
1SCIENTIFIC REPORTS |  (2018) 8:6583 

Action and object words are 

A perspective on cognitive 

Houpand Bzdok , Giovanni Buccino , Anna M.  &  

Ferdinand Binkofski

Language as we know is unique to human beings. How it evolved is still a matter of thorough research. Embodied 
and grounded cognition theories state that higher cognitive processes such as language are implemented in neu-
ral substrates coding for the language content. Accordingly, language processing would re-enact sensorimotor, 
emotional, and introspective experience with words acting as tokens1–6. A number of behavioral and neuroscien-
ti�c studies have recently demonstrated that manipulable nouns are grounded in perception and action systems 
(for reference see for example7–14). In the same vein, a lot of evidence has been provided of grounding of action 
verbs and sentences in the sensorimotor system (a non-exhaustive list includes15–23). In spite of these compelling 
demonstrations, to date a neurobiological explanation of the speci�c mechanisms underlying such grounding is 
missing. A major point of debate is how speci�c language elements, such as nouns and verbs, re-enact experi-
ences of interaction with objects and actions24. A plausible neural basis was found with the discovery of mirror 
neurons and canonical neurons, both found originally in area F5 of the macaque monkey25,26. Canonical neu-
rons are activated by plain sight of graspable objects and object directed actions27. Mirror neurons �re when a 
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goal-speci�c action is performed, as well as when that same action is passively observed, for example grasping a 
cup to drink. Although research shows striking parallels between monkey and human brains, the level of inte-
gration of language content in sensorimotor systems remains unclear as single-cell recordings in humans are not 
ethical. Getting more insight into how deep semantics are grounded will give an important basis for treatment of 
stroke patients su�ering from aphasia and apraxia. �e hypothesis of the present study is that canonical neurons 
constitute the neural basis for representing objects and their linguistic counterparts, nouns. Correspondingly, 
mirror neurons would constitute the neural basis for actions and verbs. We expected the stimuli to recruit those 
visuomotor areas where canonical and mirror neurons were �rst described in humans28.

Although embodiment theories have emerged mostly in the 1990’s, and a lot further research has been done 
on this topic to date (for reviews, see4,29–31), especially the discovery of mirror neurons in macaque monkeys laid 
the groundwork for this line of research. One fMRI study28 e.g. showed that linguistic input leads to somatotopic 
activation of the motor and premotor cortex corresponding to either tongue, hand, or foot, respectively for lick, 
pick, or kick. Behavioral, transcranial magnetic stimulation (TMS) and electroencephalography (EEG) studies 
yield similar results (for an overview see17,32).

Because the conventionally used general linear model fMRI analyses with spatial smoothing discard the 
�ne-grained spatial activity patterns that hold important information33, we used a multivariate pattern approach 
on non-smoothed data to increase sensitivity. Others suggested that sensory, cognitive, and motor processes 
manifest themselves as ‘neuronal population codes’34. In contrast, decoding models typically use learning 
algorithms for an informational agenda by showing generalization of robust patterns to new brain activity 
acquisitions35–37. �is way, spatially distributed information can be e�ectively used38,39. Some brain-behavior 
associations might only emerge when simultaneously capturing neural activity in a group of voxels but disappear 
in single-voxel-based approaches, such as GLM analyses. As canonical and mirror neurons are believed to be 
intermingled in the brain, classical approaches with smoothing kernels of multiple millimeters could not capture 
their di�erential activations. Making use of linear support vector machines (SVM) and additionally a recently 
developed analysis method, namely predictive pattern decomposition40, the present study aims to bridge this gap.

Multivariate pattern analysis allows for the detection of subtle, distributed di�erences in brain activation prop-
erties by explicitly accounting for dependencies among voxels38,41. We formally tested for the existence of a dis-
tributed neural signature underlying “human action” as an instance of neural reuse42,43. Knops and colleagues44 
could show that a classi�er that was trained for evolutionarily conserved eye gaze processes was able to decode 
more recent mathematical calculation processes as a possible case of neural reuse in the human brain.

