000845524 001__ 845524
000845524 005__ 20240711101541.0
000845524 0247_ $$2doi$$a10.1016/j.electacta.2018.09.021
000845524 0247_ $$2ISSN$$a0013-4686
000845524 0247_ $$2ISSN$$a1873-3859
000845524 0247_ $$2WOS$$aWOS:000446234700037
000845524 037__ $$aFZJ-2018-02758
000845524 082__ $$a540
000845524 1001_ $$0P:(DE-Juel1)168241$$aLiu, Shuai$$b0
000845524 245__ $$aEffects of Constant Load Operations on Platinum Bands Formation and Cathode Degradation in High-Temperature Polymer Electrolyte Fuel Cells
000845524 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000845524 3367_ $$2DRIVER$$aarticle
000845524 3367_ $$2DataCite$$aOutput Types/Journal article
000845524 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1547480308_19393
000845524 3367_ $$2BibTeX$$aARTICLE
000845524 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845524 3367_ $$00$$2EndNote$$aJournal Article
000845524 520__ $$aIn this paper, Pt bands and cathode degradation are investigated in polybenzimidazole (PBI) membrane-based high-temperature polymer electrolyte fuel cells (HT-PEFC). A focused ion beam/scanning electron microscopy (FIB/SEM) system was used to characterize the cross-section morphologies of membrane electrode assemblies (MEA). A Pt band is observed in the FIB/SEM images of the MEA activated by a common break-in procedure (at 200 mA cm−2 for 70 h). Then, an identical MEA was subjected to an aging process that included static holding at 200 mA cm−2 for 100 h and an open circuit voltage (OCV) operation for another 100 h. FIB/SEM images of the aged MEA show that the band formed during the break-in procedure is strengthened. Moreover, a second Pt band is observed closer to the membrane/cathode interface, which is due to the increase of hydrogen crossover caused by membrane thinning during the OCV hold test. In situ electrochemical measurements show that the cell’s performance loss due to the formation of the Pt band during cell operation at 200 mA cm−2 is negligible. The decrease of cell performance is mainly attributed to the loss of electrochemically active surface area and membrane degradation during the OCV hold test.
000845524 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000845524 588__ $$aDataset connected to CrossRef
000845524 7001_ $$0P:(DE-Juel1)162160$$aRasinski, Marcin$$b1
000845524 7001_ $$0P:(DE-Juel1)165816$$aLin, Yu$$b2
000845524 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b3
000845524 7001_ $$0P:(DE-Juel1)169432$$aEverwand, Andreas$$b4$$ufzj
000845524 7001_ $$0P:(DE-Juel1)129883$$aLehnert, Werner$$b5$$eCorresponding author
000845524 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2018.09.021$$gVol. 289, p. 354 - 362$$p354 - 362$$tElectrochimica acta$$v289$$x0013-4686$$y2018
000845524 8564_ $$uhttps://juser.fz-juelich.de/record/845524/files/1-s2.0-S0013468618319820-main.pdf$$yRestricted
000845524 8564_ $$uhttps://juser.fz-juelich.de/record/845524/files/1-s2.0-S0013468618319820-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845524 909CO $$ooai:juser.fz-juelich.de:845524$$pVDB
000845524 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845524 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000845524 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845524 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845524 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845524 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845524 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845524 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845524 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845524 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845524 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845524 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845524 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845524 9141_ $$y2018
000845524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168241$$aForschungszentrum Jülich$$b0$$kFZJ
000845524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162160$$aForschungszentrum Jülich$$b1$$kFZJ
000845524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165816$$aForschungszentrum Jülich$$b2$$kFZJ
000845524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b3$$kFZJ
000845524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169432$$aForschungszentrum Jülich$$b4$$kFZJ
000845524 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129883$$aForschungszentrum Jülich$$b5$$kFZJ
000845524 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129883$$aRWTH Aachen$$b5$$kRWTH
000845524 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000845524 920__ $$lyes
000845524 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000845524 980__ $$ajournal
000845524 980__ $$aVDB
000845524 980__ $$aI:(DE-Juel1)IEK-3-20101013
000845524 980__ $$aUNRESTRICTED
000845524 981__ $$aI:(DE-Juel1)ICE-2-20101013