
The High-Q Club: Experience with Extreme-scaling

Application Codes

DOI: 10.14529/jsfi180104

Dirk Brömmel1, Wolfgang Frings1, Brian J.N.Wylie1,

Bernd Mohr1, Paul Gibbon1, Thomas Lippert1

c© The Authors 2018. This paper is published with open access at SuperFri.org

Jülich Supercomputing Centre (JSC) started running (extreme) scaling workshops with its

first IBM Blue Gene supercomputer, finally spanning three generations each seeing an increase in

the number of cores and available threads. Over the years, this workshop series attracted numerous

international code teams and resulted in many applications capable of running on all available cores

of each system.

This article reviews some of the knowledge gained with running and tuning highly-scalable

applications, focussing on JUQUEEN, the IBM Blue Gene/Q at JSC. The ability to execute suc-

cessfully on all 458,752 cores with up to 1.8 million processes or threads may qualify codes for the

High-Q Club, which serves as a showcase for diverse codes scaling to the entire 28 racks, effectively

defining a collection of the highest scaling codes on JUQUEEN. The intention was to encourage

other developers to invest in tuning and scaling their codes while identifying the necessary key

aspects for that goal.

As this era closes, it is timely to compare the characteristics of the 32 High-Q Club member

codes, considering their strong and/or weak scaling, exploitation of hardware threading, and

whether/how intra-node multi-threading is employed combined with message-passing. We also

identify the obstacles for scaling such as inefficient use of limited compute node memory and file

I/O as key governing factors. Overall, the analysis provides guidance as to how applications may

(need to) be designed in future to exploit expected exascale computer systems.

Keywords: JUQUEEN, IBM BlueGene/Q, extreme scaling, application codes, High-Q Club.

Introduction

Jülich Supercomputing Centre (JSC) has more than a decade of experience with the range

of IBM Blue Gene systems and scaling HPC applications to use their considerable capabilities ef-

fectively. Applications that demonstrate scalability to exploit the entire computational resources

of the JUQUEEN system qualify for recognition in the High-Q Club. With the decommission-

ing of JUQUEEN in March 2018, it is timely to analyse the characteristics of these extremely

scalable applications for valuable insight into how applications may (need to) look in future to

exploit forthcoming exascale computer systems. Furthermore, supporting development tools and

libraries also need to have commensurate scalability to address current and future application

needs on these massively-parallel systems.

We start by reviewing application scaling activities at JSC in Section 1, focussing on its

leadership computer systems, and in Section 2 the JUQUEEN hardware environment, followed

with an overview of the associated High-Q Club in Section 3. Member applications and their basic

characteristics are summarised in Section 4, as adapted to the BG/Q software environment, while

Section 5 is a detailed comparison of the demonstrated scalability of these codes on JUQUEEN.

Specific tools which have proven effective for use with them at (very) large scale are then reviewed

in Section 6. Finally we present our conclusions from this study regarding High-Q Club member

application codes and their readiness for exascale.

1Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Jülich, Germany

https://dx.doi.org/10.14529/jsfi180104

1. Background

The first of the IBM Blue Gene series installed in 2005 by Jülich Supercomputing Centre was

the JUBL Blue Gene/L, succeeded by the JUGENE Blue Gene/P [2] in 2007, and ultimately the

JUQUEEN Blue Gene/Q [34] in 2012 which remained in operation to 2018. Key characteristics

of these supercomputers are summarised in Tab. 1. Part of each of these systems was normally

reserved for small/short application development executions, complemented by a variety of larger

partitions of different sizes for longer jobs. While batch jobs could also be submitted to queues

requiring the full system, they would only be run immediately following maintenance sessions or

other predefined times to avoid undue interference with general usage. “Big Blue Gene Weeks”

with seven or more days restricted exclusively to large-scale jobs were introduced first in 2015 and

were readily exploited by numerous application teams, both for scaling tests and production.

Before then, scaling-up applications could be a protracted process as a series of larger jobs

was prepared, eventually executed, and adjusted. Dedicated scaling, and subsequently extreme

scaling, workshops were held to facilitate this.

A “Blue Gene/L Scaling Workshop” [12] was held in 2006, became a “Blue Gene/P Porting,

Tuning & Scaling Workshop” in 2008 [28], followed by dedicated “Extreme Scaling Workshops”

in 2009 [25], 2010 [26] and 2011 [27]. These latter three workshops attracted 28 teams selected

from around the world to investigate scalability on the most massively-parallel supercomputer at

the time with its 294,912 cores. 26 of their codes were successfully executed at that scale, three

became ACM Gordon Bell prize finalists, and one participant was awarded an ACM/IEEE-CS

George Michael Memorial HPC fellowship.

“Extreme Scaling Workshops” for Blue Gene/Q continued in 2015 [3], 2016 [6] and 2017 [7]

with a similar format. Based on their demonstrated and planned use of BG/Q, a total of 19

Table 1. Blue Gene series of computers installed at Jülich

Supercomputing Centre

Name JUBL JUGENE JUQUEEN

Installation year 2005 2007 2012

Series BG/L BG/P BG/Q

Racks 8 72 28

Compute nodes 8,192 73,728 28,672

Processor PowerPC 440 PowerPC 450 PowerPC A2

Frequency (MHz) 700 850 1,600

Compute cores 2 4 16

Hardware threads/core 1 1 4

Total cores 16,384 294,912 458,752

Total threads 16,384 294,912 1,835,008

Main memory (TiB) 4.1 144 448

Memory per core (MiB) 256 512 1,024

I/O Nodes 288 600 248

Network 3D torus 3D torus 5D torus

Peak performance (TFlop/s) 45.9 1,003 5,872

Footprint (m2) 15 130 82

Power consumption (kW) 179 2,268 2,301

JUQUEEN

Partition Cores

8 = 4×1×2 65,536

16 = 4×2×2 131,072

24 = 4×3×2 196,608

32 = 4×4×2 262,144

40 = 4×5×2 327,680

48 = 4×6×2 393,216

14 = 1×7×2 114,688

28 = 2×7×2 229,376

42 = 3×7×2 344,064

56 = 4×7×2 458,752

Figure 1. JUQUEEN Blue Gene/Q as presented by the LLview system monitor (28 racks with

two midplanes each with 16 nodeboards of 32 processors), schematic of the 56 BG/Q rack

midplanes arranged 4×7×2 and list of partitions with corresponding number of cores available

when scaling rows or columns of racks to the entire configuration

international teams were selected and hosted on-site by JSC for two or three days with dedicated

access to JUQUEEN for up to 50 hours in each event. Many of the teams’ codes had thematic

overlap with JSC Simulation Laboratories (SimLabs), which provided assistance during the

workshops along with Cross-Sectional Teams available to do performance analyses and suggest

optimisation opportunities. The first of these workshops had seven applications all running

successfully within 24 hours on all 28 racks (using 458,752 cores), however, in the following

two editions some participants encountered difficulties which they were unable to resolve and

there were only eleven additional successes. File I/O bottlenecks were a frequent constraint

for some codes, while large-scale in situ interactive visualization using 458,752 MPI processes

running on 28 racks coupled via JUSITU to VisIt was successfully demonstrated as a possible

alternative [16].

These workshops motivated Leibniz Supercomputing Centre (LRZ), JSC’s partner with

HLRS in the German national Gauss Centre for Supercomputing (GCS), to adopt a similar

format for workshops to scale applications on the SuperMUC IBM iDataPlex system [18], and

similar opportunities are expected to be offered on future HPC systems at JSC.

