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Neutron diffraction study and theoretical analysis of the antiferromagnetic order and the diffuse
scattering in the layered kagome system CaBaCo,Fe,0-,
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The hexagonal swedenborgite, CaBaCo,Fe, 07, is a chiral frustrated antiferromagnet, in which magnetic ions
form alternating kagome and triangular layers. We observe a long-range /3 x /3 antiferromagnetic order setting
in below Ty = 160 K by neutron diffraction on single crystals of CaBaCo,Fe,0;. Both magnetization and
polarized neutron single crystal diffraction measurements show that close to Ty spins lie predominantly in the
ab plane, while upon cooling the spin structure becomes increasingly canted due to Dzyaloshinskii-Moriya
interactions. The ordered structure can be described and refined within the magnetic space group P31m’. Diffuse
scattering between the magnetic peaks reveals that the spin order is partial. Monte Carlo simulations based
on a Heisenberg model with two nearest-neighbor exchange interactions show a similar diffuse scattering and
coexistence of the v/3 x /3 order with disorder. The coexistence can be explained by the freedom to vary spins
without affecting the long-range order, which gives rise to ground-state degeneracy. Polarization analysis of
the magnetic peaks indicates the presence of long-period cycloidal spin correlations resulting from the broken
inversion symmetry of the lattice, in agreement with our symmetry analysis.
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I. INTRODUCTION

Frustrated magnetism gives rise to a wide range of exciting
phenomena, such as complex noncollinear spin structures,
nematic orders, spin-liquid behavior, and strong responses
resulting from large degeneracy of magnetic states [1,2].
Noncollinear spin orders, e.g., spirals and skyrmions, are
also found in chiral magnets, where they are stabilized by
relativistic Dzyaloshinskii-Moriya interactions [3,4]. Recently
synthesized Fe- and Co-based compounds with the hexagonal
swedenborgite structure [5—7] are both magnetically frustrated
and chiral. Magnetic transition metal ions in swedenborgites
form alternating kagome and triangular layers, which leads
to geometric frustration. The inversion symmetry is broken
by the parallel alignment of oxygen tetrahedra coordinating
the magnetic ions. Despite strong antiferromagnetic (AFM)
exchange interactions between neighboring spins, most of
these compounds show no long-range magnetic order down
to lowest temperatures and exhibit instead spin-liquid or spin-
glass like behavior [8]. Diffuse neutron scattering reveals a
variety of spin correlations in magnetically disordered swe-
denborgites: strongly one-dimensional correlations along the
direction normal to the kagome layers in YBaCo407 [9,10]
and YBaFeCo3;0; [11] and two- or three-dimensional corre-
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lation patterns in Y 5CagsBaCosO7 [12,13]. The compound
CaBaCo,Fe, 07 studied in this work is the only swedenborgite
reported so far that shows a three-dimensional long-range
AFM order within the ideal hexagonal structure [14]. In
the first approximation, swedenborgites can be described by
a Heisenberg model with only two exchange interactions
between classical spins: Ji, (between the nearest-neighbor
spins in the Kagome plane) and J,: (between the neighboring
kagome and triangular sites). For a suitable choice of the
ratio T = Jou/Jin, this model provides a good description of
the observed diffuse scattering in YBaCo4O; [9] and reveals
a variety of partially ordered and disordered ground states
originating from the geometric frustration of the swedenborgite
lattice structure [10]. This behavior originates from the double
tetrahedra building blocks formed by the magnetic ions. The
ground states of classical spins satisfy constraints (a “sum rule”
[9,10]), which determine their degeneracy and spin ordering.
Recent numerical studies [15] showed that a large part of the
phase diagram of this model is occupied by a spin-liquid state
(see Fig. 1), in which the dimensionality of spin correlations
depends on temperature and t. The phase diagram includes the
coplanar phase characteristic of the two-dimensional kagome
lattice [16,17] and the region of a nematic order selected
by the entropic order-by-disorder mechanism as well as the
magnetically ordered state stabilized above a critical value of 7.

Here, we report the results of neutron scattering experiments
on high-quality large single crystals of CaBaCo,Fe,0;. We
determined the structure of magnetically ordered states of this
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FIG. 1. Phase diagram adapted from Ref. [15] with additional
labels from Ref. [10]. For t = Jou/Jin = 1.5, the ground state is
fully ordered in a +/3 x +/3 AF structure. For t < 1.5, a manifold of
ground-state degeneracy appears leading to acomplex and rich variety
of spin correlations. Note the AF order persists into the proposed
spin-liquid regime.

compound and studied the residual spin disorder by diffuse
neutron scattering. We used rigorous polarization analysis
of the Bragg and diffuse neutron scatterings to determine
anisotropy of long-range magnetic orders and short-range spin
correlations. The same technique is used to probe the spin
chirality vector

C= [SR X SRr] (1)

defined on the bond connecting the canted spins S at the sites
R and R’. The chirality originates from the Dzyaloshinskii-
Moriya (DM) interactions which are allowed in the swedenbor-
gite lattice as the tetrahedral oxygen coordination of magnetic
sites breaks the inversion symmetry. We performed Monte
Carlo simulations based on the Heisenberg model focusing on
the diffuse scattering observed experimentally and discuss the
role of DM interactions. The observation of diffuse scattering
can be traced back to a degeneracy region found by analyzing
the energy of the ground state. Considering the magnetic
ordering, the structure of the intensity distribution indicates
long periodic modulations to be energetically favored, whose
nature was investigated using symmetry analysis.

II. EXPERIMENT AND RESULTS

A. Experimental methods

The single crystal specimens, 0.03 ccm and 2 ccm, for
magnetization measurements and neutron diffraction experi-
ments, respectively, were synthesized using the same method
described previously in detail [14].