First, we aimed to show that observing objects and reading nouns recruit the same activation patterns. In 
parallel, observing actions and reading verbs also recruit the same related patterns. We therefore planned to test 
previous intuitions on grounding of words in the sensorimotor systems with a new method. Second, and more 
crucially, we aimed to disentangle the two systems during the processing of nouns and objects, as well as verbs 
and actions. If language is indeed grounded in the sensorimotor system, we predicted that nouns (ball, ring, 
cylinder) would re-enact the experience of interacting with objects. Verbs on the other hand should re-enact 
the experience of observing and performing object-directed actions. It is worth noting that the verbs we used 
refer to object directed actions (roll, catch, li�). More speci�cally, we hypothesized that the activation patterns 
common to nouns and objects and common to verbs and actions would recruit the canonical neurons system 
(a�ordances)45 and the mirror neuron system (MNS)26, respectively.

�e present investigation leveraged a toolbox of data-driven machine learning techniques that optimally allowed 
us to automatically extract useful neural patterns from fMRI recordings. First, support vector classi�cation with 
recursive feature extraction in a prede�ned meta-analytic search space allowed for e�ective identi�cation of sub-
tle neural activity changes in the putative human MNS and in canonical neurons. Second, the ensuing �ndings 
were detailed by predictive pattern decomposition to uncover underlying components of variation that gave rise 
to the whole-brain activity in the di�erent experimental conditions. As a neurobiologically informed topograph-
ical prior we bene�tted from a previous coordinate-based meta-analysis46. �is quantitative synthesis isolated the 
consistent neural activity increases during a variety of experimental tasks on “action observation” and “action 
imitation” – two cognitive processes with close relationship to the putative mirror neuron system. Functional 
MRI data was acquired from healthy participants. �e data was then analyzed using Recursive feature extraction 
(RFE) that was applied on the data using a mask obtained from an ALE meta-analysis46. �is way the most rele-
vant voxels could be extracted. To demonstrate the neural recycling e�ect, a 2-fold cross-validation scheme was 
used: �e training data consisted of the fMRI neural activity maps acquired during verb and noun trials from all 
subjects, while the testing data composed these trial-wise fMRI maps from the objects and objects-with-hand 
conditions. As such, we trained the classi�cation algorithm on one subset of the experimental conditions and 
evaluated the �tted classi�cation algorithm on unseen, statistically independent brain images from the remaining 
conditions. We then added additional statistical analyses to corroborate the results. Following, a predictive pat-
tern analysis was conducted, extracting ten whole brain activation patterns (components).

Participants. Twenty healthy native German speaking participants (10 female; mean age 24.4 years; SD 3.14; 
range, 18–31 years) participated in this study, receiving monetary reward for participation. All participants were 
right-handed according to the Edinburgh Handedness Inventory47 (mean score 92.4; SD 8.8) and reported nor-
mal or corrected-to-normal vision. �e study was approved by the local Institutional Review Board of the Medical 
Faculty of the RWTH Aachen University and was conducted according to the Convention of Helsinki. Written 
informed consent was obtained from all participants prior to testing.
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�e experiment consisted of four sessions with four conditions and three stimuli for each condi-
tion. In the �rst condition, named Objects (from here on referred to as “O”), participants were presented with 
3-dimensional geometrical objects. �e three stimuli were a ball, a cube, or a cylinder. �e second condition, 
Implied Actions (IA), showed the same objects as the “O” condition but with the addition of a hand acting on 
them, implying an action. �e three implied actions were rolling, catching or li�ing. Stimuli were chosen to be 
similar to those used in monkey studies where mirror neurons were discovered48,49. �e distinctiveness of the 
objects was assured by a preceding poll (n = 20), which showed that at least 80% of the sample agreed on the 
pictures’ meaning. �e third and fourth condition showed the written names of the objects (nouns) and implied 
actions (verbs) in white letters on a black background (Fig. 1). As the used verbs and nouns are high frequency 
words, the di�erences between verbs and nouns should have been clear to the participants. To avoid possible 
associative learning e�ects, stimuli were never shown at the same time.