2. JUQUEEN Blue Gene/Q

JUQUEEN1 is an IBM Blue Gene/Q system consisting of 28 racks [34] (Fig. 1), each with

two midplanes comprising 512 compute nodes with 1.6 GHz PowerPC A2 processors and 16 GiB

RAM, connected via a custom five-dimensional torus network. Compute node processors provide

16 cores to applications, each with a 256-bit SIMD/vector unit and capable of running four

hardware threads, therefore JUQUEEN offers a total of 458,752 cores and can concurrently run

1,835,008 processes or threads. An additional 248 I/O nodes connect via Cisco network switches

to the JUST GPFS filesystem.

IBM Blue Gene/Q systems [1] (like their predecessors) have demonstrated their merits for

large-scale HPC regarding energy-efficiency, reliability and scalability to extremely large con-

1http://www.fz-juelich.de/ias/jsc/juqueen

http://www.fz-juelich.de/ias/jsc/juqueen

figurations, making them highly-productive workhorses. JUQUEEN was ranked number five

for energy efficiency as well as fifth for HPL performance in the November 2012 Green500 and

Top500 lists of supercomputers, and coarse-grain energy usage is monitored during operation

(though no control is available for applications to adjust their usage). System warnings and errors

are also closely monitored, leading to pre-emptive hardware replacement at the next scheduled

maintenance, such that their is rarely impact on production (and particularly full-system jobs).

Application-level checkpointing is still recommended for long-running jobs.

By providing dedicated system partitions, applications receive isolated resources for compu-

tation and communication, the latter based on a proprietary 5-D torus network. With an extra

17th processor core for system services and lightweight compute-node kernel (CNK), applica-

tions are further isolated from “system noise” that can otherwise severely impact performance of

collective operations. And with uniform memory access, process/thread placement and bindings

to address NUMA issues are unnecessary. On the other hand, compute-node memory is limited

(typically 16 GiB) and the relatively weak individual processor cores require the effective use of

large numbers of them by applications, which is further exacerbated by the in-order processor

architecture [20]. Multiple application threads for the four hardware threads per processor core

are therefore generally considered to be the best bet for increased instruction throughput and

latency hiding.

Figure 1 shows a topological schematic of the 28 BG/Q racks of JUQUEEN with its 56

midplanes arranged 4×7×2. When performing scaling tests using rows or columns of racks,

increments of 8 or 14 midplanes are available. (Square numbers of 1, 4, 9 and 16 racks can also

be used, however, 25=5×5 racks cannot be configured, which severely limits scaling.) Note that

physical adjacency of racks is not essential to exploit mesh or torus topologies, however, even-

sized dimensions generally offer superior performance since odd-sized dimensions do not support

torus connectivity. 16 racks (32 midplanes) therefore constitute the preferred configuration for

compact torus communication, and this partition is available and commonly used in general

operation of JUQUEEN. Partitions larger than this are typically only made available after

maintenance periods and for specially scheduled sessions. In particular, full-system executions

requiring all 28 racks occupy the rack that is otherwise reserved for small/short development

jobs. Large jobs using 24 racks are therefore often a convenient compromise.

Bearing these considerations in mind, executions on partitions with 24 racks (48 midplanes,

86% of entire system) and perhaps even only 20/21 racks (40/42 midplanes, 71/75%) could be

covered by the definition of ‘large-scale’ with respect to JUQUEEN.

3. High-Q Club

The High-Q Club is a collection of the highest scaling codes on JUQUEEN, and membership

requires codes to run successfully using all 28 racks. Codes also have to demonstrate that they

profit from each additional rack of JUQUEEN, either with reduced time to solution when strong

scaling a fixed problem size or a tolerable increase in runtime when weak scaling progressively

larger problems. Furthermore, application configurations should be beyond toy examples, and

use of all available hardware threads is encouraged which is often best achieved via mixed-mode

programming. Each code is then individually evaluated based on its weak or strong scaling

results with no strict limit on efficiency.

The full description of the High-Q Club codes and a summary of their scaling performance

along with developer and contact information is maintained on-line [22]. Further detail is avail-

able in participants’ reports from Extreme Scaling Workshops [3, 6, 7]. 32 codes are listed (with

those from Extreme Scaling Workshops marked with an asterisk*):

1D-NEGF 1D Non-Equilibrium Green’s Functions framework for transport phenomena

JSC SimLab Quantum Materials

*CIAO multiphysics, multiscale NS solver for turbulent reacting flows in complex geometries

RWTH Aachen University Institute for Combustion Technology [16]

*Code Saturne multiphysics simulation of the Navier-Stokes equations

EDF & STFC Daresbury Laboratory2

*CoreNeuron electrical activity of neuronal networks with morphologically-detailed neurons

EPFL Blue Brain Project and Yale University [29]

dynQCD lattice quantum chromodynamics with dynamical fermions

JSC SimLab Nuclear and Particle Physics & Bergische Universität Wuppertal

*FE2TI scale-bridging approach incorporating micro-mechanics in macroscopic simulations of

multi-phase steels

Universities of Cologne, Freiberg, Duisburg-Essen, Dresden and Erlangen-Nürnberg [23]

*FEMPAR massively-parallel finite-element simulation of multi-physics PDE problems

Universitat Politècnica de Catalunya CIMNE

Gysela gyrokinetic semi-Lagrangian code for plasma turbulence simulations

CEA-IRFM Cadarache

hp-fRG hierarchically parallelised functional renormalisation group calculations

JSC [31]

*ICON solver for fully compressible non-hydrostatic motion at very high horizontal resolution

Deutsches Klimarechenzentrum (DKRZ) & JSC SimLab Climate Science

IMD classical molecular dynamics simulations

Ruhr-Universität Bochum & JSC SimLab Molecular Systems

JURASSIC infrared radiative transfer in the Earth’s atmosphere

JSC SimLab Climate Science

JuSPIC fully relativistic particle-in-cell code for plasma physics and laser-plasma interaction

JSC SimLab Plasma Physics

*KKRnano Korringa-Kohn-Rostoker Green function code for quantum description of nano-

materials in all-electron density-functional calculations

Forschungszentrum Jülich IAS

LAMMPS-DCM molecular dynamics simulation with dynamic cutoff method for arbitrarily large

interfacial systems

RWTH Aachen University AICES [33]

MP2C massively-parallel multi-particle collision dynamics for soft matter physics and meso-

scopic hydrodynamics

JSC SimLab Molecular Systems [9]

*MPAS-A multi-scale non-hydrostatic atmospheric model for global, convection-resolving cli-

mate simulations

Karlsruhe Institute of Technology & National Center for Atmospheric Research [19]

2http://www.code-saturne.org/

http://www.code-saturne.org/

µφ (muPhi) algebraic multi-grid solver for simulation of water flow and solute transport in

porous media

Universität Heidelberg

Musubi multi-component Lattice Boltzmann solver for flow simulations

Universität Siegen [30]

NEST large-scale simulations of biological neuronal networks

Forschungszentrum Jülich INM-6, IAS-6 & JSC SimLab Neuroscience [21]

OpenTBL direct numerical simulation of turbulent flows

Universidad Politécnica de Madrid

*ParFlow+p4est high resolution parallel simulation of variably saturated flow

Forschungszentrum Jülich IBG-3, Colorado School of Mines, LLNL & Universität Bonn [8]

*pe physics engine framework for simulations of rigid bodies with arbitrary shapes

Universität Erlangen-Nürnberg3

PEPC tree code for N -body simulations, beam-plasma interaction, vortex dynamics, gravita-

tional interaction, molecular dynamics simulations

JSC SimLab Plasma Physics

PMG+PFASST space-time parallel solver for systems of ODEs with linear stiff terms

LBNL, Universität Wuppertal, Università della Svizzera italiana & JSC

PP-Code simulator for relativistic and non-relativistic astrophysical plasmas

University of Copenhagen

*psOpen direct numerical simulation of fine-scale turbulence

Jülich-Aachen Research Alliance & TU Freiberg [17]

*Seven-League Hydro (SLH) all Mach number fluid dynamics in astrophysics

Heidelberg Institute for Theoretical Studies4

*SHOCK structured high-order finite-difference computational kernel for numerical simulation

of compressible flow

RWTH Aachen University Shock Wave Laboratory [14]

TERRA-NEO simulation of Earth mantle dynamics

Universität Erlangen-Nürnberg, LMU & TUM

waLBerla Lattice-Boltzmann method for simulation of fluid scenarios

Universität Erlangen-Nürnberg

ZFS multiphysics framework for compressible/incompressible flow, aero-acoustics & combustion

RWTH Aachen Uni. Inst. of Aerodynamics & JSC SimLab Fluids and Solids Engineering

Half of the member codes involved institutions from the local region, ten were from the rest

of Germany, and six from other European nations. International collaborations included four

institutions in the USA.