Magnetization measurements were performed with a vibrat-
ing sample magnetometer option from Quantum Design. Both
field-cooled (FC) and zero-field-cooled (ZFC) curves were
measured. For the FC curve the field was applied at 350 K
then the sample was cooled down, while for the ZFC curve
the field was applied at base temperature. Upon heating the
magnetic moment was measured.

Single crystal neutron scattering experiments were per-
formed on the cold neutron instruments DNS (Diffuse Neutron
Scattering) at the Heinz Maier-Leibnitz Zentrum (Garching,
Germany) and Morpheus at the Swiss Spallation Neutron
Source SINQ, Paul Scherrer Institute (Villigen, Switzerland).

Data for structure refinement were taken on Morpheus in
the four-circle geometry with 40’ collimation at 4.7 A using a
single He-3 detector integrating intensities in rocking scans. In
addition, to distinguish the magnetic scattering contributions
near the Bragg peaks with high Q resolution, we performed po-
larization analysis using multilayer polarizers before and after
the sample and a Mezei-type flipper in front of the sample. The
polarization was maintained by permanent magnets supplying
guide fields on the incoming and final beam paths and around
the sample mounted on the Eulerian cradle.

Diffuse scattering was measured on DNS with a wavelength
of 4.7 A using XYZ-polarization analysis for a wide angular
detector coverage in the horizontal scattering plane [18]. Here,
we measured all of the diagonal polarization channels for
x, y, z directions as well as the spin-flip, non-spin-flip, and
polarization-reversal processes, which allows for a distinction
of in-plane and out-of-plane magnetic scattering and in partic-
ular also for the determination of chiral magnetic scattering.

B. XYZ-polarization analysis

For XYZ-polarization analysis the neutron polarization P at
the sample is rotated subsequently by applied magnetic fields
into the orthogonal directions x, y, z. The coordinate system
follows the usual convention of &[|Q, &, in the horizontal
scattering plane, and €, vertical. This also applies to the
Fourier transforms M, (Q) of the magnetic moments with
v € {x,y,z}. Note that due to dipolar interaction only magnetic
moments perpendicular to the scattering vector Q contribute
to magnetic scattering. Hence, M1 q = (0,M,,M_), and M, is
zero. 1, and I,; are defined as the non-spin-flip and spin-flip
scattering intensity, with the first and second indices referring
to the polarization direction of the incident and scattered
neutrons, respectively. Combining different channels allows
us to separate the different magnetic scattering contributions
[19,20]: the total magnetic scattering |IM LQ|2 = %(Ix; + &),
the scattering from moments in the horizontal scattering plane
|My|* ~ 1(Iz + L), the scattering from moments perpen-
dicular to this plane |M.|* ~ %(IZZ + Izz). Alternatively, a
simplified analysis (used for the four-circle measurements)
is possible from the spin-flip and non-spin-flip intensities
withP | e, |M,|* ~ I, and |M.|* ~ I, by neglecting weak
contributions from nuclear coherent and incoherent scattering.

Finally, the chiral magnetic scattering is obtained by

= Ml — Ie) = iM g x M1g) - &
CQ) - &,. ©)

The measured wave-vector-dependent chirality C(Q) results
from the sinus-Fourier transform of M,M_, the spin com-
ponents perpendicular to Q. Its antisymmetric property with
respect to the propagation vector is sensitive to the specific chi-
rality of the system and distinguishes the helical and cycloidal
character of spiral spin structures. Among all chiral structures
and their possible orientations, the chiral scattering C - &, is
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FIG. 2. Temperature dependence of the zero-field-cooled (blue
line) and field-cooled (red line) magnetization induced by an external
field of H = 0.1 T. Below 160 K, the magnetic susceptibility of
CaBaCo,Fe,0; becomes anisotropic, being larger for H || ¢ than for
H L c, which indicates the onset of an antiferromagnetic order with
a preferential orientation of the ordered spins in the ab plane.

sensitive to the components of a helix propagating parallel to
Q and shows an antisymmetry along Q. Similarly, itis sensitive
to the components of a cycloid propagating perpendicular to
Q, showing an antisymmetry along this direction. In the case of
the wide angular detector coverage of DNS, the more general
approach for multidetector systems is applied [20].

C. Magnetic properties

The magnetic susceptibility of a single crystal specimen
measured in an external field of 0.1 T parallel and perpendicular
to the c axis is displayed in Fig. 2. Below Ty = 160 K the mag-
netic susceptibility depends on the applied field direction. The
kink observed for H L c reflects the onset of an antiferromag-
netic order and the stronger response to H || ¢ indicates that
the ordered spins are oriented predominantly in the ab plane.
However, at low temperatures the magnetic susceptibilities for
H || cand H L ¢ gradually converge, indicating some kind of
spin reorientation. The induced moments per transition metal
(TM) ion are rather small, as can be expected for a system
with strong AFM exchange interactions. With respect to the
weak signal from the sample, the current data are more precise,
however, consistent with our earlier measurements [14].

Remarkably, the zero-field and field-cooled data split at low
temperatures. Measurements of the field dependence of the
magnetization reveal the presence of a weak ferromagnetic
component with a remanence of &5 x 107 ug per TM ion
at 2 T, which is essentially independent of the applied field
direction.

D. Magnetic structure determination

For magnetic structure determination from neutron single
crystal diffraction, we have collected two data sets well below
the AFM ordering temperature, 7y = 160 K, namely at 80
and 4 K. This choice is also motivated by the magnetic

susceptibility data showing the largest anisotropy at 80 K and a
spin reorientation at lower temperatures. The data sets contain
116 magnetic peaks in each case at the magnetic ordering
propagation vector q. = (%,%,O) of the crystallographic re-
ciprocal lattice units, e.g., the K point of the corresponding
Brillouin zone (BZ) boundary. Intensities were taken in rocking
scans with appropriate background subtraction. No attempt
was made to determine the ferromagnetic contributions to the
fundamental peaks of the crystallographic unit cell, because
these contributions are unmeasurably small according to the
magnetization measurements.

