usually triggered by the appearance of
an object in the peripheral visual field. This event provokes
head and eye movements that bring the image of this object
onto the fovea. The visual information is then used to plan and
control the coordinated activation of multiple muscles to per-
form the action. The entire sequence lasts a fraction of a second
but involves a large network of cortical (and subcortical) brain
structures. These areas work together to coordinate movements
of multiple effectors to complete a single goal-directed behav-
ior. When studying eye-hand coordination during such a be-
havior, it is essential to track the eye and hand positions
continuously and precisely to get an understanding of their
coordination (Mooshagian et al. 2014; Vercher et al. 1994).
The quality of these behavioral measures determines our ability
to understand which brain structures are activated and how
they interact to perform such tasks, in particular when trying to
disentangle their cumulative and independent influence on
visuomotor processes (Boussaoud et al. 1998; Cisek and
Kalaska 2005; Yttri et al. 2014). Earlier studies suggested that
when hand movements involve direct interaction with the
object that is being viewed, visuomotor processes rely on a
cognitive map classically referred to as “standard mapping”
that integrates eye and hand positions in a common reference
frame (Wise et al. 1996; see also Archambault et al. 2009;
Battaglia-Mayer et al. 2001; Hawkins et al. 2013; Vercher et al.
1994). However, in some specific conditions, eye and hand
movements are dissociated, leading to a “nonstandard map-
ping” (Wise et al. 1996). Nonstandard mapping conditions can
occur when hand movements and their visual feedback are in
different planes (Archambault et al. 2009), such as a mouse
cursor on a screen moving in a different plane than the hand
movements on the mouse pad. They can also be produced by
the alteration of standard mapping experimental tasks through
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the application of visual or mechanical perturbations during
movement execution by means of virtual reality and robotic
devices, respectively (Torrecillos et al. 2014). In all cases, it
has been shown that the same task executed in standard and
nonstandard mapping conditions generates different patterns of
neuronal activity in several brain regions (Connolly et al. 2000;
Gail et al. 2009; Gorbet et al. 2004; Granek et al. 2010;
Hawkins et al. 2013; Mascaro et al. 2003; Reina and Schwartz
2003; Sayegh et al. 2013, 2014), suggesting that observations
made in one mapping condition cannot be extrapolated to the
other one.

Although there are simple solutions to record eye move-
ments in the vertical plane while performing horizontal hand
movements, there is currently no commercially available solu-
tion allowing us to relate eye and hand movements both
performed in the horizontal plane that could be applied to
human and monkey experiments. In this context, we developed
an experimental setup for the continuous recording of eye and
hand movements during visually guided motor behavior per-
formed in standard mapping and nonstandard mapping condi-
tions, including visual and/or motor perturbations. Our setup
also allowed us to record neuronal activity simultaneously
from multiple brain areas along with the behavioral data, and it
was designed to be compatible with various electrophysiolog-
ical recording techniques. Special care was taken to ensure the
precise synchronization of the behavioral and electrophysio-
logical recordings. For the purpose of cross-species compari-
son, we built identical setups for use in monkey and human
experiments. In our monkey setup, the system was connected
to a device that simultaneously records the activity of multiple
single neurons and local field potentials (LFPs), whereas in our
human setup it was connected to an electroencephalography
(EEG) device. The setups employ similar hardware architec-
tures to accommodate technical demands and run principally
identical software relevant for task development, control of
behavior, eye calibration, and online data processing.

Asaad et al. (2013) underlined the need to develop tools that
are accessible by a large part of the scientific community and
compatible with most of the classically used hardware. Indeed,
laboratories may develop local solutions to fulfill the needs of
a specific project, but these solutions often rely on internal
knowledge or skill (e.g., a specific programming language or
custom-made pieces of equipment). As a consequence, it could
sometimes be difficult to apply them on other projects despite
their descriptions in the methods sections of experimental
papers. In this report, we propose a solution that can be adapted
to multiple hardware configurations. A comparison with exist-
ing solutions is provided in DISCUSSION.

For both monkey and human setups we selected the
KINARM exoskeleton robot because of its ability to record
continuous and precise arm/hand movements in the horizontal
plane, with the possibility to perturb the movement and its
visual feedback (KINARM Exoskeleton Laboratory, BKIN
Technologies). The KINARM Exoskeleton Laboratory offers
eye tracking as an option in its human version, but this is not
available in its nonhuman primate version. For measuring eye
movements, the EyeLink system was selected for its infrared
noninvasive eye movement recordings (SR Research; EyeLink
1000 for monkeys, EyeLink II for humans). However, these
systems come with their own proprietary software and specific
hardware features and were designed as independent platforms.

To develop an integrated experimental setup, we had to estab-
lish a clear hierarchy between the participating systems. We
selected the hand tracking system as the master component of
the setup, which controls task behavior and timing, motor per-
turbations and load changes, effector calibration and feedback,
visual stimuli, and output of behavioral data. Moreover, experi-
ments in the KINARM system are programmed in MATLAB
language (Simulink environment), which is broadly used by
experimentalists. The eye tracking system and the data acquisition
(DAQ) system (Cerebus, Blackrock Microsystems for monkeys;
Biosemi EEG and ADwin Keithley EMG for humans) were
integrated as slave components in the setups, meaning that they
can be replaced or upgraded without loss of setup functionality.
As a consequence of this architecture using a unique master
component, both eye and hand movements can be processed
synchronously in real time. Finally, we developed a computation-
ally lightweight eye calibration method for both setups to express
the position of the gaze in the same (horizontal) coordinate system
as the hand positions.

In this report we present in detail the complete integration of
the eye tracking system into the hand tracking system for each
setup in parallel. In MATERIALS AND METHODS, we propose a
common solution for each aspect of integration and point out
minor setup-specific adaptations when they were necessary.
We then present the results of extensive tests designed to assess
the reliability of the eye calibration method. The performances
of a human participant in the human setup during our tests and
those of a custom servo-controlled artificial camera eye in the
monkey setup are presented in parallel in RESULTS. Once we
validated the methods in both setups, we implemented them in
real experimental conditions with human and monkey partici-
pants engaged in a sequential reaching task.

MATERIALS AND METHODS

Hand/eye movement control systems. Both human and monkey
setup configurations were built around the KINARM Exoskeleton
Laboratory (BKIN Technologies; www.bkintechnologies.com). This
recording solution for arm/hand movements in a two-dimensional
(2D) horizontal plane was composed of a motorized exoskeleton
arm and a virtual reality (VR) display. The system was controlled
and operated by two computers (see Fig. 1A): the KINARM
interface computer (Intel Core i5 760 2.80 GHz, 4 GB RAM),
where the operator can program a Simulink model (Simulink Real
Time, The MathWorks) and gets control and feedback on the task
with the provided software (Dexterit-E, BKIN Technologies), and
the KINARM real-time computer (Intel Core 2 duo E8400 3 GHz,
1 GB RAM, DOS-based operating system: xPC-Target, The Math-
Works) that runs the compiled Simulink models. The communica-
tion between the two computers used a UDP protocol through a
direct Ethernet connection.