4. Parallel Program & Execution Configuration Characteristics

Characteristics of these application codes (as contributed by the respective code teams

submitting their data) are summarised in Tab. 2 and discussed in this section, with scaling per-

formance compared in the following section. Five codes were accepted to the High-Q Club when

3https://www10.informatik.uni-erlangen.de/Research/Projects/pe/
4https://slh-code.org/

https://www10.informatik.uni-erlangen.de/Research/Projects/pe/
https://slh-code.org/

Table 2. High-Q Club member application code characteristics

Compiler and main programming languages (excluding external libraries), parallelisation including maxi-

mal process/thread concurrency (per compute node and overall) and strong and/or weak scaling type, and

file I/O implementation. (Supported capabilities unused for scaling runs on JUQUEEN in parenthesis)

Programming Parallelisation
Code Accepted Compiler / Languages Tasking Threading Concurrency Type File I/O

1D-NEGF 2018/02 XL: C MPI 1 OpenMP 64 64: 1,835,008 S N/A
*CIAO 2015/08 XL: Ftn MPI 16 16: 458,752 S MPI-IO, HDF5
*Code Saturne 2016/03 XL: C Ftn MPI 16 OpenMP 4 64: 1,835,008 S MPI-IO
*CoreNeuron 2015/02 XL: C C++ MPI 1 OpenMP 64 64: 1,835,008 S W MPI-IO
dynQCD 2013/06 XL: C SPI 1 pthreads 64 64: 1,835,008 S unspecified
*FE2TI 2015/02 XL: C C++ MPI 16 OpenMP 4 64: 1,835,008 S W N/A
*FEMPAR 2014/12 XL: F08 MPI 64 (OpenMP) 64: 1,756,001 W N/A
Gysela 2013/06 XL: C F90 MPI OMP+pthrd 64: 1,835,008 W (HDF5)
hp-fRG 2016/10 XL: C C++ MPI 1 OpenMP 32 32: 917,504 S N/A
*ICON 2015/02 XL: C Ftn MPI 1 OpenMP 64 64: 1,835,008 S (netCDF)
IMD 2014/10 XL: C MPI 64 (OpenMP) 64: 1,835,008 W unspecified
JURASSIC 2014/05 XL: C MPI 32 OpenMP 2 64: 1,835,008 W netCDF
JuSPIC 2013/10 GCC: F90 MPI 4 OpenMP 16 64: 1,835,008 S (MPI-IO, POSIX)
*KKRnano 2014/10 XL: F03 MPI 4 OpenMP 16 64: 1,835,008 S SIONlib
LAMMPS-DCM 2015/04 XL: C++ MPI 4 OpenMP 16 64: 1,835,008 S W N/A
*MPAS-A 2017/03 XL: C Ftn MPI 16 (OpenMP) 16: 458,752 S SIONlib, PIO, pNetCDF
MP2C 2013/11 XL: Ftn MPI 32 32: 917,504 W SIONlib
muPhi (µφ) 2013/11 XL: C++ MPI 32 32: 917,504 W SIONlib
Musubi 2014/12 XL: F03 MPI OpenMP 32: 917,504 ? ? (MPI-IO)
NEST 2013/11 XL: C++ MPI 1 OpenMP 64 64: 1,835,008 W (SIONlib)
OpenTBL 2014/05 XL: F03 MPI OpenMP 64: 1,835,008 W pHDF5
*ParFlow+p4est 2017/03 XL: C Ftn MPI 16 16: 458,752 S MPI-IO
*pe 2017/03 GCC: C++ MPI 64 64: 1,835,008 W (MPI-IO)
PEPC 2013/06 GCC: C F03 MPI 1 pthreads 61 61: 1,744,992 W (SIONlib, MPI-IO, vtk)
PMG+PFASST 2013/08 XL: C F03 MPI 16 (pthreads) 16: 458,752 S N/A
PP-Code 2014/08 XL: F90 MPI OpenMP 64: 1,835,008 S W (MPI-IO)
*psOpen 2015/02 XL: F90 MPI 32 OpenMP 2 64: 1,835,008 S pHDF5
*SHOCK 2015/02 XL: C MPI 64 64: 1,835,008 S W (cgns/HDF5)
*SLH 2016/02 XL: C F95 MPI 16 OpenMP 4 64: 1,835,008 S MPI-IO
TERRA-NEO 2013/06 XL: C++ Ftn MPI OpenMP 64: 1,835,008 W unspecified
waLBerla 2013/06 XL: C++ MPI OpenMP 64: 1,835,008 W (MPI-IO)
ZFS 2015/03 Clang: C++ MPI 16 OpenMP 2 32: 917,504 S (pNetCDF)

it opened in June 2013, and another group of five codes added as a result of the Extreme Scaling

Workshop in February 2015, otherwise membership submission requests and acceptance were

more sporadic and generally diminishing towards 2018 when JUQUEEN is due to be decom-

missioned. Throughout this period no particular trends seem discernable in the characteristics

of the accepted codes.

Member codes are typically able to run in a variety of configurations, which may trade-off

different capabilities and indeed evolve as the code continues to be developed, however, this

analysis provides a snapshot at the point of qualification for membership.

Programming Languages IBM provide their XL suite of optimising compilers for C, C++,

and Fortran which feature support for automatic SIMD vectorisation and QPX vector intrinsics,

as well as transactional memory (TM) and speculative execution (SE), though relatively few

codes have investigated or currently exploit these capabilities. GCC and LLVM/Clang compilers

are also available, often providing support for newer language standards (e.g., C++11) and non-

standard extensions which can ease porting, or in some cases delivering better performance:

these have been exploited by several High-Q member codes (JuSPIC, pe, PEPC & ZFS).

Since Blue Gene/Q offers lower-level function calls for some hardware-specific features that

are sometimes not available for all programming languages, a starting point is looking at the

languages used. Figure 2 (left) shows a Venn set diagram of the main programming language(s)

used, i.e. languages used by the parallel application itself and not its auxiliary libraries or

pre/post-processing components. It indicates that all three major programming languages are

roughly equally popular (without considering lines of code). Seven combine Fortran with C,

three used C++ and C, one Fortran and C++, and the remainder exclusively used a single

language. Notably, Python and similar languages relying on dynamic linking have not been used

Fortran

C

C++

MPI

OpenMP
pthreads

SPI

MPI-IOSIONlib

netCDF

HDF5
not applicable

not specified

Figure 2. Left: Venn set diagram of main programming languages used by High-Q Club member

codes. Middle: Venn set diagram of parallelisation modes of High-Q Club member codes run on

JUQUEEN. Right: Pie-chart showing file I/O as available in High-Q Club member codes

64

32
16

4

16
32

64

4
16
32

64

IM
D

FE
M

PA
R

pe m
uP

hi
M

P
2C

S
H

O
C

K
C

IA
O

M
PA

S
-A

P
ar

Fl
ow

+p
4e

st
ZF

S
JU

R
A

S
S

IC
ps

O
pe

n
C

od
e

S
at

ur
ne

FE
2T

I
S

LH
LA

M
M

P
S

(D
C

M
)

K
K

R
na

no
Ju

S
P

IC
P

E
P

C
1D

-N
E

G
F

C
or

eN
eu

ro
n

dy
nQ

C
D

hp
-fR

G
IC

O
N

N
E

S
T

MPI ranks
per node

threads per MPI rankhardware threads

Figure 3. Bar chart of MPI ranks per node and threads per MPI rank, determining the number

of hardware threads exploited, for executions of High-Q Club member codes on JUQUEEN

by any High-Q Club member code, even though tools like Spindle5 were developed to address

performance issues with loading shared libraries [11].