In the magnetic structure analysis, we considered the six
different magnetic space groups proposed by the software
MAXMAGN [21] from the Bilbao crystallographic server for
the larger unit cell (3a,3b,c) based on the position of magnetic
ions and the propagation vector q.: P63;¢'m’ (No. 185.201),
P6icm’ (No. 185.200), P65c'm (No. 185.199), P63cm (No.
185.197), P31m’ (No. 157.55), and P31m (No. 157.53). In
the first four cases, the trigonal spins are restricted either to
be parallel to the ¢ axis or to have zero moment for com-
patibility with the sixfold symmetry of the hexagonal space
group. The solutions with zero moment on the trigonal sites,
P6gc’m and P6scm, can be discarded as inconsistent. The
structural refinements within the remaining space groups were
performed using simulated annealing within FullProf [22]. The
refinements for all hexagonal space groups were significantly
worse than for P31m’ and P31m, which describe the measured
data well. In order to reduce the number of free parameters, we
assumed that magnetic moments on the kagome and trigonal
sites have the same magnitude respectively. Furthermore, for
two magnetic peaks only one of the symmetry-equivalent ones
could be measured, making these peaks prone to systematic
errors. Thus, these have been excluded from the refinements.
Note that a magnetic field applied perpendicular to the ¢ axis
would lower the symmetry further; while an applied field or
a ferromagnetic component parallel to the ¢ axis would break
P31m symmetry, it is compatible with P31m’ symmetry as all
spins can cant out-of-plane. Following the order-by-disorder
principle the latter solution with higher entropy is selected
[23]. A comparison between the magnetic and fundamental
peaks, using the crystallographic model of CaBaCo,Fe,0;
[14], allows for a refinement of the magnetic moments on an
absolute scale. The results are shown in Table I.

The magnetic structures with P31m’ and P31m symmetry
obtained at 80 K are displayed in Fig. 3. Both are close to
the 120° block spin ordering with the negative and positive
vector chirality found for the Heisenberg model with two AFM
exchange interactions, Ji, and Joy, for © = Jou/Jin = 3/2
(see the inset in Fig. 1). The refined structures display the
same antiparallel alignment between neighboring trigonal and
kagome spins. At the same time, where allowed by symmetry
especially the kagome spins cant in and out of the ab plane
(see Table I), characteristic of a partial spin ordering in the
Heisenberg model with t < 3/2 [10].

E. Magnetic scattering and polarization analysis

The measured integrated intensities of Bragg peaks only
provide an insight into the average ordered part of the spin
structure, and the relatively small ordered moment found in the
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TABLE I. Refinement results from simulated annealing applied
to the reduced peak set for P31m’. Only the independent spins are
listed; others follow from the symmetry operations of the respective
magnetic space group. Parameters fixed by symmetry are marked with
* and those linked by the model used in the refinement with same
number ”. The spins on the triangular (tri) sites are on the special
Wyckoff position 2a and the kagome (kag) sites on 6¢. The offset of
the azimuthal angle to the mirror plane through the center of the unit
cell is noted as A¢. Af denotes the deviation of the polar angle from
the coplanar spin configuration (see inset of Fig. 1).

80K 4K
site Sus) AP(?) AO(C) S(up) AP() AO()
tri, 1 2.731 180* 0.18  2.63! 180* —0.34
tri,2 2.73! 180* 0.01 2.63! 180* 0.01
kag,1  2.19° 0.45 11.19  2.157 0.45 15.84
kag2 2.19° 0* —38.6 2.15% 0* —44.5
kag,3 2.19% 9.73 —12.08 2.15% 11.89 —12.01
kag4d  2.19° 0* 4146  2.157 0* 454

structure determination indicates that the unordered part exists
even at low temperatures. To study the wave vector dependence
of the magnetic scattering as well as the diffuse scattering
related to disorder and short-range correlations in further detail,
we performed a series of diffraction experiments, where we
also applied polarization analysis to separate specific magnetic
contributions. Part of these experiments were performed at
the DNS instrument at MLZ providing a large overview of
the reciprocal space. Using the X YZ-polarization analysis, the
total magnetic scattering has been separated from the nuclear
scattering and background [20].

kag 4
kag 1' kag 1
tri 1,2
kag 3 kag 3'
kag 2

(b)

FIG. 3. Magnetic structures with P31m’ symmetry (a) and P31m
symmetry (b), refined from a peak set of integrated intensities
measured at 80 K. We use the notations of Ref. [24] for magnetic
symmetry operation symbols.
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FIG. 4. (a) Measured total magnetic scattering in the (hk0) plane
at T = 4 K. The magnetic intensity |M lle has been separated by
the XYZ polarization technique removing nuclear scattering and
other background. The log scale reveals significant diffuse scattering.
(b) Chiral scattering component obtained from the difference in the
spin-flip scattering with the polarization along and opposite to Q (red
and blue spots). The antisymmetry perpendicular to Q reveals the
cycloidal character of spiral spin correlations.

Figure 4(a) shows the magnetic scattering |M LQ|2 in the
(hkQ) plane at 4 K on a logarithmic scale to better reveal the
diffuse scattering. The magnetic peaks are found at the K points
of the BZ corresponding to a propagation vector q. = (%, %,0).
Additional measurements in (hhl) and (h0!) scattering planes
do not show any further magnetic superstructure. Significant
diffuse scattering is seen near the magnetic Bragg peaks
and along the Brillouin zone boundaries, indicating that the
magnetic structure is only partially ordered and has a large
entropy even at 4 K. The chiral intensity related to (S x §')
has been obtained by polarization reversal and is shown in
Fig. 4(b). The antisymmetry of the chiral signal in Q space with
positive and negative intensities near the K points is shown
here on a linear scale. While a helical spiral would give rise to
an antisymmetric intensity along the scattering vector Q, the
observed antisymmetry perpendicular to Q is characteristic of
a cycloidal spiral modulation in the (2k0) plane.