The motorized KINARM exoskeleton was fixed to a chair, with the
upper arm and forearm of the participant placed in arm supports at
shoulder height, enabling the arm to move in a horizontal space (Fig.
1A). The positions of the joints (shoulder and elbow) were recorded
continuously in real time, with two torque motors capable of applying
mechanical loads at each joint independently. The hand position was
calculated from the joint angles in real time with a trigonometrical
reconstruction (KINARM Simulink Library). The chair/exoskeleton
module was then fixed to a VR environment, which displayed the
visual stimuli and the hand feedback to the participant. The VR
display consisted of a horizontal computer screen (Benq VW2420H,
resolution 1,920 � 1,080 at 60 Hz) facing downward, with its image
reflected on a horizontal semitransparent mirror.
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Every image presented on a computer screen is delayed by a
latency that is determined by the characteristics of the screen. Before
the beginning of the recordings, we therefore evaluated the display
latency of our screen, as well as the spatial and temporal properties of
its image refresh rate. Two photoresistors were used to record the
change in luminance of the screen when it was switched from black to
white. One photoresistor was positioned at a constant location (top
right corner) of the screen and was used as a reference. The second
photoresistor was used as a probe and placed at different locations
shown in the screen representation in Fig. 1B. The curves presented in
Fig. 1B show the average latency between the luminance change
detection of the two photoresistors as a function of probe location. The
delay between the luminance change detection at the reference level and
at the probe level increased linearly with the vertical distance following
the image refresh direction, from top to bottom of the screen. The
temporal dynamic of the vertical drawing of the image was the same for
the left side, the center, and the right side of the screen. The observed
maximum delay was ~15 ms, which was slightly shorter than predicted
by a refresh rate of 60 Hz but coherent if one considers that the
photoresistors were not located at the edge of the screen. To control for
the precise timing of the visual stimulus (target) presentation during the
experiments, target onsets and offsets were accompanied by a change in
luminance (e.g., from black to white) of two reference spots on the
screen. These two spots (squares, 5 � 5 mm) were located at the top

left and bottom right corners of the screen, and their luminances were
measured by means of two photoresistors. The signals recorded by
these photoresistors were sampled at 1 kHz and stored in the same
data file as the behavior. Precise target onset and offset times could
therefore be determined off-line according to the space-time function
defined above (Fig. 1B).

By adjusting the height of the screen and the mirror appropriately,
the reflection of the screen images, i.e., the stimuli (targets) and the
hand feedback representation, fell into the plane of the hand position
(Scott 1999). With internal calibration, the target coordinates and the
hand position were expressed in a single reference frame, enabling the
setup to react according to the behavior of the participant. The hand
underneath the semitransparent mirror could be illuminated, which
allowed direct vision of the hand, or obscured and replaced by a
projected hand feedback from the task.

For measuring eye movements we employed the EyeLink system
(SR Research; https//www.sr-research.com). This noninvasive system
uses an infrared (IR) light source directed toward the eye, and the
reflection, modified by the eye movement, is captured by an IR
camera. To record the participant’s eye movements during a visually
guided motor task in either setup, several options were considered to
optimize signal quality. In eye tracking configurations requiring high
precision, the head of the participant needs to be restrained and the
camera should be placed in the center of the visual field. However, the
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camera would physically occupy the same location as the stimulus. In
the monkey setup, using the EyeLink 1000, a classical solution is to
place a “hot” mirror (i.e., a mirror that reflects only IR light) in front
of the monkey at an angle of 45°. This configuration would allow a
camera mounted perpendicular at the side or above the mirror to
track the eye, while preserving direct vision of the stimulus (e.g.,
Reina and Schwartz 2003; EyeLink 1000 Tower/Primate Mount,
https://www.sr-research.com/mount_primate.html). However, be-
cause of space limitations and the possibility for the monkey to
touch the mirror and the camera, use of the standard EyeLink
primate mount to set the illuminator position was not possible. We
therefore chose to use the direct tracking mode (without a hot
mirror) and placed the camera at the back of the VR display (see
Fig. 1A). In the EyeLink 1000 system, an IR-LED illuminator
(light source) flanked the camera and its position relative to the eye
determined the location of the corneal reflection used for tracking.

With the camera placed at the back of the VR display, we tested
multiple positions of the illuminator and observed the consequences
on the eye tracker signal, using an artificial eyeball with a realistic
corneal bump and a laser diode to align it to targets. Voltages recorded
during target fixation in a grid pattern (18 � 18 cm, aligned with the
center of the screen) are shown in Fig. 1C for two extreme illuminator
positions. The position of the illuminator had a small impact on the
signal recorded with the furthermost targets (top lines) but dramati-
cally changed the signal recorded for the closer targets. Because of the
viewing perspective with respect to the working space (see Fig. 2A),
eye movements to capture these targets became larger. In these
conditions, the illumination light became tangent to the artificial
cornea, and this led to deformations of the corneal reflection spot used
by the EyeLink to extract the position of the eye from the camera

image. In the most extreme case the spot turned into a line, sometimes
with a second reflection point on the sclera leading to a jitter in the eye
tracker signal.

In the human setup we used an EyeLink II system. To preserve the
possibility of recording EEG in the human setup, access to the head
was required; therefore the standard eye tracker helmet that held the
two EyeLink II cameras could not be used. Thus the cameras were
mounted directly onto the VR display frame with a custom-made
forehead and chin support.

The work area of each setup was defined as the overlap of the space
the participant could reach in the exoskeleton with the space where the
eye tracker was able to record eye movements. The only losses of
reaching movements were those very close to the body, where the
targets became difficult to view. The work area was 20 � 9 cm in the
monkey setup and 28 � 28 cm in the human setup; this difference was
mainly due to the longer arm reach of human participants than
monkeys. This work area defined the spatial parameters of the task,
which was scaled such that all stimuli would fall within it.

System integration. With the prospect of integrating multiple stand-
alone systems into a single, precisely synchronized setup, a hierarchy
needed to be established. In this context, the KINARM was selected
to control the experiment and the eye tracker was used as a sensor to
provide the positions and trajectories of the eye. The advantage of
such an architecture was that the data flow was centralized in the
KINARM real-time computer (xPC Target, The MathWorks; https://
www.mathworks.com). An operator controlled the experimental se-
quence of events and the data collection process in a unique real-time
program developed on the KINARM interface computer (Simulink
Real-Time, The MathWorks). These programs then ran on the real-
time computer, while the operator monitored eye and hand move-
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ments and visual stimuli on the screen of the interface computer

(Dexterit-E, BKIN Technologies; Fig. 1A).