Procedure. All participants received an introduction to the task and the stimuli outside of the scanner. All 
stimuli were presented to all participants in a randomized fashion in each of the four runs. �e experiment was 
programmed with the Presentation so�ware package (Neurobehavioral Systems, Albany, CA, USA).

Each trial started with the presentation of a �xation-cross in the center of the screen for 1000 ms, followed by 
the stimulus for 1000 ms. �e stimulus was followed by a random jitter of 800–1000 ms and a blank inter-trial 
interval of 7200 ms. Each block consisted of 60 experimental trials (12 stimuli, 6 pictorial, 6 textual, each individ-
ual stimulus presented a total of 5 times) plus 4 oddball-trials, which were added to keep participants’ attention, 
with a 20 second rest-condition a�er 32 trials. To ensure attentiveness, participants were required to press a but-
ton with their right index �nger whenever they saw a red object or read a pseudo word. �ese trials were excluded 
from the analysis. In the scanner, visual stimuli were presented via MRI compatible 3D goggles (VisuaStim XGA, 
Resonance Technology) with a horizontal viewing angle of 30° and a vertical viewing angle of 22.5°. Data record-
ing and stimulus presentation were accomplished using Presentation (Neurobehavioral Systems, Albany, CA, 
USA).

Imaging was performed on a SIEMENS 3 T magnetic resonance scanner using an 
8-channel head coil. To minimize head movement subject’s heads were stabilized with foam cushions. Participants 
also used foam earplugs for noise protection and noise-reducing headphones.

For fMR imaging we used a T2*- weighted echo planar imaging (EPI) sequence (1600 ms repetition time, 
30 ms echo time, 67° �ip angle, interleaved, 64 × 64-pixel acquisition and reconstruction matrix, 19.2 cm �eld 
of view, 26 slices), with a resulting voxel-size of 3.5 × 3.5 × 3.85 mm and 540 dynamic scans per run, resulting 
in a total of 2160 scans for the whole experiment. T1-weighted anatomical images were also required for all par-
ticipants subsequent to the functional scans with an MPRAGE sequence (TR = 1900 ms, TE = 2.52 ms, FA = 9°, 
FOV = 256 × 256, ST = 1 mm, spatial resolution 0.98 mm × 0.98 mm × 1 mm).

Images were analyzed with SPM10 so�ware (http://www.�l.ion.
ucl.ac.uk/spm/). �e �rst 5 scans of each participant were removed to allow for full T1 saturation, the remaining 
images were slice timing corrected, realigned to mean EPI image. Subsequently the data was co-registered to 

Figure 1. Stimuli and experimental paradigm. (A) shows stimuli for condition “object”, (B) depicts “action”. 
�e corresponding textual stimuli were written in white letters on a black background and presented centrally 
(“Kugel”, “Ring”, “Zylinder” for nouns, and “fangen”, “nehmen”, “rollen” for verbs). Stimuli were presented in a 
randomized fashion. Each trial started with the presentation of a �xation-cross in the center of the screen for 
1000 ms, followed by the stimulus for a further 1000 ms. �e stimulus was followed by a random jitter of 800–
1000 ms and a blank inter-trial interval of 7200 ms.
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the anatomical images and normalized to the Montreal Neurological Institute (MNI; (Montreal Neurological 
Institute; http://www.mni.mcgill.ca/) reference brain. No spatial smoothing was applied for the following statisti-
cal analysis. Data was then realigned and resliced to the mean image. Following, every single trial for every subject 
was modelled as a single condition to allow each stimulus to be used in the MVPA. �is resulted in 60 individual 
modeled trials per subject resulting in 1200 trials in total.