Optimised libraries are also provided by IBM for BG/Q, that are often both more conve-

nient and performant than self-written versions. Only in a few special cases High-Q codes used

their own libraries, e.g., psOpen for non-blocking 3D Fast Fourier Transforms [17]. Issues which

initially inhibited scaling of ParFlow were addressed by employing the p4est library for mesh

partitioning and an updated version of the HYPRE library of linear solvers [8].

Parallelisation Modes The four hardware threads per core of the Blue Gene/Q chip in con-

junction with the limited amount of memory recommend to make use of multi-threaded pro-

gramming. It is therefore interesting to see whether this is indeed the preferred programming

model and whether available memory is an issue. Figure 2 (middle) shows a Venn set diagram of

the parallelisation modes used, revealing that mixed-mode programming does indeed dominate.

5https://computation.llnl.gov/project/spindle/

https://computation.llnl.gov/project/spindle/

 0.0625

 0.25

 1

 4

 16

 64

 256

 1024

1k 4k 16k 64k 256k 512k 1M

ti
m

e
 [

se
cs

]

MPI ranks

 RPN = 16
 RPN = 32
 RPN = 64

CMO, RPN = 16
CMO, RPN = 32
CMO, RPN = 64

Figure 4. Scaling of wallclock execution time for MPI Comm split sub-communicator creation

on JUQUEEN Blue Gene/Q: default and less memory-optimised alternative (CMO)

IBM provide an optimised implementation of MPI, which is almost ubiquitous for portable

distributed-memory parallelisation, such that only one High-Q code (dynQCD) found it worth-

while to program an alternate version that directly used the underlying machine-specific SPI

primitives. While a number of High-Q codes have demonstrated that they can scale when using

only MPI (“MPI everywhere”), this requires adapting to very limited per-rank memory (i.e., less

than 256 MiB/rank with 64 ranks per node) and switching to MPI communicator management

routines that are optimised to reduce execution time rather than memory utilisation6, further

reducing memory available to the application itself. Figure 4 compares the execution time of

both versions.

Ten codes exclusively used MPI for their scaling runs, both between and within compute

nodes, accommodating to the restricted per-process memory and even trading higher memory

requirements for faster MPI communicator management: this allowed FEMPAR to reduce sub-

communicator creation time (MPI_Comm_split) from 15 minutes to under 10 seconds.

Convenient and portable multi-threading within compute nodes is supported via OpenMP,

though some newer directives are not always optimised (e.g., for tasking). Only a few High-

Q codes have pursued using POSIX threads (pthreads) for additional multi-threading control

(dynQCD, Gysela, PEPC & PMG+PFASST). Almost all High-Q codes use MPI only from a

single thread (MPI_THREAD_FUNNELED), with at least Gysela, ICON, PEPC, and PP-Code requiring

MPI_THREAD_MULTIPLE which internally needs to use locks for synchronisation and precludes use

of hardware support in the torus network for collective operations.

The majority of High-Q Club codes successfully employ OpenMP multi-threading to exploit

compute node shared memory in conjunction with MPI. A memory fragmentation issue in a

third-party library inhibited the use of OpenMP by FEMPAR, problems with nested parallel

regions blocked MPAS-A, and an earlier investigation with the SHOCK code found this not to

be beneficial. CoreNeuron has an ongoing effort investigating use of OpenMP-3 tasking and new

MPI-3 capabilities (e.g. non-blocking collectives) are under consideration, so these are generally

expected to become increasingly important.

6via setting the PAMID COLLECTIVES MEMORY OPTIMIZED environment variable

File I/O Libraries Figure 2 (right) shows a pie-chart breakdown of the I/O libraries used

by High-Q Club codes, although in most cases writing output and in some cases reading input

files was disabled for their large-scale executions, and synthesised or replicated data was used

instead. Some of the (early) submissions for the High-Q Club unfortunately did not specify their

file I/O usage. One quarter of the High-Q Club codes can use either (p)HDF5 or (p)NetCDF,

despite their often disappointing performance, whereas just over a quarter can use MPI file I/O

directly. 20% of High-Q Club codes have migrated to using SIONlib for effective parallel I/O

(see Section 6.1).

Compute Node Memory For CoreNeuron available memory was the limiting factor for larger

simulations, with the current limit being 155 million neurons using 15.9 GiB of RAM. The other

neuroscience code NEST was similarly constrained by the amount of compute node memory

available to store simulation data, however, ultimately managed to simulate 645 million neurons

on JUQUEEN when using all available cores. MPAS-A required 1 GiB of memory on each process

for its regular 3 km mesh simulation (over 65 million grid cells with 41 vertical levels), and could

therefore only use a single hardware thread per core, limiting its effective performance. Using all

four hardware threads of each processor code, FEMPAR was able to increase its efficiency and

scalability to 1.75 million processes using 271
2 racks of JUQUEEN when employing an additional

(fourth-)level of domain decomposition.

Concurrency Figure 3 shows the relation between the number of MPI ranks and threads per

node. On either side of this diagram are the two extremes of using all 64 hardware threads on

each CPU by either 64 MPI ranks or 64 OpenMP/POSIX threads. Whereas multiples of two

matching the available hardware were generally employed, PEPC delivered its best performance

with the rather unusual number of 61 POSIX threads. Hatching shows the resulting number of

hardware threads used by the codes, i.e. the concurrency. Clearly, codes benefit from using more

hardware threads than physical cores and favour this configuration.

5. Comparison of Code Scalability

An overview of application code execution time scaling on JUQUEEN entails comparison

of achievements in strong (fixed total problem size), and weak (fixed problem size per process

or thread) scaling. This section reviews execution performance of submissions that qualified for

membership. Various member codes continued to improve their performance and scalability (or

that of additional functionality) beyond that of their qualifying submission.

A significant spread in execution results and diverse scaling characteristics of the codes are

visible in Fig. 5. A single BG/Q rack was chosen to provide a convenient baseline for scaling,

however, a (half-rack) mid-plane would also have offered an isolated dedicated resource for this

purpose. For strong scaling a minimum of three measurements spanning a factor of four in size

up to the full configuration of 28 racks was mandated. Note that in many cases timings do not

have a common baseline of one rack since datasets sometimes did not fit available memory, or no

data was provided for 1,024 compute nodes: for strong scaling an execution with a minimum of

seven racks (one quarter of JUQUEEN) is accepted for a baseline, and perfect scaling assumed

from a single rack to the baseline. While full-system runs have a dedicated allocation of all 28

racks, other measurements were generally done when JUQUEEN is operational with a full and

varying workload (which particularly impacts parallel I/O to the shared GPFS filesystem).