The voltages corresponding to the positions of the eye in the eye
tracker image (hereafter referred to as eye position) were collected
from two analog outputs of the EyeLink Host PC and sampled in the
real-time computer at 1 kHz with an A/D input card (National
instruments, PCI-6221). These two analog channels, Xv and Yv,
expressed the horizontal and vertical deviation of the eye in the eye
tracker image, respectively. We chose this option over the possible
Ethernet connection between these two computers to avoid interfer-
ence with the built-in UDP communication between the real-time
computer and the interface computer (Fig. 1A). Indeed, the UDP
protocol does not guarantee communication integrity in this situation.
In parallel, the raw exoskeleton motor positions were sampled in the
real-time computer at 1 kHz with a motion controller card (Delta Tau
Data Systems, PMAC-PCI).

The raw data from the EyeLink Host PC were used to compute the
gaze position (i.e., the location on the screen at which the partic-
ipant is looking) expressed in the same reference frame as the task
and the hand position. In this reference frame, the x-axis described
the position of the gaze (or the target) along the width of the
screen. The y-axis described the position of the gaze in depth. A
single real-time program controlled the interactive components of
the task for participants by directly reacting to inputs from the eye
tracker and the KINARM exoskeleton. In parallel, the program
sent behavioral data continuously to the interface computer for
storage in C3D format, together with task parameters. Addition-
ally, the gaze and hand positions were outputted at 1 kHz with a D/A
output card (National Instruments, PD2-AO-16x16) to the electro-
physiology DAQ system. Although our system was designed with the
intention of being compatible with any DAQ system equipped with
enough analog and digital channels, here we used DAQ systems that
were already in use in our laboratory for monkeys (Cerebus, Black-
rock Microsystems; http://blackrockmicro.com; Milekovic et al. 2015;
Riehle et al. 2013) and humans (in parallel: ADwin Keithley EMG,
https://uk.tek.com and Biosemi EEG, www.biosemi.com; Torrecillos
et al. 2014). In both setups, events related to the task sequence (e.g.,
target onset) and participant behavior (e.g., hand movement onset)
were sent as a digital output at 1 kHz by the real-time computer to the
setup-specific DAQ systems to ensure the synchronization of the data
files and to provide time markers for future analysis. Finally, copies of
the raw eye and hand movement data were also sent to the setup-
specific DAQ systems.

The integration of these different systems required complex con-
nectivity, and both movement control and DAQ systems required
multidirectional connections. Therefore, a custom-made hub was built
to regulate communication between these systems, which included
multidirectional routed connections and allowed direct operator ac-
cess to all input/output channels via a front panel with BNC connec-
tors. This hub ensured connections between systems for direct and
split signals, with adequate shielding to maintain signal integrity.

Eye calibration. To analyze temporal and spatial features of eye
and hand movement behavior in the context of a visually guided arm
movement task, all components needed to be expressed in the same
reference frame. In the KINARM system, target positions are natively
expressed in centimeters in the hand reference frame, which in turn is
dependent on the exoskeleton hardware settings. This system offers an
integrated VR task environment with high-resolution control of the
entire arm; it was therefore deemed simpler to convert the eye tracker
signal to fit the hand reference frame than to bring all the KINARM
features into the EyeLink system. However, this required a custom
eye calibration method that was able to accurately express gaze
location in the KINARM task environment and compensate for its
nonlinearities introduced by the setup architecture (Fig. 2A). The main
nonlinearity came from the depth of the work area. Indeed, the use of
a horizontal display means that the eye rotation angles (� and � in Fig.
2A) were different for two equivalent gaze shifts on the screen (A and

B in Fig. 2A) when they were located at different depths. To a lesser
extent, this difference also existed between the center and the side of
the screen.

As we used the raw signal, no correction was made by the EyeLink
software and an unknown supplementary nonlinearity may come from
the eye tracker itself (see EyeLink 1000 user manual, section 4.4.2.1).
These nonlinearities were highly dependent on the head and eye
positions with respect to the screen and the eye tracker camera. This
was particularly true in the human setup, where the camera position
had to be adapted more often because of the larger group of
participants.

To compensate for those nonlinearities that could be subject spe-
cific and session specific or that were unknown, we developed an
empirical calibration procedure that was self-adapting to the partici-
pant’s size and position and to the different setup dimensions (Har-
ezlak et al. 2014; Kasprowski et al. 2014). The goal of the calibration
was to establish the transform functions that compensated for spatial
distortions by linking the EyeLink eye position signals in volts and the
corresponding KINARM-compatible gaze position in centimeters on
the screen, on the basis of a target fixation behavior (Fig. 2B, top).

First, we set the recording range of the eye tracker to fit the size of
the work area on the VR display by adjusting the eye tracker gain and
offset. In the monkey setup, this was done by directly adjusting the
EyeLink 1000 built-in settings. However, in the human setup, we had
to build a custom interface to perform these adjustments (offset: �5
V, gain: �0 to �15) on the analog output of the EyeLink II because
these settings were not included. This ensured that the eye tracker was
able to measure the eye position wherever the participant was looking
within the work area, without saturation of the eye tracker output
signal and with an optimal use of the signal range. Second, we
recorded the X and Y eye position signals of the EyeLink over 100 ms,
while the subject fixated each of the targets (0.2-cm radius) presented
in a random sequence on the VR display. We used 25 targets
(hereafter referred to as calibration targets) located on a 5 � 5 grid,
whose size was adapted to the size of the participants’ work area (see
above). These recordings were repeated at least three times to ensure
a sufficient amount of data at each target for accurate position
estimation.

A graphical user interface (available via https://github.com/INM-
6/eye-calibration-GUI) was designed in MATLAB (The MathWorks)
to provide a user-friendly interface for calibration of the eye position
signal that included trial selection, compensatory model generation,
and export of model parameters to a Dexterit-E task file. After trial
selection (e.g., after removing blinks and saccades), we computed the
average voltages recorded during the different trials for each of the 25
reference points.

One typical example of eye position recordings is presented in Fig.
3A, scaled to the range of the targets to facilitate the visualization. It
clearly shows that the Xv channel amplitude varies as a function of
target position along Xcm and Ycm. This dependence on the Xcm and
Ycm couple is even more pronounced for the Yv amplitude. This result
of the setup nonlinearities could be expressed as functions linking
each voltage channel with the two screen axes:

XV � f�Xcm, Ycm�

and

YV � g�Xcm, Ycm�

Consequently, when computing the opposite transformation, we
had to consider the gaze position along each screen axis as a function
of Xv and Yv.