The intensity distribution at the (%‘,%,0) position and its
polarization dependence was studied in further detail, as shown
in Fig. 5 on a linear scale. Compared to the nuclear peaks, the
magnetic peaks exhibit a clearly richer structure. In addition
to the total magnetic scattering [Fig. 5(a)], we show the contri-
butions of the spin components parallel and perpendicular to
the ab plane [Figs. 5(b) and 5(c), respectively]. Apparently, the
in-plane spin components, |My|2, largely contribute to the
peak maxima with q.. The signal from the out-of-plane spin
components, |Mz|2, close to the K point is weaker and more
evenly distributed. It can be seen as a precursor of a threefold
peak splitting due to the formation of long-period modulated
structures. According to Eq. (2), the chiral intensity describes
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FIG. 5. The magnetic scattering at 7 = 4 K near the (%,%,0)
position with fine structure extending along the BZ boundaries: (a)
total scattering, (b) contribution from spin components parallel to
the ab plane, (c) contribution from spin components parallel to the
¢ direction, (d) chiral signal reveals a purely cycloidal character
exhibiting an antisymmetry perpendicular to Q. Possible precursors
of a long-periodic order are marked with *.

the correlation between the in-plane and out-of-plane spin
components M, M. The pattern in Fig. 5(d) shows with high
resolution the characteristic antisymmetry from cycloids per-
pendicular to Q. The maxima positions in the chiral scattering
coincide with two of the precursors; however, the propagation
vector of the third one deviates slightly from Q leading to
an asymmetric yet weak chiral scattering. Recent experiments
actually revealed the formation of a complex long periodic
order at low temperatures, which will be discussed separately
[25].

The DNS instrument was also used to measure temperature
dependence of various magnetic contributions (see Fig. 6).
The temperature dependence of the integrated total magnetic
intensity of the peak (%,%,0) as well as the contribution
of the in-plane spin components seem to follow a typical
continuous phase transition. In contrast, |M,|*> exhibits an
unusual temperature dependence, which closely follows the
magnitude of the chiral signal obtained by integrating the
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FIG. 6. Temperature dependence of the scalar and chiral magnetic
scattering contributions near the peak (%, %,0).

FIG. 7. Sublattice of magnetic ions located in the O tetrahedra
drawn using VESTA [26], exchange interactions (cyan lines), and
Dzyaloshinskii-Moriya interactions (blue vectors). Ji, denotes the
nearest-neighbor exchange interaction in the kagome layers and
Jout 18 the interaction between the nearest-neighbor spins in the
kagome and the triangular layers. The triangles show schematically
the superexchange path between the magnetic ions via the O sites.
The blue arrows indicate the directions of the Dzyaloshinskii-Moriya
vectors, Dincou-

absolute values of the antisymmetric modulation. Although
the chiral signal appears simultaneously with the magnetic
order at 7y, it grows much slower below Ty than the total
peak intensity, which suggests that the chiral order has a
larger critical exponent than the magnetic order parameter.
The out-of-plane spin contribution to the scattering increases
with decreasing temperature (below 80 K) and is accompanied
by a decrease of the in-plane contribution, so that at lowest
temperatures the two contributions become almost equal. This
result is in agreement with the spin reorientation deduced from
the temperature dependence of the magnetic susceptibility
(see Fig. 2). The simultaneous increase of the chiral signal
shows, however, that the low-temperature spin structure is
not just more isotropic but that it is more complex than the
high-temperature spin structure.

III. THEORETICAL ANALYSIS AND MODELING

A. Exchange interactions and Heisenberg model

The magnetic sublattice of CaBaCo,Fe,0O7 is built up by
corner-sharing CoO4 and FeOy tetrahedra forming alternating
kagome and triangular layers (see Fig. 7). The oxygen ions
impose a tetrahedral crystal field splitting on transition metal
sites, with e, levels being lower in energy than the #,, levels.
The high-spin Co®>" and Fe** ions have the electronic config-
uration e}3, and e313,, respectively, as depicted in Fig. 8(a).

The Heisenberg exchange interactions between neighboring
transition metal ions are expected to be antiferromagnetic
[10,27]. Moreover, Co-Co, Co-Fe, and Fe-Fe interactions
are expected to be of comparable strength, since both Fe
and Co have three #,, electrons with parallel spins, which
give the largest contribution to the superexchange [28-30].
The relevant orbitals are shown in Fig. 8(b), where we use
a pseudocubic frame with the [111] direction along the ¢
axis. The bond lengths obtained from single crystal neutron
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FIG. 8. Superexchange between half-filled 1,, shells of Co and
Fe ions. (a) Crystal-field splitting and electronic configurations of
tetrahedrally coordinated Co*" and Fe** ions. (b) 1, orbitals on three
neighboring kagome sites (left), which dominate the superexchange
due to the relatively large overlap with the p orbitals of oxygen ions
at the edges of the tetrahedra. The same type of exchange takes place
between the ions on kagome and triangular sites (right).

diffraction show deviations from the ideal tetrahedral stacking
[14]. In our spin model of CaBaCo,Fe,;0; we neglect these
deviations and consider only one in-plane and one out-of-plane
nearest-neighbor exchange interaction constant, Ji, and Joy,
respectively.

While it is clear that additional interactions are needed
to account for the observed magnetic anisotropy and chiral
correlations, we first discuss our observations within a minimal
Heisenberg model [10]:

H=—JuY Si-S;—Joud . S-S, 3)
(t.)) (i.))

with Jin, Jour < 0 and S; = 1. The sum in the first term goes
over pairs of nearest-neighbor spins in the kagome layers and
the second sum is over the bonds connecting nearest-neighbor
triangular and kagome sites.