1D-NEGF
CIAO

Code_Saturne
dynQCD

JuSPIC
KKRnano

PMG+PFASST
MPAS-A

CoreNeuron

16k 32k 64k 128k 256k 448k
 1

 2

 4

 8

 16

 32

 64

sp
e
e
d
-u

p

1 2 4 8 16 28
cores
racks

hp-fRG
ICON

psOpen
SHOCK

SLH
pe

PP-Code
ParFlow+p4est

ZFS
ideal

FE2TI
FEMPAR
Gysela

IMD
JURASSIC

LAMMPS(DCM)
MP2C

0.5

0.6

0.7

0.8

0.9

1.0

16k 32k 64k 128k 256k 448k

e
ffi
ci
e
n
cy

1 2 4 8 16 28
cores
racks

muPhi
NEST

OpenTBL
pe

PEPC
waLBerla

TERRA-NEO
ideal

Figure 5. Strong and weak scaling of High-Q Club member application codes on JUQUEEN.

Compared to a single rack, ideal strong scaling has a speed-up of 28× on 28 racks and weak

scaling has 100% efficiency. Of the 18 codes showing strong scalability, ten maintained scaling

efficiency above 80% and only three were below 65% efficiency.

Many High-Q Club member codes demonstrated very good strong-scaling speed-up close to

28×, with dynQCD standing out with superlinear speed-up of 52× due to its exceptional ability

to exploit caches as problem size per thread decreases. ICON only achieved a modest 12× speed-

up, and while this is less than 50% of the ideal, clear reduction in overall time to completion

was shown.

Size of dataset was often critical for successful strong scaling to 28 racks, as diminishing

per-rank computation can be overwhelmed by growing communication costs. Scaling of MPAS-A

with a dataset of 65 million grid cells was only demonstrated to 24 racks (with worse performance

for 28 racks), however, simulations using a 2 km global mesh with more than 147 million grid

cells scaled to the full 28 racks. Several codes switched to lower-precision (32-bit instead of

64-bit) datatypes to allow them to fit larger simulations in available memory.

Weak scaling is generally easier, as shown by the High-Q Club member codes maintaining

over 80% efficiency from a single to 28 racks. JURASSIC only managed 68% efficiency, due to

excessive I/O for the reduced-size test case, which was the lowest accepted for club membership,

whereas muPhi was able to achieve 102% efficiency on 28 racks.

Various codes show erratic scaling performance, most likely due to topological effects.

SHOCK is characterised by particularly poor configurations with an odd number of racks in

one dimension (i.e. 4×3, 4×5 and 4×7). Similarly, OpenTBL shows marked efficiency drops for

non-square numbers of racks (8 and 28).

Most optimisations employed by the codes are not specific to Blue Gene (or BG/Q) systems,

but can also be exploited on other highly-parallel systems. High-Q Club codes have also run at

scale on various Cray supercomputers, K computer, MareNostrum-III, SuperMUC and other

x86-based computers, as well as on systems with GPGPUs [5].

6. Supporting Tools and Libraries

A variety of tools and libraries were invaluable during application tuning and scaling on

JUQUEEN. Particularly during workshops, LLview7 (shown in the left part of Fig. 1) facilitated

monitoring the current system usage and additionally showing job energy consumption and

file I/O performance. Custom mappings of MPI process ranks to JUQUEEN compute nodes

generated by the Rubik8 tool were investigated with psOpen and found to deliver some benefits,

however, for the largest machine partitions these did not provide the expected reduction in

communication times yet suffered from greatly increased application launch/initialisation time.

Efficient parallel file I/O libraries and performance analysis tools both delivered significant

benefits for many applications, specifically when addressing extreme scalability.

6.1. Managing Parallel File I/O

A critical point attracting increasing attention is performance of file I/O, which is often a

scalability constraint for codes which need to read and write huge datasets or open a large number

of files. Large-scale executions of various High-Q member codes using the popular HDF5 and

pNetCDF libraries needed to disable file I/O and synthesise initialisation data, e.g., CoreNeuron

replicated a small dataset to fill memory to 15.9 GiB.

Initial full-scale runs of MPAS-A needed 20 minutes to load its initial condition data of

1.2 TiB using PIO/NetCDF and simulation output was disabled for large-scale tests to avoid

similar writing inefficiency. This deficiency was subsequently addressed by adopting SIONlib to

improve file I/O, allowing MPAS-A to load 1.4 TiB of finer resolution mesh data and output

4 TiB of model data to disk at three stages of the model run. Benefits were also observed on

other systems, i.e. MPAS-A reported a 10x speed-up from PIO/NetCDF on 1,024 nodes or more

on SuperMUC [7].

The SIONlib9 library for parallel task-local file I/O, was specifically developed to address

such file I/O scalability limitations [10, 13]. It has been used effectively by four High-Q codes

7http://www.fz-juelich.de/jsc/llview
8https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php
9http://www.fz-juelich.de/jsc/sionlib/

http://www.fz-juelich.de/jsc/llview
https://computation.llnl.gov/project/performance-analysis-through-visualization/software.php
http://www.fz-juelich.de/jsc/sionlib/

0.1 1 10 100 1000
Particles [M]

1

10

100

1000

T
im

e
 [

s
]

Read, Fortran90
Write, Fortran90
Read, SIONlib
Write, SIONlib

1000 10000 100000
Particles [M]

10
3

10
4

10
5

B
a

n
d

w
id

th
 [

M
iB

/s
]

Read, SIONlib
Write, SIONlib

Figure 6. Left: MP2C file I/O time on one JUQUEEN midplane (8 192 MPI ranks) using

traditional F90 I/O compared to improved I/O with SIONlib. Right: MP2C file I/O bandwidth

for checkpointing executions with 1.8 million MPI ranks on 28 racks of JUQUEEN using SIONlib

for reading and writing particle data

(KKRnano, MPAS-A, MP2C and muPhi) and several other applications are investigating migrat-

ing to adopt it (e.g. NEST [32]).

The scalability limitations of näıve parallel file management is demonstrated by I/O opti-

mization results from the integration of SIONlib into MP2C [9]. MP2C couples multiple-particle

collision dynamics with molecular dynamics to implement mesoscale simulation of hydrodynamic

media. MP2C uses a large number of particles in its calculation, which have to be read from

files in the initialisation phase and stored in files at the end of a simulation run in restart files.

Furthermore, MP2C regularly does I/O to checkpoint files to be able to restart after system or

program failure.

Originally, MP2C implemented I/O to a single file storing all particle data, which prevents

bottlenecks which arise when using a large number of task-local files. However, data output

was implemented with standard Fortran90 I/O calls for writing in two steps by first collecting

the data on one task and then writing the data in a second step from that task to file. Data

input is done individually by each MP2C MPI rank, reading the whole input file and selecting

those particles that will be needed in the local domain. As both approaches limit the scalability

of data input and output, I/O had to be improved for using it at large scale on JUQUEEN.

Figure 6 (Fortran90 write and read) shows the results of initial benchmark runs on one BG/Q

midplane with 8,192 MPI ranks using the traditional I/O approach. The measurements at the

small scale of one midplane show the increasing time for I/O operations which hinders MP2C

from using more than 50 million particles. However, the algorithm and its memory requirements

allow orders of magnitude larger numbers of particles.

SIONlib supports efficient parallel file I/O for applications which use task-local I/O to

individual files for each MPI rank. It was easily integrated into MP2C by replacing Fortran90

file open and close calls by corresponding SIONlib collective calls and write and read operations

of local particle data with SIONlib I/O operations. After changing approximately 50 lines of

code, we could reduce MP2C I/O time by several orders of magnitude. Furthermore, we could

scale MP2C’s I/O on one midplane to more than 4 billion particles, which is 125 times more

than in the traditional approach (see SIONlib write and read in Fig. 6).