The 25 data points that we recorded during the calibration gave us
25 reference points for the functions f and g. Because the coordinates
of these data points along the Xcm and Ycm axes were the same for the
Xv and Yv observed values, we could reverse the relationship and use
them as reference points on the functions f1 and g1:
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Xcm � f1�XV, YV�

and

Ycm � g1�XV, YV�

The 2D mesh obtained by this axis change is shown in Fig. 3B for
Xcm and in Fig. 3C for Ycm. Each grid describes the relationship
between the observed values in volts and the theoretical values in
centimeters for one of the axes. The consequence of the axis change
was to transform regularly distributed data points (in the cm space)
into sparsely distributed data points (in the voltage space).

To reconstruct a regularly distributed sample, we adjusted a grid to
our data with B-spline interpolation (MATLAB function griddata,
using V4 method; Sandwell 1987). The results are shown in Fig. 3, B
and C.

Finally, to generalize the transformation to the whole work area and
to make it easily transferable into the Simulink models to be used
during experiments, we fit mathematical functions to these grids. We
used 2D polynomials because this family of functions can fit to
multiple combinations of distortions (see Fig. 1C, Fig. 3, Fig. 5, and
Fig. 7) and therefore adapt to a large variety of grid shapes. Param-
eters of the functions are stored in variables in the Simulink task
program to adjust its online position conversion module on a daily
basis. Figure 3D shows the gaze positions reconstructed from the eye
positions recorded for the 25 calibration targets.

To define the optimal order for the polynomial function, we made
a calibration over the 25-target grid and extracted the parameters of
the best-fit quadratic, cubic, and quartic 2D polynomials. The perfor-
mance of the different models was compared off-line by looking at the
gaze positions reconstructed from the same eye positions recorded
with 25 circular targets (0.2-cm radius), randomly distributed over the
work area. Figure 4 shows the gaze positions in visual angles obtained
with the quadratic, cubic, and quartic polynomials, together with the
target centers. Average distance to the target was 0.29°, 0.27°, and

0.25° for the quadratic, cubic, and quartic models, respectively. The

distances observed with the three models were in the range of the

target size. Although the quartic model showed a better accuracy, a

paired t-test on the measured values returned no significant differ-

ences (P � 0.46, 0.14, and 0.71 for comparison between quadratic and

cubic, quadratic and quartic, and cubic and quartic polynomials,

respectively). In the context of this report, we continued with the

quartic model.

Task participants. Before applying our eye calibration methods to

monkeys and humans, they were first tested and validated with a

custom-made servo-controlled artificial eye. This artificial eye was

placed at the same location as the monkey’s eye to allow for conser-

vation of hardware settings. It was held by a support that fit in the

primate chair and was secured to it to prevent any movement. The

artificial eye consisted of a microcamera, which the eye tracker was
able to track as a pupil, surrounded by a white plastic disk to mimic
a sclera. The camera was mounted on a horizontal axis that could be
rotated by a brushless servomotor to move the artificial eye up and
down, and the ensemble was mounted on a vertical axis that could be
rotated by a second servomotor to produce left-right movements. The
two servomotors were controlled by a wireless microcontroller (EZ-B
v4 Wi-Fi Robot Controller, EZ-Robot; www.ez-robot.com) which
also transmitted a video signal of the eye camera in real time at 20
frames/s in 640 � 480-pixel resolution to a nearby laptop. This
provided the operator a visual feedback of the portion of the screen at
which the artificial eye was looking. The operator could then make the
artificial eye fixate on a target by aligning the cross hairs of the camera
with it, using the servomotors, while the eye tracker was outputting
the eye position in parallel, as it would have done with a real eye.
Since the camera and the plastic disk were not reflective, we could not
track a corneal reflection on this artificial eye, and we switched from
the EyeLink “pupil � corneal” to “pupil-only” tracking mode, with no
negative effects, as the artificial eye was stable enough to not require
the corneal reflection measure.
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Fig. 3. Calibration. A: average raw eye position
voltages (black dots) at 25 target locations (gray
dots). B: 3-dimensional (3D) representation of
the target position along the y-axis of the screen
as a function of recorded voltages. The 3D grid
is the surface obtained by a biharmonic spline
interpolation. C: same as B for the x-axis of the
screen. D: gaze position on the screen (black
dots) reconstructed for fixations on 25 target
locations (gray dots).
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Two human participants (one author, FB, and a naive subject) were

tested in the human KINARM system with the EyeLink II option (Fig.

3C). They were seated with their right arm in the exoskeleton, and

their head was stabilized by means of a headrest and a chinrest. All

participants were free of known neurological or psychiatric disorders

and gave informed consent according to a protocol approved by the

Ethics Board of the CNRS (CPP 216-R19).

One female rhesus monkey (Macaca mulatta) was used in a

sequential pointing task, (monkey E; 7 yr, 6.4 kg). All animal proce-

dures were approved by the local ethical committee (C2EA 71,

authorization A3/10/12) and conformed to the European and French

government regulations. The monkey was kept in a colony of two to

four monkeys in a modular housing pen (Allentown, https://www.

allentowninc.com), with access to a central play area. It was trained to

sit in a modular chair (“Arms Free” monkey chair, BKIN Technolo-

gies) by sliding its nylon collar (Primate Products, www.primateprod-

ucts.com) into a slightly angled neck plate. The right arm was placed

in the exoskeleton, and the left arm was restrained with an L-shaped

armlet. To reduce large head movements, a 3D-printed model of the

monkey’s head was made from MRI data and used to vacuum form a

fitted plastic mask (designed similarly to Slater et al. 2016). This mask

was subsequently mounted onto a rigid frame connected to the

KINARM chair, and the monkey was trained to position its head into

the front half of the mask, while the back half of the mask was

attached. Once attached, the entire frame became a rigid structure,

with the head fully stabilized.

Drift correction. Because one of the main sources of nonlinearity

that we compensated for with our corrective model came from the

geometric organization of the setup components (i.e., the eye, the
targets, and the camera), a change in head position during task
execution would have had a significant impact on the input signal.
Indeed, any head movements would lead to a change in the partici-
pant’s eye position value in the eye tracker image, causing a global
offset in the voltage signal. This offset may cause errors in the
reconstruction of the gaze position, through the alteration of the
spatial relationship between the signal nonlinearity and the compen-
satory corrective functions. However, rerunning a complete calibra-
tion task because of small unconscious movements of the participant
would be time consuming, and detrimental when training a monkey.