B. Frustration parameter t

We first consider a triangular bipyramid made of a kagome
triangle with the spins Sy, S,, and S3, (red triangle in Fig. 9)
capped with trigonal sites above and below with the spins S4
and Ss. In the minimal energy state the spins on the trigonal
sites are antiparallel to the total spin of the kagome triangle,

Sa
Sy =85 = 2, 4
4 =Ss S, 4
where
SA=81+8+8S;3 ()

and Sp = |Sa|. Minimization of the bipyramid energy,
%Jin(Si — 3) 4+ 2JouSa, with respect to Sa, gives [10]
3 t>=3/2,
Sa = {2z, T <3/2, ©)

@) b S3

W e

S =8, S,

|Sl + 82 + Sg| = 27’

g . S| +S,4+85=0
3+a — 93

FIG. 9. (a) The spins S;, S,, and S; in the bipyramid triangle
(IS1 +S2 + S3] = 27) and the spins in the bipyramidal triangles,
S =S8, S, =8,, and S = S34,, forming the 120° state (S} +
S, + 85 = 0). (b) In the spiral ground states spins S, and S; are
obtained by rotating the spins S} and S} through the angles ¢, and
—,, respectively.

where T = Jou/Jin > 0.Fort > 3/2,S; = S, = S3, while for
T < 3/2 there are many ways to add these three spins into the
total spin 27.

Next we consider antiferromagnetic exchange interactions
between the bipyramids. The bonds in the kagome layers
connecting three neighboring bipyramids form triangles (green
triangle in Fig. 9). The exchange energy is minimal, if the spins
in all such interpyramidal triangles are added to 0. Fort > 3/2,
this is achieved in the 120° state formed by the total spins of the
bipyramids (see insert in Fig. 1). This ground state is unique up
to the global rotation of all spins and the change of sign of the
vector spin chirality. For t < 3/2, the freedom in adding the
spins in the kagome triangles into the total spin 27 gives rise to
many ways in which the spins in interpyramidal triangles add
to 0, resulting in degenerate classical ground states.

C. Spiral ground states

We consider a particular class of ground states—the spiral
ground states—constructed in the following way. We chose
8 spins in one unit cell, which contains two spin triangles
in neighboring kagome layers and two spins on trigonal sites
between them. Spins in other unit cells are then obtained from
the 8 spins by rotation around an axis, n, through the angle
¢ = Qy - R, where Q is the spiral wave vector parallel to the
ab plane and R is the distance between the cells. Although the
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spiral ground states are a small part of all classical ground
states, they have a massive degeneracy: for v < 3/2, their
energy is independent of the spiral wave vector Q;, for all
Q, from a region G, of the reciprocal space.

Consider the interpyramidal triangle formed by the spins
Si, S;_,, and Sz, (green triangle in Fig. 9), such that S| +
S>_p + S344 = 0. In the spiral state S3;, = RH(QDH)S3, where
Ru(e) is the operator of spin rotation around n through the
angle ¢ and ¢, = 27 Q,+, because the spin Sz, is separated
from S; by the vector a. Similarly, S;_, = Ru(—9)S5, be-
cause S,_, is separated from S, by the vector —b. We then
have

Si + Ra(—@p)S2 + Ru(g,)S3 = 0. (7

By construction, Eq. (7) guarantees that the total spin of
all interpyramidal triangles is 0. This equation should hold
together with Sp = |S; + S, + S3| = 27 in order to minimize
the total exchange energy Eq. (3).

ItisAconvenient tointroduce S| = S,, S}, = Rn(—¢3)S5, and
S’ = Ra(@.)S3 [see Fig. 9(a)], so that Eq. (7) becomes

S| +8,+8,=0 8)
and
IS} + Ru(@s)Sh + Ru(—¢,)S}| = 27. )

If Egs. (8) and (9) are satisfied simultaneously, then both the
intrablock and interblock exchange energies are minimized.
Substituting S] = —S) — S} into Eq. (9), we find that the spin
rotation axis of the spiral state is orthogonal to Sx: n L S4. In
view of the rotational invariance of the Heisenberg model (3),
we can assume that n is parallel to the z axis.

We first assume that the three spins, S}, S5, and S}, lie in the
xy plane and that the spin S| [see Fig. 9(b)] is parallel to the
x axis. From Eq. (9) we then obtain for 8¢, , = @, — =

3
270(Qur b — 3):
2

€0S 8¢, + cos §@p + cos(8@, + d¢pp) = (10)
The solution of this equation is the contour Cy in the reciprocal
space, which lies in the ¢*b* plane and has a nearly circular
shape with the center at the K point qx = (3 0) (white
contour in Fig. 10).

More ground states are found for S and S} obtained
from those shown in Fig. 9(b) by rotation around the x
axis through an angle . Then the solution of Eq. (9) is a
contour Cy, that lies in the region G, bounded by Cy. As
continuously increases from 0 to its maximal possible value,
Ymax = arccos[2+/7(t — 1)/3], the solutions of Eq. (9) fill
the whole G (for ¥/ = ¥nax, the contour Cy shrinks into a
single point). All thus obtained spiral states have the minimal
exchange energy for a given Sp = 2t. The maximal value of
Y only exists for T > 1 or Sp > 2. For T < 1 the degeneracy
regions around neighboring K points overlap.