With integration of SIONlib into MP2C, it now runs with enabled I/O at the full scale of

JUQUEEN. Figure 6 shows the I/O bandwidth for reading and writing different numbers of

particles. Data was stored on the GPFS scratch filesystem which provides a theoretical I/O

bandwidth of 200 GiB/s. MP2C could achieve at the largest scale about 100 GiB/s for writing

and more than 130 GiB/s for reading, which is 50–66 % of the peak bandwidth. For the largest

number of particles (270 trillion), the restart file of MP2C was 14.4 TiB which could be written

in 147 s (and read in 108 s).

6.2. Parallel Performance Analysis

During their development and specifically when preparing for large-scale runs on JUQUEEN,

the execution performance of various High-Q Club applications was investigated with open-

source tools. While most analyses are adequate at modest scales (e.g., a single BG/Q rack with

64k processes/threads), occassionally it is necessary to investigate performance issues that only

manifest at larger scales.

The Darshan10 tool was typically most convenient for low-overhead measurement and anal-

ysis of file I/O, distinguishing MPI file I/O from underlying POSIX file I/O per file and detailed

breakdown of operation counts and I/O sizes. This was complemented by the Scalasca11 toolset

for scalable performance analysis of large-scale parallel applications [15] which is widely deployed

on some of the largest HPC systems and clusters, supporting runtime summarization and event

trace analyses of MPI and OpenMP primarily focus on locating and quantifying communication

and synchronization inefficiencies in C/C++/Fortran applications. Scalasca uses its own parallel

trace tools with the community-developed Score-P12 instrumentation and measurement infras-

tructure [24], itself based on OTF2 event trace and CUBE profile libraries. SIONlib is employed

for efficient large-scale parallel file I/O when writing and reading OTF2 trace files (e.g., handling

one container file per BG/Q IONode).

Scalasca measurements of applications running with 1.8 million threads on JUQUEEN have

been done where 64 OpenMP threads are used for a single MPI process on each processor. In

such an execution configuration the 16 GiB of processor memory is adequate to store profile

and execution trace data collected during measurement for unification and collation during

finalisation. This is not the case when 32 or 64 MPI processes split the available processor

memory, along with memory required by the MPI library and application itself, restricting

measurements to smaller configurations.

Parallel execution profiles are by default based on full compiler instrumentation of applica-

tion user-level source routines, combined with OPARI2 instrumentation of OpenMP constructs

and PMPI interposition on MPI library routines. Where these initial profile measurements man-

ifest notable execution time dilation, filtering during measurement or selective instrumentation

can be employed, directed by scoring which assesses event frequencies and associated measure-

ment overheads. Iterative refinement of instrumentation and measurement of profiles is essential

prior to collecting event traces where overheads are more significant, particularly with respect

to in-memory buffering during measurement and final trace sizes.

Event traces are analysed by Scalasca trace tools with a parallel replay following measure-

ment within the allocated partition, using the same configuration of MPI processes and OpenMP

threads, to determine the fraction of OpenMP and MPI time due to waiting, the origins of de-

lays, and critical execution path. Since traces are loaded entirely in memory for forward and

10http://www.mcs.anl.gov/darshan
11http://www.scalasca.org/
12http://www.score-p.org/

http://www.mcs.anl.gov/darshan
http://www.scalasca.org/
http://www.score-p.org/

backward event replays, which require additional data-structures and pointers, the number of

recorded events similarly governs the size of trace that can be analysed. (While analysis of

smaller execution configurations may employ larger partitions with more memory, this option is

not possible for event traces from the full system.)

Finally, the minimal set of metrics provided in Score-P profiles and Scalasca trace analysis

reports are subsequently post-processed by a remapper which derives a large number of addi-

tional metrics and hierarchies. Since the CUBE remapper and GUI are serial processes requiring

large amounts of RAM to process metrics in memory (and to minimise expensive paging to

disk), generally these are best done on dedicated visualisation nodes, such as those of the JSC

general-purpose Linux cluster JURECA with 1 TiB shared RAM.

During an Extreme Scaling Workshop, Scalasca helped identify a critical performance issue

that manifest at large scale with a version of the NEST application when it was importing

1.9 TiB of neuron and synapse data with HDF5 configured to use collective MPI file I/O. To

avoid IBM XL C++ compiler instrumentation overhead, manual annotation of the relevant

code regions was used to augment the instrumentation of OpenMP and MPI. Measurement of

an execution with 16 OpenMP threads for 28,672 MPI ranks (458,752 threads in total) revealed

a large imbalance in MPI File I/O which was mirrored in the following OpenMP parallel region.

Instead of the expected MPI collective file I/O, much less efficient individual file I/O was found

which originated from a mismatch between the import module’s data structure and the HDF5

file objects [4]. After suitably modifying the import data structure to match the HDF5 file

object, the imbalance was eliminated and performance greatly improved [32].

The cost of MPI collective file writing for final simulation output of the CIAO application

on JUQUEEN with 458,752 MPI ranks was also identified by Scalasca as a key performance

limitation and motivation for JUSITU coupling in situ visualization to VisIt [16] as previously

incorporated in psOpen and ZFS.

Exponentially growing memory requirements of ParFlow were located to originate from

version of the HYPRE library used by its by preconditioner using memory allocation profiling [8].

Examination of Scalasca execution traces was key to determining optimal load-balancing of MPI

and OpenMP computations, and associated workload distribution and loop scheduling strategies,

to allow hp-fRG to scale effectively to use all of the JUQUEEN compute nodes with 1.8 million

threads [31].

Conclusions

As the highly productive operation of the JUQUEEN Blue Gene/Q by Jülich Supercom-

puting Centre draws to a close in spring 2018, the High-Q Club documents 32 codes from a

wide range of HPC application fields that demonstrated effective extreme-scale execution using

its entire 458,752 cores (and often 1.8 million threads). Standard programming languages and

MPI combined with multi-threading was sufficient, and provided a straightforward migration

path for application developers which has also delivered performance and scalability benefits

on diverse HPC computer systems (including K computer, Cray supercomputer systems and

other clusters). Similar ease-of-use and reliability of well-established homogeneous Blue Gene/Q

systems probably cannot be expected to be representative of the current and future generations

of heterogeneous HPC systems, however, we believe it is a worthwhile goal.

Each of the High-Q Club member codes is quite distinct, encountering and resolving a

variety of often unique impediments in scaling to the full JUQUEEN configuration. Code teams

themselves ultimately determine whether and how to address the considerable challenges, with

the High-Q Club promoting successes. Engagement of experts from JSC involved close long-term

collaborations in some cases to very little in others. Extreme scaling workshops provided a brief

opportunity for particularly intense interaction and experimentation, which benefits many code

teams.

Extreme scaling on JUQUEEN generally required adapting to the limited compute node

memory, either via employing alternate communicator management optimised for large numbers

of MPI ranks or effective exploitation of OpenMP multi-threading in a mixed-mode configura-

tion. Often file I/O is not done in a scalable fashion, requiring many codes to forfeit I/O (and

use synthetic or replicated simulation data) for their large-scale runs. Application codes which

are leaner and less restrictive in their memory and I/O usage can be desirable as they can

exploit more affordable systems, however, each code has its own requirements and constraints.

High-Q Club member codes are those which were able to adapt, but many important codes

may not be so fortunate. Despite these limitations, notable extreme-scale simulation capabili-

ties were demonstrated and led to subsequent Big Blue Gene Weeks with prioritised production

executions.

The High-Q Club was entirely neutral as to how application codes achieve qualifying scala-

bility. JSC training and consultancy introduce and consider a variety of technologies and tech-

niques (including novel programming models and languages) from which application developers

themselves decide which to pursue based on their individual cost-benefit determination. Our as-

sessment of the High-Q Club member code characteristics shows that incremental changes were

convenient for a wide variety of codes. The absence of disruptive approaches can perhaps be

explained by the additional effort required and associated technology immaturity at this time.