A classical solution to this problem is the use of a drift correction,

which corrects for the offset of the raw eye tracker voltage by defining

and applying a compensatory voltage shift during the experiment.

This could be quickly implemented between trials to minimize inter-

ruptions of the actual task. The drift correction procedure (Fig. 2B,

middle) consisted of recording the position of the eye when the subject

was fixating on a target located at the center position of the grid used

during the calibration. The voltages recorded during this fixation were

subsequently subtracted from those previously recorded during the
calibration. This difference represented the offset introduced by a
change in the head position, and this offset was subsequently applied
to the raw eye tracker voltage, which brought the signal back into the
efficient range of the calibration model.

To test the efficacy of our drift correction, we compared three data
sets of reconstructed gaze positions of the artificial eye and human
participants during the fixation of 25 validation targets distributed as
a 5 � 5-target grid. The first data set was recorded immediately after
calibration. This meant that the artificial eye was kept in the same
position and that the human participants were instructed to actively
maintain the head in a fixed position (before movement: Fig. 5, A and
D, respectively). The second data set was recorded after the position
of the artificial eye was moved or the human participant changed his
head position (for the artificial eye, its support was moved) (after
movement: Fig. 5, B and E, respectively). Before the third data set was
recorded, the artificial eye and human participants had to fixate on a
target located at the same coordinates as the center of the calibration
grid. The voltage recorded during this fixation was used to calculate
the offset required for the drift correction, and this offset was subse-
quently applied during the recording of the third data set of the
artificial eye and human participants (after correction: Fig. 5, C and F,
respectively). Figure 6 summarizes these results by including data of
the artificial eye and two human participants. Here we compared the
accuracy (median, Fig. 6, left) and precision (interquartile range, Fig.
6, right) of the distribution of gaze position errors recorded before
head movement, after head movement, and after drift correction to
establish whether or not the consequence of the artificial eye/head
movement visible in the data set recorded after head movement was
fully compensated. By using a Wilcoxon rank sum test we confirmed
that the data sets recorded before movement and after drift correction
had the same distribution (artificial eye: P � 0.83; participant FB:

� �

�

�

2deg

Target center

Cubic model

Gaze
X’

Z’

Y’
Quadratic model

Quartic model

Fig. 4. Performance of 3 models to fit multi-
ple combinations of distortions of gaze posi-
tions in visual angles for 25 calibration tar-
gets presented at random positions: perfor-
mance obtained with quadratic, cubic, and
quartic polynomials. Target and gaze posi-
tions are represented in degrees of visual
angles � and �. Inset: cartoon of the gaze
position (blue arrow) in a Cartesian 3-dimen-
sional reference frame whose origin was lo-
cated at the center of the eyeball. X=, Y=, and
Z= represent the axes in the eye-based coor-
dinate system.
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P � 0.43; naive participant JA: P � 0.38) and were both significantly
different from the data set recorded after movement (before vs. after
movement: artificial eye/FB/JA: P � 0.01; after movement vs. after
drift correction: artificial eye/FB/JA: P � 0.01). Note that we inten-
tionally did not perform these tests with monkeys by introducing
voluntarily different head positions, so as not to perturb the training
during which a stable head position was required.

Gaze position reconstruction. Figure 2B, bottom, shows the data
flow during the calibration and during the experiment. For calibration,
the nonlinearity (represented by a blue curve in the Eye Position box
in Fig. 2B) of the eye tracker raw signal was used together with the
calibration target coordinates to define the parameters of the best
corrective function (represented by the red curve in the Corrective
Function box in Fig. 2B). During the experiment, the first step was to
realign the eye tracker raw signal into the range of the recordings
made during the calibration by means of the drift correction block.

This realigned signal is represented by the shift between the dashed

curve and the solid curve in the Eye Position (dc) block in Fig. 2B.

Once corrected, the signal was converted in a second step by the

compensatory function that came from the calibration to obtain the

reconstructed gaze position (represented by the green line in the Gaze

Position box in Fig. 2B). In parallel, the hand position was recon-

structed by the built-in KINARM hand position calculation block.

Because the targets and the hand signal are natively expressed in

the same reference frame of the screen, the gaze position recon-

structed with a set of functions that link the raw eye signal to the target

positions also fell into this reference frame, which was outputted in

centimeters. This measure can be useful to compare gaze position with

hand position. However, it is also important to know the eye position

in degrees of visual angle to study eye movements themselves. To

retrieve the eye position, we applied a method very similar to that
presented in Singh et al. (2016). We first expressed the gaze position
in a Cartesian 3D reference frame (hereafter defined as eye reference
frame) whose origin is located at the center of the participant’s eyeball
(Fig. 4, inset). The first dimension (X=) varied along a horizontal axis,
with positive values on the right side of the eye and negative values
on its left side. The second dimension (Y=) varied along a second
horizontal axis, with positive values ahead from body and negative
values for those directed behind the eye. The third dimension (Z=)
represented height, with positive values above the eyeball and nega-
tive values below. In this reference frame, the VR display image was
parallel to the X=Y= plane and the screen width and screen height were
parallel to the X= and Y= axes, respectively. Knowing the screen
location, we could express the gaze position in the eye reference frame
by adding the coordinates of the screen reference frame origin ex-
pressed in the eye reference frame to the gaze coordinates expressed
in the screen reference frame. Because the eyeball was located at the
origin of the eye reference frame, these newly obtained gaze coordi-
nates were also the coordinates of the gaze vectors (i.e., the vectors
that go from the eye to the gaze position in the eye reference frame).
From the vector coordinates, we extract the cosine of the angle by
calculating the scalar product of the vectors:

cos � �
�u�� v��

��u�� � �v���

Artificial
Eye in
Monkey
Setup

Participant
FB in
Human
Setup

Before MovementAfter Movement After Correction

A                           B C

D                             E                              F

2°

20°
�

�

5°

�
10°

�

Fig. 5. Drift correction. Eye positions (black
dots) are shown in visual angles � and � (see
inset in Fig. 4) for 25 targets (gray dots)
presented in a 5 � 5 grid arrangement before
a head movement occurred (A and D), after
the movement (B and E), and after drift
correction (C and F) for the artificial eye in
the monkey setup (A–C) and a human partic-
ipant (FB; D–F). This figure shows clearly
the efficiency of the drift correction proce-
dure.
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Fig. 6. Accuracy and precision before and after drift correction. Left: accuracy
values (median) obtained during all 3 conditions, i.e., before and after head
movement and after drift correction, in degrees for 3 participants, the artificial
eye in the monkey setup (Robot) and 2 human participants in the human setup.
Right: same for precision values (interquartile range).
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The angle � expresses the distance in degrees of visual angle

between two gaze positions or between one gaze position and a target

position. We used this measure to compare, for example, distance
distributions. For analysis that required orientation information, the
gaze positions in degrees of visual angle were computed by trans-
forming gaze positions from the eye reference frame (X=, Y=, Z=) in
centimeters into polar coordinates (�, 	, �) in degrees (Fig. 4; Singh
et al. 2016).