During scanning, participants were exposed to four categories of 
visual stimuli. Pictorial stimuli depicting (1) plain objects and (2) objects with hand-object interactions, and the 
corresponding words (3) nouns and (4) verbs. A linear classi�er, i.e. a SVM, was trained on half the 4800 neural 
activity maps, thus 2400 examples of training data, neural activity maps from 1200 experimental trials with plain 
textual stimuli with verbs versus nouns. Each experimental trial consisted of four neural activity maps, due to 
the long trial duration. �at means each ‘trial’ corresponds to one fMRI whole-brain image and one stimulus 
presentation. �e trained binary classi�cation algorithm (SVM) was then tested on the other 2400 independent 
experimental trials, thus 2400 example as testing data, with more complex geometrical 3D objects in two condi-
tions: plain objects and hand-object interactions. We based our de�nition of the MNS on the neuroanatomical 
structures identi�ed in a previously published quantitative meta-analysis46 (see Fig. 2 and Table 1). �e training 
data comprised the beta-estimate maps from each experimental trial presenting written stimuli with verbs or 
nouns, while the independent test data comprised trials with pictorial stimuli with objects. �e training set and 
test set were standardized using mean centering and unit-variance scaling. �is data transformation compensates 
for a possible wider variation in signal amplitude in some voxels than in others50. A self-learning algorithm (i.e. 
linear support vector machine) was �tted to classify noun versus verb conditions from 2,400 neural activity maps. 
All present multivariate analyses were conducted in an across subject context. �is SVM predicted the class of 
each neural activity map (i.e., action or no action), based on a linear combination of the weighted features. �e 
trained linear classi�cation algorithm was then applied to the non-overlapping experimental conditions with 
complex geometrical 3D objects with or without action-implying hands. �e linear classi�er designated each of 
the 2,400 test maps as action or non-action. Mean averaging across prediction instances yielded out-of-sample 
performance and binomial-tested p-values (cf.,50,51).

Dimensionality reduction was applied to enable statistical tractability and improve functional speci�city. First, 
the gray-matter voxel space was reduced to a meta-analytical de�nition of the mirror-neuron system. �is was 

Figure 2. Mask used for Recursive Feature Extraction. �e mask was created by a conjunction of “observation” 
and “imitation” results, obtained from the results of a meta-analysis46; coordinates are in Montreal Neurological 
Institute space. Abbreviations: A: anterior, P: posterior, L: le�, R: right.

Cluster

Maska RFE resultb

Cluster 
size

Peak MNI coordinates

Cluster size

Peak MNI Coordinates

Macroanantomical locationx Y z x y z

1 275 56 13 18 41 55 13 18 Right BA 44, BA 45

2 229 −54 7 33 27 −54 7 35 Le� BA 44, pars opercularis

3 174 53 −65 4 22 53 −66 4 Right MTG/FFG

4 141 −37 −40 50 19 −37 −40 50 Le� IPL/aSMG

5 130 −50 −70 4 17 −51 −70 4 Le� MTG

6 109 45 −57 −17 15 −53 −50 9 Le� MTG

7 91 −53 −50 9 11 44 −58 −15 Right FFG/ITG

8 36 0 13 53 6 52 −36 48 Le� and right SMA

9 33 51 −36 49 4 1 14 52 Right SMA

Table 1. Peak MNI coordinates and cluster size for meta-analytic mask (le�) and for results of recursive feature 
extraction (RFE) (right) with their corresponding anatomical structures. Abbreviations: Brodmann Area (BA); 
Middle Temporal Gyrus (MTG); Fusiform Gyrus (FFG); Inferior Parietal Lobule (IPL); Inferior Temporal 
Gyrus (ITG); Supplementary Motor Area (SMA), anterior Supramarginal Gyrus (aSMG).asee Fig. 2; bsee Fig. 3.
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obtained by all non-zero voxels of the AND-conjunction between “action observation” and “activation imita-
tion”46. �us, the feature space input to the classi�cation algorithm only considered neural activity information 
from brain voxels that have been signi�cantly associated with many previously published studies on observa-
tion and imitation activation. Second, the optimal number of predictive voxels within the meta-analytically con-
strained brain space was identi�ed by recursive feature extraction. In every step, the number of relevant voxel 
features was reduced by 50% to repeat model �tting and prediction with more parsimonious activity information. 
Importantly, the most discriminatory voxels were chosen from the training set alone and used for feature selec-
tion in the test set. In this way, we could formally test whether a classi�er can exploit multivariate neural activity 
in mirror-neuron regions to generalize to two unseen experimental conditions, which imply action and the lack 
thereof.