While focussing on scalability to the entire 28 racks of the JUQUEEN BG/Q installed at

JSC was a natural choice, it is also rather arbitrary. Loosening the High-Q Club qualification

criteria to accept scaling to 85% (or perhaps even 70%) of the entire JUQUEEN system could

also have been justifiable and still offer value in distinguishing extreme-scaling codes. Additional

credit may also have been appropriate for executions that are representative of production

configurations including associated file I/O, and possibly other desirable aspects (such as node-

level optimisation via vectorisation and core over-subscription). Greater differentiation between

the High-Q Club member codes is also desirable, particularly for better insight into readiness for

capability-mode production on current leadership systems and expected future exascale systems.

These aspects will be re-considered for a successor to the High-Q Club.

We would like to thank the numerous application code-teams who participated in Extreme

Scaling Workshops at JSC and contributors to the High-Q Club for generously sharing their

experience, identifying performance and scalability inhibitors and effective solutions. We also

recognise the invaluable assistance provided by the JSC Simulation Laboratories, Cross-Sectional

Teams, system administrators, and JUQUEEN support staff.

This paper is distributed under the terms of the Creative Commons Attribution-Non Com-

mercial 3.0 License which permits non-commercial use, reproduction and distribution of the work

without further permission provided the original work is properly cited.

References

1. Allock, W.E., Bacon, C., Bailey, A.M., Bair, R., Balakrishnan, R., Bertsch, A., Bihari, B.,

Carnes, B., Chen, D., Chiu, G.L.T., Coffey, R., Coghlan, S., Coteus, P.W., Cupps, K.,

Draeger, E.W., Fried, L., Fox, T.W., Gary, M., Glosli, J.N., Gooding, T., Gunnels, J.A.,

Gyllenhaal, J.C., Hammond, J., Haring, R.A., Heidelberger, P., Hereld, M., Inglett, T., Kim,

K., Kumaran, K., Langer, S., Mamidala, A.R., McCallen, R., Messina, P., Miller, S., Mirin,

A.A., Morozov, V., Najjar, F., Nelson, M., Nichols, A., Ohmacht, M., Papka, M.E., Petrini,

F., Ryu, K.D., Quinn, T., Richards, D., Riley, K.M., Romero, N.A., Schram, A.A., Shearer,

R., Spelce, T., Springmeyer, B., Streitz, F., de Supinski, B., Vranas, P., Walkup, R.E.,

Wang, A., Williams, T.J., Wisniewski, R.: Blue Gene/Q: Sequoia and Mira. In: Vetter,

J.S. (ed.) Contemporary High Performance Computing: From Petascale toward Exascale,

chap. 10, pp. 225–282. Computational Science Series, Chapman & Hall/CRC (2013)

2. Attig, N., Docter, J., Frings, W., Grotendorst, J., Gutheil, I., Janetzko, F., Mextorf,

O., Mohr, B., Stephan, M., Wolkersdorfer, K., Wollschläger, L., Krieg, S., Lippert, T.:

Blue Gene/P: JUGENE. In: Vetter, J.S. (ed.) Contemporary High Performance Comput-

ing: From Petascale toward Exascale, chap. 8, pp. 153–188. Computational Science Series,

Chapman & Hall/CRC (2013)

3. Brömmel, D., Frings, W., Wylie, B.J.N.: JUQUEEN Extreme Scaling Workshop 2015. Tech.

Rep. FZJ-JSC-IB-2015-01, Jülich Supercomputing Centre (2015), http://hdl.handle.

net/2128/8435, accessed: 2018-03-21

4. Brömmel, D., Frings, W., Wylie, B.J.N.: Extreme-scaling applications en route to exascale.

In: Proceedings of the Exascale Applications and Software Conference 2016. pp. 1:1–1:10.

EASC’16, ACM, New York, NY, USA, DOI: 10.1145/2938615.2938616

5. Brömmel, D., Frings, W., Wylie, B.J.N.: MAXI – Multi-system Application Extreme-scaling

Imperative. In: Parallel Computing: On the Road to Exascale, pp. 765–846. IOS Press, DOI:

10.3233/978-1-61499-621-7-765

6. Brömmel, D., Frings, W., Wylie, B.J.N.: JUQUEEN Extreme Scaling Workshop 2016. Tech.

Rep. FZJ-JSC-IB-2016-01, Jülich Supercomputing Centre (2016), http://hdl.handle.

net/2128/9990, accessed: 2018-03-21

7. Brömmel, D., Frings, W., Wylie, B.J.N.: JUQUEEN Extreme Scaling Workshop 2017. Tech.

Rep. FZJ-JSC-IB-2017-01, Jülich Supercomputing Centre (2017), http://hdl.handle.

net/2128/13977, accessed: 2018-03-21

8. Burstedde, C., Fonseca, J.A., Kollet, S.: Enhancing speed and scalability of the ParFlow

simulation code. Computational Geosciences 22, 347–361, DOI: 10.1007/s10596-017-9696-2

9. Freche, J., Frings, W., Sutmann, G.: High-Throughput Parallel-I/O using SIONlib for Meso-

scopic Particle Dynamics Simulations on Massively Parallel Computers. In: Advances in

Parallel Computing. vol. 19, pp. 371–378, DOI: 10.3233/978-1-60750-530-3-371

10. Frings, W.: Efficient Task-Local I/O Operations of Massively Parallel Applications. Ph.D.

thesis, RWTH Aachen University, Forschungszentrum Jülich GmbH Zentralbibliothek Verlag

(2016), http://hdl.handle.net/2128/11967, accessed: 2018-03-21

http://hdl.handle.net/2128/8435
http://hdl.handle.net/2128/8435
https://dx.doi.org/10.1145/2938615.2938616
https://dx.doi.org/10.3233/978-1-61499-621-7-765
http://hdl.handle.net/2128/9990
http://hdl.handle.net/2128/9990
http://hdl.handle.net/2128/13977
http://hdl.handle.net/2128/13977
https://dx.doi.org/10.1007/s10596-017-9696-2
https://dx.doi.org/10.3233/978-1-60750-530-3-371
http://hdl.handle.net/2128/11967

11. Frings, W., Ahn, D.H., LeGendre, M., Gamblin, T., de Supinski, B.R., Wolf, F.: Massively

Parallel Loading. In: Proceedings of the 27th ACM International Conference on Supercom-

puting. pp. 389–398. ICS ’13, ACM, New York, NY, USA, DOI: 10.1145/2464996.2465020

12. Frings, W., Hermanns, M.A., Mohr, B., Orth, B.: Jülich Blue Gene/L Scaling Workshop

2006. Tech. Rep. FZJ-ZAM-IB-2007-02, Zentralinstitut für Angewandte Mathematik, Jülich

(2007), http://hdl.handle.net/2128/12099, accessed: 2018-03-21

13. Frings, W., Wolf, F., Petkov, V.: Scalable massively parallel I/O to task-local files. In:

Proceedings of the Conference on High Performance Computing, Networking, Storage and

Analysis. pp. 17:1–17:11. SC’09, ACM, New York, NY, USA, DOI: 10.1145/1654059.1654077

14. Gageik, M.A., Klioutchnikov, I., Olivier, H.: Mesh study for a direct numerical simulation

of the transonic flow at Rec=500, 000 around a NACA 0012 airfoil. In: Deutscher Luft- und

Raumfahrtkongress 2014. No. DGLR-2014-0028 in DGLR Jahrestagung (2014)

15. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The Scalasca

performance toolset architecture. Concurrency and Computation: Practice and Experience

22(6), 702–719, DOI: 10.1002/cpe.1556

16. Göbbert, J.H., Bode, M., Wylie, B.J.N.: Extreme-scale in situ visualization of turbulent

flows on IBM Blue Gene/Q JUQUEEN. In: Taufer, M., Mohr, B., Kunkel, J. (eds.) ISC High