Moreover, for each Qg inside the two-dimensional man-
ifold of spiral wave vectors, G., there exist many different
spiral states with the same energy. The degeneracy results
from the freedom to choose S}, S}, and S}, which can be
obtained from those shown in Fig. 9(b) by an arbitrary rotation
parametrized by three Euler angles. They give rise to different

7‘57
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FIG. 10. False-color plot of the spiral-state energy in units of J;,
per unit cell, for T = 1.3, as a function of the spiral wave vector, Q.
White circles mark the boundaries of the degeneracy regions, G,
with the centers at the K point (%, %,0) and other symmetry-related
points. Inside G, the energy is independent of the spiral wave vector
and the energy landscape is perfectly flat.

sets, (S1,S,,S3), for given ¢, ,¢;, and S, which are, in general,
inequivalent, i.e., cannot be obtained from each other by a
global rotation of all spins. This leads to a massive ground-state
degeneracy for T < 3/2.

Figure 10 shows the false-color energy plot as a function
of the spiral wave vector, for T = 1.3, obtained by numerical
minimization of energy with respect to the 8 spins from the
magnetic building block of the swedenborgite spin lattice, for
a given Q;. Inside the degeneracy regions, G, the boundaries
of which are marked by white contours, the energy landscape
is perfectly flat, i.e., independent of Q. We note here a simple
relation between spins from neighboring kagome triangles in
the spiral ground states. We denote by St, S5, and S3 spins on
the sites obtained by the 2| symmetry operation from the sites
1, 2, and 3, respectively [see Fig. 9(a)]. The relation between
the spins in two triangles of the same magnetic block in the
minimal-energy spiral state is S; = 25,(S5-S) —S; (i =
1,2,3), where S A = Sa/Sa (the total spins of the two triangles
are equal).

Although spin spirals are a subclass of all degenerate
ground states of the model Eq. (3), they are selected by
additional interactions present in CaBaCo,Fe,07, such as
DM interactions. As discussed below, the lack of inversion
symmetry in the crystal lattice of the swedenborgite leads to
Lifshitz invariants originating from the DM interactions, which
favor incommensurate magnetic states. These interactions lift
the degeneracy by selecting the spiral wave vector Qj.

D. Monte Carlo simulation of diffuse scattering

For a closer comparison to the observed diffuse scattering,
we performed Monte Carlo simulations based on the nearest-
neighbor Heisenberg model for varying ratios t of in- and
out-of-plane interactions. In this calculation, the spin lattice
has been cooled slowly to low temperatures, 7/J;, = 0.01,
and averaged over 500 independent spin structures. A model
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10°

FIG. 11. Magnetic structure factor in the (kk0) plane obtained by
Monte Carlo simulations of the model Eq. (3) at T'/J;, = 0.01, for
t=1.1,1.3,and 1.5.

size N = 8L3 with L = 24 was chosen for the simulations in
Fig. 11.

Figure 11 shows the magnetic structure factor obtained by
Monte Carlo simulations of the Heisenberg model Eq. (3) for
three ratios of the in- and out-of-plane interactions, 7. For
T > 1.5, 3D long-range antiferromagnetic order of v/3 x +/3
type and vanishing diffuse scattering is found as expected
[10,15]. For T < 1.5, the simulated structure factor shows dif-
fuse intensity, reflecting the ground-state degeneracy discussed
above, which is getting stronger as t decreases. However,
prominent Bragg-like peaks at the K points do not disappear
for T < 1.5, in apparent contradiction with the phase diagram
of this model obtained earlier [15]. We looked for possible
finite-size effects at T = 1.3, by comparing the results for the
L = 12 and 24 lattices and the system still appears to be an-
tiferromagnetically ordered, while the calculated S(Q) agrees
with the earlier calculation [15] for L = 9. We conclude that
the AFM phase field extends further into the region 7 < 1.5,
albeitincluding residual disorder and entropy as seen by diffuse
scattering. At T = 1.1, the diffuse scattering is more enhanced
and compares well with the observed diffuse scattering. Here,
periodic boundary conditions and finite system size show
weak effects on the reminiscent Bragg-like intensities, while
only negligible size effects are seen for the diffuse scattering
in Figs. 11 and 12. The coexistence of Bragg peaks with
strong diffuse scattering is consistent with our experimental
observations. Figure 12 shows the comparison of the observed
diffuse scattering intensity being corrected for the magnetic
form factor [see panel (a)] with the Monte Carlo simulations for

(@) (b)

FIG. 12. Comparison between the observed magnetic scattering
at 4 K (a) and the results of the Monte Carlo simulation of the
Heisenberg model Eq. (3) for r = 1.1 (b).

7 = 1.1 [see panel (b)], being rescaled and both interpolated
to a similar finer grid in the reciprocal space.

E. Dzyaloshinskii-Moriya interactions

An important structural feature is the absence of inversion
symmetry at the bonds connecting neighboring magnetic
ions, which gives rise to Dzyaloshinskii-Moriya interactions.
According to the Keffer rule [31], the direction of the DM
vector D, describing the strength and form of the interaction,
is given by (Rop — Rj) x (Rop — R;y), where R; ; and Rg are
the coordinates of the two magnetic ions and the oxygen ion,
respectively. The directions of the DM vectors for neighboring
kagome sites, Dy,, and for bonds connecting the triangular and
kagome sites, Doy, are shown in Fig. 7.

The DM interactions between the kagome sites are likely
very similar for intra- and intercolumn neighbors. All of them
have a component in the ab plane depending on bond direction
and a (larger) component along the ¢ axis. The component of
Dj, parallel to the ¢ axis gives rise to an easy-plane magnetic
anisotropy of the kagome spins. However, along each row of
bonds in the kagome sublattice, the DM interactions have a
common component parallel to the ab plane pointing perpen-
dicular to the bond direction, which favors incommensurate
cycloidal spirals with wave vectors in this plane. Due to the
threefold symmetry, the spiral wave vector can have three
different directions. This can explain the short-range cycloidal
spin correlations obeying the threefold symmetry, which were
found using the polarization analysis of diffuse scattering.
Particularly, in the case of a long-range ordered spiral structure,
the preservation of threefold symmetry is expected to result in
a triple-q state.