Validation of method. Each test started with a calibration of the eye
position, followed by different validation experiments in which the
participants were asked to fixate at individual targets.

To compare the performance of our setup with the industry stan-
dard for eye tracking, we used the methods described extensively in
Holmqvist et al. (2011). The main measure they proposed is called
precision, which expresses the variability of the eye position signal
over time. It is defined as the root mean square (RMS) of the
angular distances between successive samples recorded during a
single fixation trial. This measure is also extensively used by eye
tracker companies in their user guides and in the technical descrip-
tion of their systems on their websites (https://www.sr-research.
com/EL_1000.html)

By definition, this precision measure is quite insensitive to the
low-frequency content in the signal such as that introduced by slow
drifts. Moreover, if the recording comes from an artificial eye in a
vibration-free environment this measure provides a minimal estima-
tion of the noise level. Although this measure is good for commercial
announcements, we estimated that it would not be sufficient to
evaluate our system performance in the context of experiments.
Indeed, eye movement studies frequently feature average position
and/or variability over a large number of experimental trials. How-
ever, the precision measured over the average position recorded in
successive trials would reflect a variability that could come from the
system but could also come from the participant’s behavior or from an
interaction between the two. To estimate the performance of our
conversion system we compared the distribution of the signal before
transformation (input; eye position) with the distribution of the signal
after transformation (output; gaze position).

We constructed a normal distribution based on the mean and
standard deviation observed in a set of eye positions (in volts)
recorded in the monkey for 10 fixations on a single target located at
the center of the work area. To observe the impact of the calibration
model on the mean and the shape of the distribution we shifted it
along the x-axis. We calculated both the maximal possible shift of the
eye position distribution without becoming significantly different
from its original location and the minimal shift needed to become
significantly different (Student’s t-test; P � 0.05 and P � 0.05,
respectively). The distance between these two means being different
or not from the original location was a tenth of the standard deviation
of the distribution. These two shifted eye position distributions, and
the distribution at the original location, were subsequently put in the
gaze reconstruction model, and the gaze position distributions ob-
tained were tested for their mean and shape with a Student’s t-test and
a Fisher’s f-test, respectively. Equivalent analyses were conducted
with pairs of distributions shifted along the y-axis.

The method for reconstructing the gaze position was subsequently
tested over the whole work area with two different target layouts. The
first set of 25 targets was located at the same position as the
calibration targets, to test the capacity of the model to reconstruct gaze
position around calibration reference points. The second set of 25
targets was randomly distributed across the entire calibrated area, to
assess the model generalization to the entire work area. For these tests,
participants were asked to fixate each target. For each trial, eye
position was computed as the average of the samples recorded over
100 ms. To evaluate the quality of the gaze position reconstruction
over the work area, we aligned the trials by subtracting the position of
the target that was used during the trial from each gaze position. From
this position distribution we computed both the precision of the

transformation, by calculating the interquartile interval, and the accu-
racy, by calculating the median of the absolute distance to target
across trials.

Finally, to test our calibration model in complete experimental
conditions, we recorded the eye and hand positions of a monkey and
a human participant performing the same visually guided pointing
task toward a sequence of targets. The trial started with the presen-
tation of a circular target (0.2-cm radius) at the center of the work
area. The participants were required to reach the target with their hand
using the KINARM and to maintain this position for 250 ms to
stabilize the hand position at the beginning of the trial. The start target
was then turned off, while a second target of the same size and color
was presented. This second target was randomly located at one of the
vertices of a hexagon centered on the start target coordinates. The
participants were then required to reach this new target within 1,000
ms. After staying in the target for 50 ms, the next target appeared at
another vertex of the hexagon. Each trial consisted of a sequence of
three hand movements, and multiple trajectories were randomized to
ensure that no target could be predicted. A trial was considered
successful if the participant reached the three targets in the requested
delays and with the requested in-target times. It is important to note
that eye movements were continuously tracked during the whole
sequence but no constraint was applied on eye behavior.

RESULTS

In the first step of testing our setup we compared its
performance with the industry standard for eye tracking and
values provided in the literature. In their study, Holmqvist et al.
(2011) reported the range for the RMS value, a measure for the
variability of the eye position signal over time that could vary
with different eye trackers and different types of artificial eye.
They found a RMS value of 0.01° for the most precise
configurations and up to 1.03° for the poorest. For humans they
showed a larger variability of the RMS value due to interindi-
vidual differences, but for a given eye tracker they showed that
the average of the interindividual RMS distributions corre-
sponded to the value measured with the artificial eye. In our
system, the noise was 0.054° with a human participant in the
human setup, 0.048° with a monkey, and 0.0054° with an
artificial eye in the monkey setup. These values are comparable
to the one they reported and also to the one provided by the
most commonly used eye trackers (https://www.sr-research.
com/EL_1000.html).

As mentioned in MATERIALS AND METHODS, we did not con-
sider this test as an adequate indicator of the variability to be
expected in our experimental data. Indeed, it is not surprising
that our model output does not vary across time because it
results from the transformation of a stable input by a continu-
ous mathematical function. For this reason, we tested our gaze
reconstruction with a set of inputs that cover a broader range of
values that could better reflect what experimental data look
like. The goal of these tests was to show that the information
present in the eye position was preserved when the gaze
position was reconstructed. To test the ability of the system to
discriminate gaze positions, we tested the difference between
the means of reconstructed gaze position distributions (n �

1,000), in case these distributions came from two significantly
different eye position distributions or not. Results of the t-tests
and f-tests are shown in Table 1.

When the compared gaze position distributions came from
different eye position distributions (Table 1) a significant
difference was shown in the t-test on the axis concerned with
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the shift (i.e., � for the x-axis and 	 for the y-axis). When the
compared gaze position distributions came from non-signifi-
cantly different eye position distributions, the t-test showed no
significant difference for all shifts. Thus the difference between
the means of the gaze position distributions, i.e., after trans-
formation, were only significant for pairs of distributions that
came from significantly different eye position distributions,
i.e., before transformation. In contrast, two gaze position dis-
tributions that resulted from the transformation of non-signif-
icantly different eye position distributions showed no signifi-
cant difference after transformation. Together, these two re-
sults clearly show that our gaze position reconstruction
preserved the discriminability of eye position samples: two
samples that were significantly distinct in the eye position
signal remain significantly distinct in the gaze position recon-
struction, and two samples that belong to the same distribution
in the eye position signal still belong to the same distribution
in the gaze position reconstruction.