�e feasibility of combined representation learning and pattern 
classi�cation has recently been demonstrated by introducing a novel statistical model for multi-task prediction 
based on brain activity maps40. Semi-supervised factored logistic regression is an equally weighted composite 
model of an exploratory auto-encoder module and an inferential task prediction module by logistic regression 
(lambda = 0.5). �e auto-encoder, a generalization of independent component analysis or principal component 
analysis52, discovers the most important spatiotemporally coherent components in the neural activity maps across 
experimental tasks. �e factored logistic regression simultaneously projects the activity maps onto these emerg-
ing components to predict the experimental tasks from relative component implications. �e linked optimization 
goals of data representation into component sets and task prediction based on components result in the set of dis-
tributed activity patterns that are most pertinent in neurobiological terms in explaining each experimental task. 
�ree additional penalty terms were added to the optimization goal. L1-penalization encouraged automatic var-
iable selection (i.e., setting component weights to exactly zero) and L2-penalization encouraged variable shrink-
age (i.e., privileging small component weights), amounting to Elastic-Net-type model regularization. Finally, 
an orthogonality penalty encouraged shrinkage in the o�-diagonal entries of the component covariance matrix 
(i.e., maximal di�erences between each pair of components). �e ensuing compound optimization objective 
was numerically approximated by RMSProp solvers (learning rate = 0.0001, maximal epochs = 500, decay rate 
rho = 0.9, global damping factor epsilon = 0.000001, gradient clipping), a modern variant of stochastic gradient 
descent53. All model weights were initialized by Gaussian random values multiplied by 0.004 (i.e., gain), and bias 
parameters were initialized to 0.

Figure 3. Neural activity pattern of multimodal action signature. �is depicts the model weights underlying 
action-versus-object distinction that successfully generalized across diverse stimulus materials. Results of 
recursive feature extraction (RFE). Coordinates are in Montreal Neurological Institute space. Abbreviations: 
A: Anterior, P: posterior, LOT: lateral occipito-temporal cortex, IPS: intraparietal sulcus, SMA: Supplementary 
motor area, IFG: inferior frontal gyrus.



www.nature.com/scientificreports/

6SCIENTIFIC REPORTS |  (2018) 8:6583 

In this way, we have blended representation modeling and task classi�cation into a uni�ed statistical mod-
eling approach for the discovery of the set of unknown functional compartments that are most predictive for 
mirror-neuron phenomena in the brain.

On completion of voxel-based classi�cation, we recast the correspondence between mirror-neuron function 
and brain activity as a representation problem54. �e current literature supports the notion that a particular men-
tal operation is probably realized between the two extremes of functional segregation into specialized brain regions 
and intertwined brain networks55–58. �is analysis therefore originates from the assumption that the optimal set 
of brain regions, brain networks, or other functional units underlying the mirror-neuron systems has yet to be 
discovered. We performed a decomposition of the task fMRI data into a set of components with spatiotemporally 
coherent neural activity, whose combinations allow for the best classi�cation of the four mirror-neuron-related 
experimental tasks. Instead of assuming the neurobiological validity of voxel units, this analysis serves to dis-
cover those distributed voxel patterns, whether closer to region or to network notions, that are most predictive 
for mirror-neuron processes. All maps were resampled to a common 60 × 72 × 60 space of 3 mm isotropic voxels 
and gray-matter masked (at least 10% tissue probability), with each task map transformed into 79,941 voxels of 
interest representing z-values in gray matter.