The DM interactions for out-of-plane bonds along the
bipyramidal columns all lie in the ab plane; however they
alternate in rotational sense for upward and downward paths
from the trigonal to kagome sites. Alternating the sign of
the DM interactions along the ¢ direction may create a spin
canting between the kagome and trigonal sites, which could
possibly lead to weak ferromagnetism (see also Cheong et al.
[32]). The effect could be subtle and depends on the actual
magnetic ordered structure and on the site anisotropies. The
previously reported split positions of the oxygen ions [14]
result in small stochastic variations of the DM vectors located
along the corresponding bonds, which have been neglected in
the following discussion.

F. Symmetry analysis of incommensurate ordering

To understand the nature of modulated states in the hexag-
onal swedenborgite, we first discuss symmetry properties
of commensurate states with the wave vector q, = (%, %,0).
Symmetry analysis of magnetic ordering simplifies, if we
assume that spins in blocks containing 8 transition metal sites
(two spin triangles in kagome layers and two connecting them
spins in the triangular layers) are all collinear. A commensurate
magnetic ordering with the wave vector ¢, contains three such
blocks with the total spins Sg;,Sp2, and Sp; (see Fig. 13). Due

to antiferromagnetic interactions between the blocks, these
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FIG. 13. Three magnetic building blocks with the total spins Sz,
Sp>, and Sp;, forming the 120° state (x and y denote the Cartesian
axes in the ab plane).

three spins add to zero: Sg; + Sp> + Sz = 0. Such states are
described by 3 x 3 — 3 = 6 parameters, X,Y1,Z1,X2,Y2,2Z5:

Sp1 = (X1.Y1,Zy),

1 V3 1 V3 1 V3
Spr=|—"=X1i+—Xo,—V1+—Y2,—=Z1+ —75]|,
B2 ( ) 1+ 3 2 5 1+ ) 2 5 1+ 3 2)

—=Xi——Xo,—V1——N—-Z1—-—Z

s (1 V3.0 1 V30 1 V3
B=\"2 2 2 2 2 2 )

Y

Transformation properties of these six parameters under
the generators of the P63mc space group are summarized
in Table II, using which one can find two Lifshitz invariants
resulting from the lack of inversion symmetry in the crystal
lattice,

210X | + 20, Xo + Z10,Y1 + Z50,)> (12)
and

X10,Y, — X520, Y1 + X10,X, — Y10, 13, (13)

where Ad;B = Ad;B — B0;A,i = x,Y.

The first Lifshitz invariant favors a cycloidal spiral in a
vertical plane with the spin rotation axis, n, normal to Sg1,S g2,
and Sp3. The number of parameters describing acommensurate
120° ordering of the blocks is reduced to 4 by requiring
S%, = S%, = S, which is equivalent to

X4+ Y2+ 722 =X} 472+ 73,
X1 Xo+ 1Y+ 212, =0;
i.e., the vectors Vi = (X1,Y,Z;) and V, = (X,,Y,,Z;) have

the same length and are orthogonal to each other. The Lifshitz
invariant Eq. (12) can then be written in the form

(14)

> (ViediVii + Va:d; Va). (15)

i=x,y

This invariant is similar to the one favoring the vertical
cycloidal spiral in the polar hexagonal compound GaV4Sg [33],

except that in GaV4Sg the incommensurate magnetic state is
locally close to the uniform ferromagnetic state, whereas in
the swedenborgite it is close to the 120° antiferromagnetic
ordering of the block spins. The cycloidal spiral favored by
the Lifshitz invariant Eq. (15) preserves the norms of V; and
V, as well as their orthogonality, as it favors a simultaneous
rotation of these two vectors around the axis n || [V; x V,].
The direction of the spiral wave vector, Q; (counted from
the K point in the reciprocal state), is left undetermined by
this Lifshitz invariant of first order in gradient. The expansion
to third order in §Qy gives rise to three energy minima
in the reciprocal space, Qy. 1, §Q; 2, and 6Q; 3, such that
8Qs.1 + Qs +8Q; 3 = 0, in the vicinity of the K point. We
also note that the change of sign of the vector chirality of the
120° state, obtained by X, — —X», Yo —» —Ys, Zy — —Z,
does not affect the direction of the spiral wave vector, as it
leaves Eq. (15) unchanged.

The second Lifshitz invariant Eq. (13) does not induce a
modulated magnetic state with the local 120° structure: for
two orthogonal in-plane vectors, V| = (X,Y;,0) and V, =
(—Y1,X,,0), this Lifshitz invariant is identically 0. More
generally, if the condition Sg; + Sp» + Spz = Oisrelaxed, the
analog of Eq. (13) is

S510x Sy 4 Sp10xShy + 510,850 — S0y Sp)
+ S520:Shs + S520xSh3 + S50y Spy — SpadyShs

+ Sp30x Sy + Sp3dc Sy + Sp3dy Sy — Sp3dySpy. (16)

Also this Lifshitz invariant vanishes for a spiral state, in which
Sgs1, Spo, and Sp; rotate in the ab plane with the same wave
vector. Thus we showed that the lack of inversion symmetry
in the crystal lattice of the hexagonal swedenborgite induces a
cycloidal spiral with spins rotating in a vertical plane and the
wave vector parallel to the ab plane, and does not favor spirals
with spins rotating in the ab plane.

Finally, we discuss a “nonlinear weak ferromagnetism” of
the 120° structures. Invariance under translations in the ab
plane and time reversal imply that the lowest power of the
antiferromagnetic order parameter that can be coupled to a
uniform magnetic field is 3. The lowest-order coupling allowed
by symmetry is

H.(Z} -32,23). (17)

Only the antiferromagnetic states with spins out of the ab plane
can have a net ferromagnetic moment along the ¢ axis (another
mechanism was discussed in Ref. [34]). Net magnetization
can be induced by multiply periodic states, i.e., by the three
coexisting minimal-energy cycloidal spirals with the wave
vectors 8Qy 1, 6Q; 2, and §Qy 3 counted from the K point
(‘SQS,I + 8Qs,2 + 8Qs,3 = 0).