Generalization. In the previous tests, we addressed the
question of the gaze reconstruction at the level of a single
target. By analyzing gaze position reconstructions for fixations
of multiple targets scattered over the whole work area, we
wanted to address the ability of our system to compensate for
nonlinearities in the area covered by the calibration. Figure 7A

shows the results obtained with an artificial eye in the monkey

setup for fixations at targets located on a regular grid. The

measured accuracy and precision were 0.26° and 0.17°, respec-

tively. These values are comparable with those shown for drift

correction in MATERIALS AND METHODS (see Fig. 6, before move-

ment). Because the gaze was reconstructed for fixations at

targets located at the same positions as the calibration reference

points, it is not surprising to find such small values. Indeed, the

artificial eye can almost be considered as an ideal observer, and

the differences between the positions recorded during the
calibration and those recorded during the tests only came from
the steps of the servocontroller. However, these values give a
good estimate of the best accuracy and precision one can
expect with the artificial eye and provide a baseline to compare
them with the measures shown in Fig. 7B for fixations of
targets randomly distributed over the work area. Accuracy and
precision measured on these targets were 0.18° and 0.21°,
respectively. We compared these position error distributions
with a Wilcoxon rank sum test and found no significant
difference between them (P � 0.5703). We recorded eye
fixations at randomly distributed targets with two human par-
ticipants [1 author (FB) and 1 naive participant (NM)] in the
human setup (Fig. 7, C and D) and monkey E in the monkey
setup (Fig. 4, quartic polynomial). Accuracy and precision
were respectively 0.70° and 0.60° for participant FB, 1.25° and
0.70° for participant NM, and 0.23° and 0.2° for monkey E.
Wilcoxon rank sum tests showed no significant difference
when these data were compared to those recorded for the same
subject with a regular 5 � 5-target grid (P � 0.5823, P � 0.9,
and P � 0.09 for FB, NM, and monkey E, respectively).

Finally, we tested our setup in the context of a hand motor
task. Figure 8 shows the gaze position and the hand position
along the time axis for 30 recordings during the presentation of
the same pair of targets. As the eye behavior was not restrained
in this task, some trials had to be removed because they

Table 1. Statistics on generated distributions (P values)

t-Test on � t-Test on � f-Test on � f-Test on �

Different eye position
distributions

Shift X 0.0055 0.4266 0.3786 0.9031
Shift Y 0.7214 4.39�6 0.9782 0.6168

Same eye position
distributions

Shift X 0.1419 0.6869 0.1767 0.815
Shift Y 0.908 0.1387 0.977 0.9195

BA

C D

Artificial eye

Human FB Human NM

2°

�

�
5°

2°
�

10°
�

Artificial eyeFig. 7. Gaze position reconstructions on multiple targets. A:
reconstructed gaze positions (black dots) obtained with an
artificial eye in the monkey setup for fixations at targets
located on a regular grid (gray dots). B: same as in A but for
fixations of targets that were randomly distributed over the
work area. C and D: eye fixations on randomly distributed
targets obtained by 2 human participants, FB (C) and NM (D).

548 MEASURING NATURAL EYE-HAND COORDINATION IN COMMON REFERENCE FRAME

J Neurophysiol • doi:10.1152/jn.00262.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (134.094.122.185) on August 7, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



contained saccades outside the work area. However, no filter-
ing or alignment of the traces was performed after data collec-
tion. Because multiple trajectories were randomly interleaved
during the experiments, the different traces shown in Fig. 8
were separated in time by variable delays from several seconds
to several minutes. We can clearly see a consistency of the eye
traces across trials, with saccades landing at the edge of the
appearing target or showing a small undershoot followed by
catch-up saccades that have been extensively described in the
literature (Henson 1979; Prablanc et al. 1978). The saccades
were initiated after the onset of the targets with latencies of
~200 ms. The hand movement was initiated shortly (~100 ms)
after saccade offset. The timing of this behavior is in agree-
ment with the observations of Prablanc et al. (1979) in humans
and Rogal et al. (1985) in monkeys. Additionally, the gaze
position was sampled 100 ms before the hand entered the target
for all trials in order to calculate the overall consistency for
human and monkey eye behavior in this particular example
task, using the precision measure presented above. This yielded
a precision of 0.41° for monkey in Fig. 8A and a precision of
0.38° for human in Fig. 8B. The gaze position consistency was
subsequently calculated for two other targets in repeated trials
of the same protocol, yielding a precision of 0.38°/0.60° in
targets 1 and 2 for monkey, respectively, and a precision of
0.19°/0.52° in targets 1 and 2 for human, respectively.

DISCUSSION

The primary goal of this work was to develop a system that
provides rigorous hand and eye movement control for use in
humans and nonhuman primates through noninvasive means,
with a high spatial and temporal resolution. To fulfill this goal,
we integrated an eye tracking system and a hand tracking

system into a unified setup. These setups realize common
processing of the data stream from the two systems and ensure
the synchronization of the signals. They conserve all features
available for hand movement control and make them available
to use with the eye position signal. By choosing the KINARM
system with the Simulink platform as the core component of
our setups, we were also able to implement most of the
functionalities required for online analysis of eye movements,
such as blink detection and saccade detection based on angular
eye position (Singh et al. 2016), and the incorporation of eye
behavior-dependent action in the experimental task, such as
velocity-based target onset. Moreover, the setups provide an
online conversion of the eye positions into the same reference
frame as the hand and the task environment. This conversion
extends the reactivity of the setup to eye and hand movements,
leading to a strong control over eye-hand coordination in the
context of the task. For example, in future studies we will be
able to observe the impact of perturbations, applied at many
levels, from visual stimuli to movement execution, on eye-
hand coordination.

Hardware integration. The combination of the different
systems into a unified setup required much care in the integra-
tion of the different hardware elements. As shown in MATERIALS

AND METHODS, both camera and light source positions were
crucial to ensure a coherent signal wherever the participant
looked. In the monkey setup, we chose to install the EyeLink
1000 camera and the illuminator at the back of the VR mirror
to keep them out of reach. With this configuration, the corneal
reflection was located in the superior half of the eye, near the
center. Because of the horizontal screen, the monkey had to
look down to perform its task (see Fig. 2A), leading the
superior eyelid to partially cover the pupil. When the target
was located very close in the peripersonal space, the eye was so
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Fig. 8. Task-related gaze and hand positions ob-
tained in human participant FB (A and B) and
monkey E (C and D), in the X-direction (A and C)
and the Y-direction (B and D). Blue traces, eye
movements; green traces, hand movements; pink
traces, target position; solid line, target center;
dashed line, target borders.

