001     845485
005     20220930130147.0
024 7 _ |a 10.1155/2018/1350692
|2 doi
024 7 _ |a 2314-4904
|2 ISSN
024 7 _ |a 2314-4912
|2 ISSN
024 7 _ |a 2128/18369
|2 Handle
024 7 _ |a WOS:000432190600001
|2 WOS
024 7 _ |a altmetric:40766806
|2 altmetric
037 _ _ |a FZJ-2018-02719
082 _ _ |a 620
100 1 _ |a Hasasneh, Ahmad
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Deep Learning Approach for Automatic Classification of Ocular and Cardiac Artifacts in MEG Data
260 _ _ |a New York, NY
|c 2018
|b Hindawi Publishing
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525330008_15478
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We propose an artifact classification scheme based on a combined deep and convolutional neural network (DCNN) model, to automatically identify cardiac and ocular artifacts from neuromagnetic data, without the need for additional electrocardiogram (ECG) and electrooculogram (EOG) recordings. From independent components, the model uses both the spatial and temporal information of the decomposed magnetoencephalography (MEG) data. In total, 7122 samples were used after data augmentation, in which task and nontask related MEG recordings from 48 subjects served as the database for this study. Artifact rejection was applied using the combined model, which achieved a sensitivity and specificity of 91.8% and 97.4%, respectively. The overall accuracy of the model was validated using a cross-validation test and revealed a median accuracy of 94.4%, indicating high reliability of the DCNN-based artifact removal in task and nontask related MEG experiments. The major advantages of the proposed method are as follows: (1) it is a fully automated and user independent workflow of artifact classification in MEG data; (2) once the model is trained there is no need for auxiliary signal recordings; (3) the flexibility in the model design and training allows for various modalities (MEG/EEG) and various sensor types.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kampel, Nikolas
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Sripad, Praveen
|0 P:(DE-Juel1)165677
|b 2
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 3
|u fzj
700 1 _ |a Dammers, Jürgen
|0 P:(DE-Juel1)131757
|b 4
|e Corresponding author
773 _ _ |a 10.1155/2018/1350692
|g Vol. 2018, p. 1 - 10
|0 PERI:(DE-600)2736230-9
|p 1 - 10
|t Journal of Engineering
|v 2018
|y 2018
|x 2314-4912
856 4 _ |u https://juser.fz-juelich.de/record/845485/files/1350692.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:845485
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165677
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131757
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21