000845534 001__ 845534
000845534 005__ 20210129233454.0
000845534 0247_ $$2doi$$a10.1021/acs.macromol.7b02722
000845534 0247_ $$2ISSN$$a0024-9297
000845534 0247_ $$2ISSN$$a1520-5835
000845534 0247_ $$2WOS$$aWOS:000430022000027
000845534 037__ $$aFZJ-2018-02761
000845534 082__ $$a540
000845534 1001_ $$0P:(DE-Juel1)IHRS-BioSoft-140004$$aBrugnoni, Monia$$b0
000845534 245__ $$aSwelling of a Responsive Network within Different Constraints in Multi-Thermosensitive Microgels
000845534 260__ $$aWashington, DC$$bSoc.$$c2018
000845534 3367_ $$2DRIVER$$aarticle
000845534 3367_ $$2DataCite$$aOutput Types/Journal article
000845534 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1552414389_13871
000845534 3367_ $$2BibTeX$$aARTICLE
000845534 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845534 3367_ $$00$$2EndNote$$aJournal Article
000845534 520__ $$aWe report on the swelling of a polymeric network in doubly thermoresponsive microgels. Silica-core double-shell and hollow double-shell microgels made of an inner poly(N-isopropylmethacrylamide) and an outer poly(N-isopropylacrylamide) shell are studied by exploiting the distinct temperature sensitivities of the polymers. The swelling states of the two shells can be tuned by temperature changes enabling three different swelling states: above, below, and between the distinct volume phase transition temperatures of the two polymers. This enables to investigate the effect of different constraints on the swelling of the inner network. Small-angle neutron scattering with contrast variation in combination with computer simulation discloses how the expansion of the inner shell depends on the material and swelling state of its constraints. In the presence of the stiff core, the microgels show a considerable interpenetration of the polymeric shells: the inner network expands into the outer deswollen shell. This interpenetration vanishes when the outer network is swollen. Furthermore, as predicted by our computer simulations, an appropriate choice of cross-linking density enables the generation of hollow double-shell nanocapsules. Here, the inner shell undergoes a push–pull effect. At high temperature, the collapsed outer shell pushes the swollen inner network into the cavity. At lower temperature, the swelling of the outer network contrary pulls the inner shell back toward the external periphery.
000845534 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x0
000845534 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000845534 536__ $$0G:(DE-Juel1)jhpc41_20160501$$aAmphoteric Microgels for Uptake and Release of Polyelectrolytes (jhpc41_20160501)$$cjhpc41_20160501$$fAmphoteric Microgels for Uptake and Release of Polyelectrolytes$$x2
000845534 588__ $$aDataset connected to CrossRef
000845534 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000845534 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1
000845534 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000845534 693__ $$0EXP:(DE-MLZ)KWS2-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS2-20140101$$6EXP:(DE-MLZ)NL3ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-2: Small angle scattering diffractometer$$fNL3ao$$x0
000845534 7001_ $$00000-0002-8988-330X$$aScotti, Andrea$$b1
000845534 7001_ $$0P:(DE-HGF)0$$aRudov, Andrey A.$$b2
000845534 7001_ $$0P:(DE-HGF)0$$aGelissen, Arjan P. H.$$b3
000845534 7001_ $$0P:(DE-HGF)0$$aCaumanns, Tobias$$b4
000845534 7001_ $$0P:(DE-Juel1)130905$$aRadulescu, Aurel$$b5
000845534 7001_ $$0P:(DE-HGF)0$$aEckert, Thomas$$b6
000845534 7001_ $$00000-0003-1825-7798$$aPich, Andrij$$b7
000845534 7001_ $$00000-0002-6687-7732$$aPotemkin, Igor I.$$b8
000845534 7001_ $$0P:(DE-Juel1)IHRS-BioSoft-140012$$aRichtering, Walter$$b9$$eCorresponding author
000845534 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.7b02722$$gVol. 51, no. 7, p. 2662 - 2671$$n7$$p2662 - 2671$$tMacromolecules$$v51$$x1520-5835$$y2018
000845534 8564_ $$uhttps://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.pdf$$yRestricted
000845534 8564_ $$uhttps://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.gif?subformat=icon$$xicon$$yRestricted
000845534 8564_ $$uhttps://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845534 8564_ $$uhttps://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845534 8564_ $$uhttps://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845534 8564_ $$uhttps://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845534 909CO $$ooai:juser.fz-juelich.de:845534$$pVDB$$pVDB:MLZ
000845534 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)IHRS-BioSoft-140004$$aExternal Institute$$b0$$kExtern
000845534 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130905$$aForschungszentrum Jülich$$b5$$kFZJ
000845534 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)IHRS-BioSoft-140012$$aExternal Institute$$b9$$kExtern
000845534 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x0
000845534 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000845534 9141_ $$y2018
000845534 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845534 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845534 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2015
000845534 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845534 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845534 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845534 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845534 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845534 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845534 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845534 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845534 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845534 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2015
000845534 920__ $$lyes
000845534 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000845534 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000845534 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x2
000845534 980__ $$ajournal
000845534 980__ $$aVDB
000845534 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000845534 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000845534 980__ $$aI:(DE-82)080012_20140620
000845534 980__ $$aUNRESTRICTED