549MEASURING NATURAL EYE-HAND COORDINATION IN COMMON REFERENCE FRAME

J Neurophysiol • doi:10.1152/jn.00262.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (134.094.122.185) on August 7, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.



low that the area of corneal reflection reached the edge of the
eyelid, leading to signal instability or even signal loss. The
limit for correctly catching eye signals defined the proximal
border of the work area. In monkeys this critical area corre-
sponded to a portion of the screen that the monkey was not
able to see because of its muzzle. In humans, with the usage
of the same camera configuration, the eyelid covering the
corneal reflection spot was a more important limitation.
Indeed, the subsequent signal loss occurred at screen loca-
tions that the participant was perfectly able to see. Thus the
impact on the work area could not be neglected. In their
human gaze tracker, BKIN Technologies use the VR display
mirror to illuminate the eye from below. We have chosen a
different approach by using an EyeLink II eye tracking
system with a camera mounted close to the eye that records
from below. This system allows the participant to look further
down without any loss of the signal, preserving the bottom
edge of the work area. The top edge was not affected by the
introduction of the eye tracking system into the setup, and the
work area was only limited by the reach of the participant.

Software environment. Our system was designed around the
KINARM system, integrating the signal of an eye tracker as an
input to the Simulink model that was in charge of the real-time
control over the experiment. Multiple third-party solutions
exist to manage experimental setups, such as PsychToolbox
(Brainard 1997), MonkeyLogic (Asaad et al. 2013) based on
MATLAB language, or PsychoPy (Peirce 2007) based on
Python. They all provide complete toolsets for eye movement
collection but no direct integration of the KINARM exoskel-
eton. The use of one of these solutions would have required an
extra computer and would have increased the complexity of the
communication. As the KINARM system already provided an
open programming environment, we had the possibility to
integrate the EyeLink signal directly into it.

In this report, we present the results of multiple tests de-
signed to estimate the quality of our reconstructed eye position
signal. The recordings made in an ideal situation with an
artificial eye or with a human participant showed that our
conversion system is very efficient in terms of accuracy and
precision. Indeed, our results are comparable with the native
accuracy and precision given for commercially available eye
tracking solutions in humans (see specification in www.
bkintechnologies.com/bkin-products/kinarm-exoskeleton-lab).

We also showed that our gaze position reconstruction pre-
served the information contained in the recorded eye position
without increasing the noise level of the data (Fig. 6). How-
ever, the model did not compensate for the input variability. As
a consequence, the quality and the stability of the input signal
are essential for the accurate and precise estimation of gaze
location.

A predictive model could be more efficient to automatically
compensate for changes in the signal but would limit the
possibilities for unrestrained eye movements. In the recordings
we made during a visually guided target tracking task, we
showed that arm movements did not perturb the signal stability
within a trial (see Fig. 8). Consequently, the periodic drift
assessment and correction should be efficient enough to com-
pensate for head movements in normal recording conditions in
humans. This drift correction (see Figs. 5 and 6), together with
the flexibility of the nonlinearity compensation model (see Fig.
4), allows for the use of a mask rather than a head post in the

monkey experiments. Here the use of a mask as a noninvasive
solution to stabilize the head was already reported (Fairhall et
al. 2006; Slater et al. 2016). These solutions present many
advantages over the classical implantation of a head post, the
first being the reduction of surgical risks. In the context of
multielectrode array (MEA) implantation, the absence of a
head post saves space on the animal’s skull for connectors. If
electrophysiological data are not required and a completely
head-free condition is essential, head tracking may offer an
alternative to a mask, as it is capable of offering a higher
stability than just pupil and corneal reflection tracking. How-
ever, these head tracking solutions would require additional
steps in calibration that add to the complexity of training a
monkey and would have to be adapted from human head
tracking solutions. As far as we know, no specialized monkey
head tracking system currently exists.

With the advent of chronic high-density MEAs, investiga-
tions of the neural mechanisms of parallel processing architec-
tures in the cerebral cortex reached a milestone in the 1990s. In
particular, a seminal research report outlined the recording
capabilities of the 100-microelectrode “Utah” array (Campbell
et al. 1991; Nordhausen et al. 1996). Since then, extracellular
recording technologies have continued to expand, covering
larger cortical surfaces with greater spatial resolution and
sustainable recording quality (Charvet et al. 2010; Chase et al.
2012; Cheung 2007; Crist and Lebedev 2008; Fernández et al.
2014; Nicolelis et al. 1997; Kelly et al. 2007). Multiple MEAs
have been implanted in several cortical areas of the monkey
(e.g., Michaels et al. 2015; Poort et al. 2012; Takahashi et al.
2015), while the growing research in the field of neuropros-
thetics benefited from multiple MEAs implanted in motor
cortex of paraplegic human patients (Collinger et al. 2014).
With the ability to record eye and hand behavior synchronously
with massive parallel electrophysiological data, our setup is an
efficient tool to study the neuronal mechanisms underlying
eye-hand coordination. Importantly, this configuration allows
us to fully control what a subject sees and how a subject
moves. For example, the setup is built to have hand and eye
feedback in the same coordinate reference frame in order to
examine standard mapping; however, the hand feedback can be
decoupled from the hand movement by applying a gain or
rotation on the feedback, thus creating a nonstandard mapping
condition (Battaglia-Mayer et al. 2001; Wise et al. 1996).
Alternatively, the visual feedback of the hand remains intact,
but the hand movements are affected by predefined or task-
related motor perturbations (e.g., viscosity or local force fields;
Torrecillos et al. 2014). These attributes can be used in con-
junction or separately or entirely neglected depending on the
requirements of the task. The efficient online treatment of
signals provided by the setup and its flexibility in terms of
input/output connectivity makes it a serious candidate for
further development to support a brain-machine interface,
whereby electrophysiological and behavioral data are not just
recorded but have a direct influence on the progression and
outcome of a task (e.g., Carmena et al. 2003; Serruya et al.
2002). Furthermore, the development of this setup for both
human and monkey opens promising prospects for translational
approaches connecting the monkey model and multiple fields
of human research. For example, comparing high-level visual
behavior between primate species could be critical in deter-
mining whether knowledge gained from animal models is
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translatable to humans (Rajalingham et al. 2015), and through
electrophysiological recordings one could determine whether
the same or different areas of visuospatial processing are
present in human and monkey (Vanduffel et al. 2002). As a
final example, we could determine neural representations of
movement parameters by recording monkeys in the monkey
setup and implement these parameters into a brain-machine
interface of the human setup (Ganguly and Carmena 2009),
allowing results from one setup to determine the task param-
eters of the other one, and vice versa.
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