All statistical-learning analyses were performed in Python. Scikit-learn59 
provided efficient, unit-tested implementations of state-of-the-art statistical learning algorithms (http://
scikit-learn.org). �is general-purpose machine-learning library was interfaced with the neuroimaging-speci�c 
nilearn library60 for high-dimensional neuroimaging datasets (http://github.com/nilearn/nilearn). Theano 
was used for automatic, numerically stable differentiation of symbolic computation graphs61,62. All Python 
scripts that generated the results are accessible online for reproducibility and reuse (https://github.com/banilo/
horoufchin2017scirep).

Embodiment �eories are increasingly in�uential and many studies point to a 
connection between language and the sensorimotor system7–23. However, the level of integration of language in 
the sensorimotor systems was le� unclear as single-cell recordings in humans are rarely ethical. Employing a new 
approach to analyze fMRI data, the present results are the �rst to show a clearer link on a neural level between 
the sensorimotor system and language systems in humans. By doing this, we could demonstrate common neural 
activity patterns between objects and nouns, and actions and verbs.

For the MVPA analysis the search space was con-
strained to the afore-mentioned meta-analytically de�ned search volume underlying action observation and 
execution (bilateral inferior frontal gyrus (IFG), Inferior parietal sulcus (IPS), MT/V5), the most discriminatory 
neuronal populations were automatically identi�ed by recursive feature extraction (Fig. 3). �e classi�er success-
fully exploited multivariate activity patterns in candidate mirror neuron regions to generalize to two unseen trials 
from experimental conditions with di�erent pictorial stimuli (54% out-of-sample performance, p < 0.000186, 
chance level at 50%). In absolute numbers, the hits and failures in concrete numbers in the original analysis were 
1292 correct and 1108 wrong predictions in a total of 2400 experimental trials with stimuli of di�erent modality. 
�is e�ect is comparable to previous neural recycling studies44. Nevertheless, we have obtained con�rmation in 
a set of three supplementary analyses: i) A jackknife analysis resulted in a mean accuracy of 53.62 +/− 0.44% 
(mean p-value 0.0015 +/− 0.0022), i.e. we achieve a p-value < 0.002 on average when always leaving all data from 
one subject out. ii) A bootstrapping analysis with 100 bootstrapping replications resulted in a mean accuracy of 
53.06 +/− 1.07% (mean p-value 0.028 +/− 0.06), i.e. p < 0.05 across 100 bootstrapping iterations. iii) Using a split 
half analysis with 100 iterations, the mean accuracy was still above chance when only considered random halves 
of the data with an average accuracy of 52.88 +/− 1.26%, despite the considerably lower statistical power due to 
the much fewer training examples. Taken together, across three di�erent types of perturbations of the brain data 
the identi�ed predictive patterns successfully extrapolated to the new task comparison.

In short, a pattern recognition algorithm trained to distinguish nouns from verbs can readily discriminate 
object pictures from actions.

�e multimodal nature of these structured neural encod-
ings for human action was further computationally dissected by a novel machine-learning method40. Predictive 
pattern decomposition was used to obtain the ten most predictive whole brain patterns that consist of latent 
components (Figs 4–6), each of which contained discriminative elements to distinguish between the four exper-
imental conditions. Importantly, this statistical tool extended existing latent factor models by also estimating the 
relative contributions of the discovered multivariate patterns to the four experimental conditions to be predicted. 
�e generalization of action speci�c processing patterns in the MNS is thus complemented by formally isolating 
object speci�c processing patterns in the canonical neurons.

Component 3 shows a pattern of strong activation of IFG (BA 44 and BA 45), supplementary motor area 
(SMA), BA 18 (LOTC), BA 21, caudate nucleus, and right parahippocampal activation (Fig. 5). �ese areas have 
previously been described in either object processing7,63,64 or noun processing65. Supporting the hypothesis of the 
current study, component 3 exhibits a coherent activity decrease during action-related experimental conditions 
and in verb processing in the ventral and dorsal medial prefrontal cortex, extending into the anterior cingulate 
cortex, posterior cingulate cortex / precuneus, bilateral temporo-parietal junction, right temporal pole and le� 
middle temporal gyrus.