Performance 2016 International Workshops ExaComm, E-MuCoCoS, HPC-IODC, IXPUG,

IWOPH, P3MA, VHPC, WOPSSS. Lecture Notes in Computer Science, vol. 9945, pp. 45–

55. Springer, Cham, DOI: 10.1007/978-3-319-46079-6 4

17. Göbbert, J.H., Gauding, M., Ansorge, C., Hentschel, B., Kuhlen, T., Pitsch, H.: Direct nu-

merical simulation of fluid turbulence at extreme scale with psOpen. In: Parallel Computing:

On the Road to Exascale, pp. 777–785. IOS Press, DOI: 10.3233/978-1-61499-621-7-777

18. Hammer, N., Jamitzky, F., Satzger, H., et al.: Extreme scale-out SuperMUC phase 2 –

lessons learned. In: Parallel Computing: On the Road to Exascale, pp. 827–836. IOS Press,

DOI: 10.3233/978-1-61499-621-7-827

19. Heinzeller, D., Duda, M.G., Kunstmann, H.: Towards convection-resolving, global atmo-

spheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme

scaling experiment. Geoscientific Model Development 9(1), 77–110, DOI: 10.5194/gmd-9-

77-2016

20. IBM Corporation: IBM System Blue Gene Solution Blue Gene/Q Application Development,

http://www.redbooks.ibm.com/, accessed: 2018-03-21

21. Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., Diesmann, M., Kunkel,

S.: Extremely scalable spiking neuronal network simulation code: From laptops to exascale

computers. Frontiers in Neuroinformatics 12(2), DOI: 10.3389/fninf.2018.00002

22. Jülich Supercomputing Centre: The High-Q Club, http://www.fz-juelich.de/ias/jsc/

high-q-club, accessed: 2018-03-21

23. Klawonn, A., Lanser, M., Rheinbach, O.: FE2TI: Computational scale bridging for dual-

phase steels. In: Parallel Computing: On the Road to Exascale, pp. 797–806. IOS Press,

DOI: 10.3233/978-1-61499-621-7-797

https://dx.doi.org/10.1145/2464996.2465020
http://hdl.handle.net/2128/12099
https://dx.doi.org/10.1145/1654059.1654077
https://dx.doi.org/10.1002/cpe.1556
https://dx.doi.org/10.1007/978-3-319-46079-6_4
https://dx.doi.org/10.3233/978-1-61499-621-7-777
https://dx.doi.org/10.3233/978-1-61499-621-7-827
https://dx.doi.org/10.5194/gmd-9-77-2016
https://dx.doi.org/10.5194/gmd-9-77-2016
http://www.redbooks.ibm.com/
https://dx.doi.org/10.3389/fninf.2018.00002
http://www.fz-juelich.de/ias/jsc/high-q-club
http://www.fz-juelich.de/ias/jsc/high-q-club
https://dx.doi.org/10.3233/978-1-61499-621-7-797

24. Knüpfer, A., Rössel, C., an Mey, D., Biersdorff, S., Diethelm, K., Eschweiler, D., Geimer, M.,

Gerndt, M., Lorenz, D., Malony, A.D., Nagel, W.E., Oleynik, Y., Philippen, P., Saviankou,

P., Schmidl, D., Shende, S.S., Tschüter, R., Wagner, M., Wesarg, B., Wolf, F.: Score-P

– A joint performance measurement run-time infrastructure for Periscope, Scalasca, TAU,

and Vampir. In: Proc. 5th Parallel Tools Workshop (Dresden). pp. 79–91. Springer, DOI:

10.1007/978-3-642-31476-6 7

25. Mohr, B., Frings, W.: Jülich Blue Gene/P Extreme Scaling Workshop 2009. Tech. Rep. FZJ-

JSC-IB-2010-02, Jülich Supercomputing Centre (2010), http://hdl.handle.net/2128/

7234, accessed: 2018-03-21

26. Mohr, B., Frings, W.: Jülich Blue Gene/P Extreme Scaling Workshop 2010. Tech. Rep. FZJ-

JSC-IB-2010-03, Jülich Supercomputing Centre (2010), http://hdl.handle.net/2128/

7236, accessed: 2018-03-21

27. Mohr, B., Frings, W.: Jülich Blue Gene/P Extreme Scaling Workshop 2011. Tech. Rep. FZJ-

JSC-IB-2011-02, Jülich Supercomputing Centre (2011), http://hdl.handle.net/2128/

7309, accessed: 2018-03-21

28. Mohr, B., Frings, W.: Jülich Blue Gene/P Porting, Tuning & Scaling Workshop 2008. In-

novatives Supercomputing in Deutschland (InSiDE) 6(2) (2008), http://inside.hlrs.de/

_old/htm/Edition_02_08/article_28.html

29. Ovcharenko, A., Kumbhar, P., Hines, M., Cremonesi, F., Ewart, T., Yates, S., Schürmann,

F., Delalondre, F.: Simulating morphologically detailed neuronal networks at extreme

scale. In: Parallel Computing: On the Road to Exascale, pp. 787–796. IOS Press, DOI:

10.3233/978-1-61499-621-7-787

30. Qi, J., Jain, K., Klimach, H., Roller, S.: Performance evaluation of the LBM solver Musubi

on various HPC architectures. In: Parallel Computing: On the Road to Exascale, pp. 807–

816. IOS Press, DOI: 10.3233/978-1-61499-621-7-807

31. Rohe, D.: Hierarchical parallelisation of functional renormalisation group calculations —

hp-fRG. Computer Physics Communications 207, 160–169, DOI: 10.1016/j.cpc.2016.05.024

32. Schumann, T., Frings, W., Peyser, A., Schenck, W., Thust, K., Eppler, J.M.: Modeling the

I/O behavior of the NEST simulator using a proxy. In: Proceedings of the 3rd ECCOMAS

Young Investigators Conference GACM. RWTH Aachen University (2015), http://hdl.

handle.net/2128/9076, accessed: 2018-03-21

33. Springer, P., Ismail, A.E., Bientinesi, P.: A scalable, linear-time dynamic cutoff algorithm

for molecular dynamics. In: Kunkel, J.M., Ludwig, T. (eds.) High Performance Computing.

pp. 155–170. Springer International Publishing, Cham, DOI: 10.1007/978-3-319-20119-1 12

34. Stephan, M., Doctor, J.: JUQUEEN: IBM Blue Gene/Q supercomputer system at the

Jülich Supercomputing Centre. Journal of Large-Scale Research Facilities 1(A1), DOI:

10.17815/jlsrf-1-18

https://dx.doi.org/10.1007/978-3-642-31476-6_7
http://hdl.handle.net/2128/7234
http://hdl.handle.net/2128/7234
http://hdl.handle.net/2128/7236
http://hdl.handle.net/2128/7236
http://hdl.handle.net/2128/7309
http://hdl.handle.net/2128/7309
http://inside.hlrs.de/_old/htm/Edition_02_08/article_28.html
http://inside.hlrs.de/_old/htm/Edition_02_08/article_28.html
https://dx.doi.org/10.3233/978-1-61499-621-7-787
https://dx.doi.org/10.3233/978-1-61499-621-7-807
https://dx.doi.org/10.1016/j.cpc.2016.05.024
http://hdl.handle.net/2128/9076
http://hdl.handle.net/2128/9076
https://dx.doi.org/10.1007/978-3-319-20119-1_12
https://dx.doi.org/10.17815/jlsrf-1-18

	Background
	JUQUEEN BlueGene/Q
	High-Q Club
	Parallel Program & Execution Configuration Characteristics
	Comparison of Code Scalability
	Supporting Tools and Libraries
	Managing Parallel File I/O
	Parallel Performance Analysis