IV. SUMMARY AND DISCUSSION

To summarize, CaBaCo,Fe, 07 shows a unique coexistence
of the long-range /3 x +/3 antiferromagnetic order and partial
disorder. The latter results from geometric frustration in the
layered kagome lattice, which leads to ground-state degen-
eracy and diffuse scattering. Surprisingly, the peak structure
shows a great deal of coherence corresponding to an incipient

144402-9



J.D.REIM et al.

PHYSICAL REVIEW B 97, 144402 (2018)

TABLE II. Transformations of the six order parameters and the in-plane components of gradient under the generators of the P6smc

space group: translation ¢, = (x + 1,y,z), threefold axis 3, = (—y,x —

Mayp = (—y, — X,2).

v,z), twofold screw axis 2, = (—x,—y,z + 1/2), and mirror plane

Ia 3L‘ 2l Mayp

X, —1/2 —=J3)2 0 0 —1/2 0 —V3/2 0 -1 0 0 0 -1 0 0 0
X, V320 —1)2 0 0 0 —-1/2 0 —3/2 0 1 0 0 0 1 0 0
Y| 0 0 —1/2 =32 V32 0 -1/2 0 0 0 -1 0 0 0 1 0
Y 0 0 V32 =12 0 V3/2 0 -1/2 0 0 0 1 0 0 0 -1
Z (—1/2 —V3/2 1 0 1 0 -1 0)
Z, V32 =12 0 1 0 -1 0 1
(%) G ?) (Gen =05 () 6
dy 0 1 V32 —1)2 0 -1 0 -1

incommensurate spin-spiral order. We argue that these cor-
relations result from the lack of inversion symmetry in the
swedenborgite crystal lattice and the concomitant Lifshitz
invariant favoring spiral states.

Our neutron diffraction experiments on a single crystal of
CaBaCo,Fe,0; with the layered kagome structure provide a
detailed insight into the complex noncollinear spin structure
of this geometrically frustrated swedenborgite. In the first
approximation, magnetic properties of CaBaCo,Fe,O; are
described by the nearest-neighbor Heisenberg model Eq. (3)
with relatively strong antiferromagnetic superexchange inter-
actions. Monte Carlo simulations of this model compare well
with the observed distribution of the diffuse scattering intensity
in the reciprocal space. The best fit is obtained for T = % ~
1.1, corresponding to an extensive ground-state degeneraé"}/ of
the model, which is consistent with the observed reduction of
ordered magnetic moments and with the constraints, Egs. (5)
and (6), first discussed in Ref. [9]. We considered in detail
spiral ground states and showed that, for T < 1.5, the spiral
wave vector can vary in a circular-shaped region around the
K point without changing the energy of the spiral state. This
flat energy landscape in the reciprocal state gives rise to the
observed intensity distribution of diffuse scattering.

The simple Heisenberg model cannot, however, describe the
structure of the magnetic peaks and the complex temperature
dependence of the magnetic order that sets in near Ty = 160
K. Neutron diffraction, polarization analysis, and magnetiza-
tion measurements show that near the transition temperature
ordered spins lie in the ab plane. However, they cant out of
this plane as temperature decreases. The same conclusion was
reached on the basis of the magnetic structure determination
(see Table I) that does not make use of the polarization analysis.
The best refinement is found within the trigonal magnetic
space groups, P31m’ and P31m, the former group being the
most probable solution. The reduced ordered moment from the
refinement is in agreement with the partial order.

Polarization analysis of the magnetic scattering revealed the
chiral nature of spin correlations, which are of the cycloidal
type with both the spiral wave vector, Qy, and the chirality
vector (the spin rotation axis), C, in the ab plane. The cycloidal
spiral with spins rotating around the ¢ axis in the ab plane
may also be present, but it is not visible in the (hk0) scatter-
ing plane as only the spin components perpendicular to the

scattering vector can be measured. We can exclude, however,
any significant contribution from the helical spirals in the ab
plane. Polarization analysis of the (hhl) scattering plane also
excludes within experimental resolution any long-period spiral
spin correlations (cycloidal or helical) out of the ab plane.

The scattering near the K point is consistent with our
theoretical analysis of degenerate spiral states in the Heisen-
berg model. In addition, the scattering from the ¢ components
of spins indicates a slight preference in the direction of the
wave vector of the incipient incommensurate spiral states,
corresponding to three energy minima in the reciprocal space
near the K points. Using symmetry analysis we have found
a Lifshitz invariant that favors an incommensurate cycloidal
spiral state in which the 120° order slowly rotates around an
axis in the ab plane. The tendency towards an incommensurate
spiral modulation originates from the Dzyaloshinskii-Moriya
interaction between the spins of the transition metal ions in
the tetrahedral oxygen coordination and the lack of inversion
symmetry in the swedenborgite crystal lattice. The same
mechanism stabilizes spiral and skyrmion crystal states in
MnSi, Cu,0SeOs3, and other chiral ferromagnets [35-37], the
difference being that in the swedenborgite we find the rotation
of the +/3 x +/3 antiferromagnetic spin order.

The Dzyaloshinskii-Moriya interaction added to the frus-
trated Heisenberg model selects (1) the cycloidal type of spiral
ordering and (2) three energy minima in the vicinity of the
K point, corresponding to three spiral states with the 120°
angle between the wave vectors in the ab plane. Our symmetry
analysis shows that the simultaneous presence of three spiral
orders, taking place, e.g., in the skyrmion crystal, can induce
a weak ferromagnetic moment found in our magnetization
measurements. Swedenborgites, which are both geometrically
frustrated and chiral, provide a fertile playground for the search
for unconventional magnetic orders.
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