Component 6 was activated by both word categories. It showed strong activation of Brodmann Area (BA) 44, 
medio-temporal gyrus (MTG), le� lateral occipito-temporal cortex (LOTC), and right caudate, superior middle 
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occipital cortex bilaterally and retrosplenial activation, further activation of Heschl’s gyrus (Fig. 5). �ese areas 
are known to be strongly involved in language processing66.

Also, activations of for component 7 are known to be involved in language processing but also objects pro-
cessing. It showed activation of right IFG (BA 44 and BA 45), parietal/postcentral areas, middle frontal gyrus, 
fusiform gyrus, cuneus, thalamus, and putamen (Fig. 5). All the afore-mentioned areas are involved in object 
processing, including recognition and naming of objects.

Discussion
�e aim of our study was to use the MVPA and the predictive pattern decomposition analysis techniques to �nd 
out whether a common neural activation pattern exists in the human brain for nouns and objects, or verbs and 
actions, respectively. Further on we hypothesized that the common representation of actions and verbs would 
activate the human homologue of the mirror neuron system (MNS) and the representation of objects and nouns 
would activate the human canonical neurons. �e two groups of neuronal populations, i.e. MNS and canonical 
neuron system, are believed to be intermingled or in very close proximity to each other in the human parietal and 
premotor areas. To date, disentanglement of di�erential activity responses with conventional fMRI analyses has 
not been achieved. �e present fMRI study aimed to �ll this gap.

�e results of the MVPA indeed showed that a linear SVM which was trained on words to discriminate verbs 
from nouns could successfully generalize to also categorize pictorial stimuli of actions from objects. Furthermore, 
as hypothesized the voxels holding the most information for this categorization were found in areas commonly 
referred to as human homologues for the mirror neuron system46, as it has been originally found in macaque 
monkeys. Based on the afore-mentioned �ndings, we believe we have disentangled neural activations of the adja-
cent canonical and mirror neuron systems by breaking them into overlapping but independent activation pat-
terns. Each of these systems provides unique contributions to the processing of nouns versus objects, and verbs 
versus actions. To con�rm this new approach, we took a closer look at each component, restricting ourselves to 
the description of the most relevant components. �e inspection of component 3 provides the best con�rmation 

Figure 4. Results of the predictive pattern decomposition. Relative contributions of each of the ten most 
predictive patterns are shown for each of the stimulus conditions. Latent components describe the weight each 
pattern of activation adds to each of the categories on the y-axis. Component 3 for example shows common 
activation for objects and nouns, and common decrease in activation for action and verbs. Note that the plus 
and minus signs are coincidence, i.e. actions and verbs, and objects and nouns, are connected equally in this 
component, respectively.

Figure 5. Activations and  deactivations for component 3, 6, and 7 (from top to bottom). Slices at x −63, 47, 
−37, −4, and z −16, respectively. Color bars indicate corresponding z-values.
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of our hypothesis. On the one hand, it contains an expression of similar activation patterns for objects and nouns 
and on the other hand, it shows a pattern of common decreased neural activation for actions and verbs.

�e areas activated for objects and nouns include, among others, the anterior temporal cortex which plays a 
pivotal role in processing semantic knowledge for objects and words67, and the posterior IPS which is involved in 
processing of object properties68,69.

�e areas that show a common decrease in activation for actions and verbs include the inferior frontal gyrus 
as well as the AIP, which are in accordance with our understanding of MNS localization in the human brain46.

The activations for objects and nouns, and the decreases in activation for actions and verbs thus are 
co-localized (see Fig. 5) in the premotor cortex as well as the parietal cortex, further corroborating the assump-
tion that in humans the mirror neuron system and the canonical system are in close proximity to each other.

