000845496 001__ 845496
000845496 005__ 20210129233443.0
000845496 0247_ $$2doi$$a10.1111/jcpp.12920
000845496 0247_ $$2pmid$$apmid:29693267
000845496 0247_ $$2WOS$$aWOS:000445616200010
000845496 0247_ $$2altmetric$$aaltmetric:39318802
000845496 037__ $$aFZJ-2018-02730
000845496 082__ $$a050
000845496 1001_ $$0P:(DE-HGF)0$$aShaw, Philip$$b0$$eCorresponding author
000845496 245__ $$aA multicohort, longitudinal study of cerebellar development in attention deficit hyperactivity disorder
000845496 260__ $$aMalden$$bBlackwell Publishing Limited74510$$c2018
000845496 3367_ $$2DRIVER$$aarticle
000845496 3367_ $$2DataCite$$aOutput Types/Journal article
000845496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1538728197_9755
000845496 3367_ $$2BibTeX$$aARTICLE
000845496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845496 3367_ $$00$$2EndNote$$aJournal Article
000845496 520__ $$aBackgroundThe cerebellum supports many cognitive functions disrupted in attention deficit hyperactivity disorder (ADHD). Prior neuroanatomic studies have been often limited by small sample sizes, inconsistent findings, and a reliance on cross‐sectional data, limiting inferences about cerebellar development. Here, we conduct a multicohort study using longitudinal data, to characterize cerebellar development.MethodsGrowth trajectories of the cerebellar vermis, hemispheres and white matter were estimated using piecewise linear regression from 1,656 youth; of whom 63% had longitudinal data, totaling 2,914 scans. Four cohorts participated, all contained childhood data (age 4–12 years); two had adolescent data (12–25 years). Growth parameters were combined using random‐effects meta‐analysis.ResultsDiagnostic differences in growth were confined to the corpus medullare (cerebellar white matter). Here, the ADHD group showed slower growth in early childhood compared to the typically developing group (left corpus medullare z = 2.49, p = .01; right z = 2.03, p = .04). This reversed in late childhood, with faster growth in ADHD in the left corpus medullare (z = 2.06, p = .04). Findings held when gender, intelligence, comorbidity, and psychostimulant medication were considered.DiscussionAcross four independent cohorts, containing predominately longitudinal data, we found diagnostic differences in the growth of cerebellar white matter. In ADHD, slower white matter growth in early childhood was followed by faster growth in late childhood. The findings are consistent with the concept of ADHD as a disorder of the brain's structural connections, formed partly by developing cortico‐cerebellar white matter tracts.
000845496 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000845496 588__ $$aDataset connected to CrossRef
000845496 7001_ $$0P:(DE-HGF)0$$aIshii-Takahashi, Ayaka$$b1
000845496 7001_ $$0P:(DE-HGF)0$$aPark, Min Tae$$b2
000845496 7001_ $$0P:(DE-HGF)0$$aDevenyi, Gabriel A.$$b3
000845496 7001_ $$0P:(DE-HGF)0$$aZibman, Chava$$b4
000845496 7001_ $$0P:(DE-HGF)0$$aKasparek, Steven$$b5
000845496 7001_ $$0P:(DE-HGF)0$$aSudre, Gustavo$$b6
000845496 7001_ $$0P:(DE-HGF)0$$aMangalmurti, Aman$$b7
000845496 7001_ $$0P:(DE-HGF)0$$aHoogman, Martine$$b8
000845496 7001_ $$0P:(DE-HGF)0$$aTiemeier, Henning$$b9
000845496 7001_ $$0P:(DE-HGF)0$$avon Polier, Georg$$b10
000845496 7001_ $$0P:(DE-HGF)0$$aShook, Devon$$b11
000845496 7001_ $$0P:(DE-HGF)0$$aMuetzel, Ryan$$b12
000845496 7001_ $$0P:(DE-HGF)0$$aChakravarty, M. Mallar$$b13
000845496 7001_ $$0P:(DE-HGF)0$$aKonrad, Kerstin$$b14
000845496 7001_ $$0P:(DE-HGF)0$$aDurston, Sarah$$b15
000845496 7001_ $$0P:(DE-HGF)0$$aWhite, Tonya$$b16
000845496 773__ $$0PERI:(DE-600)2255259-5$$a10.1111/jcpp.12920$$n10$$p1114-1123$$tJournal of Child Psychology & Psychiatry$$v59$$x0021-9630$$y2018
000845496 8564_ $$uhttps://juser.fz-juelich.de/record/845496/files/Shaw_et_al-2018-Journal_of_Child_Psychology_and_Psychiatry.pdf$$yRestricted
000845496 8564_ $$uhttps://juser.fz-juelich.de/record/845496/files/Shaw_et_al-2018-Journal_of_Child_Psychology_and_Psychiatry.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845496 909CO $$ooai:juser.fz-juelich.de:845496$$pVDB
000845496 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b14$$kFZJ
000845496 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b14
000845496 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000845496 9141_ $$y2018
000845496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHILD PSYCHOL PSYC : 2014
000845496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845496 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845496 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845496 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845496 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index
000845496 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000845496 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000845496 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000845496 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHILD PSYCHOL PSYC : 2014
000845496 920__ $$lyes
000845496 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000845496 980__ $$ajournal
000845496 980__ $$aVDB
000845496 980__ $$aI:(DE-Juel1)INM-3-20090406
000845496 980__ $$aUNRESTRICTED