000845525 001__ 845525
000845525 005__ 20210129233453.0
000845525 0247_ $$2doi$$a10.1134/S102745101802026X
000845525 0247_ $$2ISSN$$a1027-4510
000845525 0247_ $$2ISSN$$a1819-7094
000845525 0247_ $$2WOS$$aWOS:000430991000017
000845525 037__ $$aFZJ-2018-02759
000845525 082__ $$a530
000845525 1001_ $$0P:(DE-HGF)0$$aKhodan, A. N.$$b0$$eCorresponding author
000845525 245__ $$aStructural Analysis of Aluminum Oxyhydroxide Aerogel by Small Angle X-Ray Scattering
000845525 260__ $$aMoscow$$bMAIK Nauka/Interperiodics Publ.$$c2018
000845525 3367_ $$2DRIVER$$aarticle
000845525 3367_ $$2DataCite$$aOutput Types/Journal article
000845525 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525756252_17694
000845525 3367_ $$2BibTeX$$aARTICLE
000845525 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845525 3367_ $$00$$2EndNote$$aJournal Article
000845525 520__ $$aThe work presents studies on the microstructure and mesostructure of nanostructured aluminum oxyhydroxide formed as a high porous monolithic material through the surface oxidation of aluminum liquidmetal solution in mercury in a temperature- and humidity-controlled air atmosphere. The methods of X-ray diffraction analysis, thermal analysis, the low temperature adsorption of nitrogen vapors, transmission electron microscopy, small-angle and very small-angle neutron scattering, and small-angle X-ray scattering are used for comprehensive investigation of the samples synthesized at 25°С as well as that annealed at temperatures up to 1150°C. It is found that the structure of the monolithic samples can be described within the framework of a three-level model involving primary heterogeneities (typical length scale of rc ≈ 9–19 Å), forming fibrils (cross-sectional radius R ≈ 36–43 Å and length L ≈ 3200–3300 Å) or lamellae (thickness T ≈ 110 Å and width W ≈ 3050 Å) which, in turn, are integrated into large-scale aggregates (typical size R c ≈ 1.25–1.4 μm) with an insignificant surface roughness. It is shown that a high specific surface (~200 m2/g) typical for the initial sample is maintained upon its thermal annealing up to 900°С, and it decreases to 100 m2/g after heat treatment at 1150°С due to fibrillary agglomeration.
000845525 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000845525 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000845525 588__ $$aDataset connected to CrossRef
000845525 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x0
000845525 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x0
000845525 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000845525 693__ $$0EXP:(DE-MLZ)KWS3-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS3-20140101$$6EXP:(DE-MLZ)NL3auS-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-3: Very small angle scattering diffractometer with focusing mirror$$fNL3auS$$x1
000845525 7001_ $$0P:(DE-HGF)0$$aKopitsa, G. P.$$b1
000845525 7001_ $$0P:(DE-HGF)0$$aYorov, Kh. E.$$b2
000845525 7001_ $$0P:(DE-HGF)0$$aBaranchikov, A. E.$$b3
000845525 7001_ $$0P:(DE-HGF)0$$aIvanov, V. K.$$b4
000845525 7001_ $$0P:(DE-Juel1)144382$$aFeoktystov, Artem$$b5
000845525 7001_ $$0P:(DE-Juel1)130893$$aPipich, Vitaliy$$b6
000845525 773__ $$0PERI:(DE-600)2389417-9$$a10.1134/S102745101802026X$$gVol. 12, no. 2, p. 296 - 305$$n2$$p296 - 305$$tJournal of surface investigation$$v12$$x1819-7094$$y2018
000845525 8564_ $$uhttps://juser.fz-juelich.de/record/845525/files/10.1134_S102745101802026X.pdf$$yRestricted
000845525 8564_ $$uhttps://juser.fz-juelich.de/record/845525/files/10.1134_S102745101802026X.gif?subformat=icon$$xicon$$yRestricted
000845525 8564_ $$uhttps://juser.fz-juelich.de/record/845525/files/10.1134_S102745101802026X.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845525 8564_ $$uhttps://juser.fz-juelich.de/record/845525/files/10.1134_S102745101802026X.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845525 8564_ $$uhttps://juser.fz-juelich.de/record/845525/files/10.1134_S102745101802026X.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845525 8564_ $$uhttps://juser.fz-juelich.de/record/845525/files/10.1134_S102745101802026X.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845525 909CO $$ooai:juser.fz-juelich.de:845525$$pVDB$$pVDB:MLZ
000845525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144382$$aForschungszentrum Jülich$$b5$$kFZJ
000845525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130893$$aForschungszentrum Jülich$$b6$$kFZJ
000845525 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000845525 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000845525 9141_ $$y2018
000845525 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845525 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845525 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000845525 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845525 920__ $$lyes
000845525 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000845525 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000845525 980__ $$ajournal
000845525 980__ $$aVDB
000845525 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000845525 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000845525 980__ $$aUNRESTRICTED