To substantiate the results of the predictive pattern decomposition, we looked closer at component 6, which 
is activated for both verbal stimuli, and component 7, which is primarily related to object and noun processing. 
Component 6 shows activation in the IFG (Broca’s region), IPL, MTG, MFG, and Heschl’s gyrus, all consistent 
with typical language processing areas65,70–72. Component 7 on the other hand shows activation in IFG, MTL, 
IPL, and the fusiform gyrus, i.e. areas that are involved in object processing as well as word processing (here 
nouns)73–75. �e resulting activations further con�rm our approach.

For the component 3 we also found interesting additional activations in a set of regions (ventral and dorsal 
medial prefrontal cortex, extending into the anterior cingulate cortex, posterior cingulate cortex / precuneus, 
bilateral temporo-parietal junction, right temporal pole and le� middle temporal gyrus), collectively known as 
the default-mode network (DMN). DMN was found to drive task-speci�c activity patterns when external cues 
indicate any form of action, but to decrease in the absence of action stimuli. It indeed has been proposed that 
the DMN constantly generates predictions of potential future events based on extracted environmental regu-
larities76,77. �is contention also dovetails with a possible role in constructing probabilistic mental scenes that 
in�uence ongoing decision-making by estimating behavioral outcome schedules78,79.

We would also like to discuss our data with respect to neuronal recycling theories42,43,80. �e concepts of these 
theories state that preexisting neural systems can be re-used for more novel tasks. One example for this is reading, 
an evolutionary novel skill that is not innate but has to be learned. It is argued that these cultural inventions are 
embedded in neural niches that �t the required functions and become specialized a�er extensive training. �e 
present results �t in with these theories, that somatosensory systems are re-used for further language and read-
ing development. While we do not claim that all language must be embedded in the somatosensory systems, we 
argue that the present results show that at least speci�c action verbs seem to be represented in the somatosensory 
systems, more precisely the human homologue of the mirror neuron system originally found in macaque mon-
keys. �e fact that the same methods show similar results for objects and their corresponding words, adds further 
support for this theory. �e re-used neural structures used for this category of words �t the canonical neurons, 
also found to be localized adjacent to the mirror neuron system, not activated by action but by plain sight of 
manipulable objects.

In a nutshell, behavioral studies have suggested that nouns and objects have common underlying neural 
mechanisms12,81–83. �e present fMRI study shows a clear overlap of brain areas and similarities of patterns during 
the processing of objects and nouns.

Figure 6. Overview of all 10 components extracted by predictive pattern decomposition. Red shows activation, 
green deactivation. x at 4.
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More broadly, predictive pattern decomposition hence identi�es a potential coupling mechanism between 
the two large-scale systems of MNS, canonical neuron system, and DMN during action perception. �e present 
�ndings therefore complement the region- and network-centric interpretations in the existing literature with an 
invigorating view of functional brain organization based on dynamic network recon�guration55.

Taken together, our �ndings from combined computational and experimental approaches strongly support the 
hypothesis that functionally mirror neurons and canonical neurons act in parallel and in very close anatomical 
proximity. Further, these results con�rm the predictions of embodied and grounded cognition theories. Based 
on neural recycling theories, which are long embraced by the experimental psychology communities, our results 
demonstrate that words, such as verbs and nouns, are grounded in the sensorimotor system (see Component 6), 
and that they activate the canonical and mirror neuron systems in subtly di�erent ways. Speci�cally, the common 
activation patterns of objects and nouns (Component 3 and 7) and of actions and verbs (see Fig. 6) engage brain 
areas typically associated with the canonical and the mirror neuron systems, respectively. �us, we can state that 
our results show that the two grammatical classes nouns and verbs activate the canonical or the mirror neuron 
system which indicates that each has a distinct functional organization. At the same time however, the overlap-
ping activation areas suggest that our semantic system is highly integrated and distributed. In conclusion, verbs 
and implied actions recruit the same cognitive networks that allow us to interact with objects and individuals in 
everyday life.
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