001     845501
005     20240711113733.0
024 7 _ |a 10.1016/j.nme.2017.02.010
|2 doi
024 7 _ |a 2128/18390
|2 Handle
024 7 _ |a WOS:000417293300033
|2 WOS
037 _ _ |a FZJ-2018-02735
082 _ _ |a 333.7
100 1 _ |a Guillemaut, C.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Main chamber wall plasma loads in JET-ITER-like wall at high radiated fraction
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525351871_15477
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Future tokamak reactors of conventional design will require high levels of exhaust power dissipation (more than 90% of the input power) if power densities at the divertor targets are to remain compatible with active cooling. Impurity seeded H-mode discharges in JET-ITER-like Wall (ILW) have reached a maximum radiative fraction (Frad) of ∼75%. Divertor Langmuir probe (LP) measurements in these discharges indicate, however, that less than ∼3% of the thermal plasma power reaches the targets, suggesting a missing channel for power loss. This paper presents experimental evidence from limiter LP for enhanced cross-field particle fluxes on the main chamber walls at high Frad. In H-mode nitrogen-seeded discharges with Frad increasing from ∼30% to up to ∼75%, the main chamber wall particle fluence rises by a factor ∼3 while the divertor plasma fluence drops by one order of magnitude. Contribution of main chamber wall particle losses to detachment, as suggested by EDGE2D-EIRENE modeling, is not sufficient to explain the magnitude of the observed divertor fluence reduction. An intermediate detached case obtained at Frad ∼ 60% with neon seeding is also presented. Heat loads were measured using the main chamber wall thermocouples. Comparison between thermocouple and bolometry measurements shows that the fraction of the input power transported to the main chamber wall remains below ∼5%, whatever the divertor detachment state is. Main chamber sputtering of beryllium by deuterium is reduced in detached conditions only on the low field side. If the fraction of power exhaust dissipated to the main chamber wall by cross-field transport in future reactors is similar to the JET-ILW levels, wall plasma power loading should not be an issue. However, other contributions such as charge exchange may be a problem.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Drewelow, P.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Matthews, G. F.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kukushkin, A. S.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Abreu, P.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Brezinsek, S.
|0 P:(DE-Juel1)129976
|b 6
700 1 _ |a Brix, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Carman, P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Coelho, R.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Devaux, S.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Flanagan, J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Giroud, C.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Harting, D.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Lowry, C. G.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Maggi, C. F.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Militello, F.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Perez Von Thun, C.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Solano, E. R.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Widdowson, A.
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Wiesen, S.
|0 P:(DE-Juel1)5247
|b 20
700 1 _ |a Wischmeier, M.
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wood, D.
|0 P:(DE-HGF)0
|b 22
773 _ _ |a 10.1016/j.nme.2017.02.010
|g Vol. 12, p. 234 - 240
|0 PERI:(DE-600)2808888-8
|p 234 - 240
|t Nuclear materials and energy
|v 12
|y 2017
|x 2352-1791
856 4 _ |u https://juser.fz-juelich.de/record/845501/files/1-s2.0-S2352179116300977-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845501/files/1-s2.0-S2352179116300977-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845501/files/1-s2.0-S2352179116300977-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845501/files/1-s2.0-S2352179116300977-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845501/files/1-s2.0-S2352179116300977-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845501/files/1-s2.0-S2352179116300977-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:845501
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129976
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)5247
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-4-20101013
|k IEK-4
|l Plasmaphysik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-4-20101013
981 _ _ |a I:(DE-Juel1)IFN-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21