001     845534
005     20210129233454.0
024 7 _ |a 10.1021/acs.macromol.7b02722
|2 doi
024 7 _ |a 0024-9297
|2 ISSN
024 7 _ |a 1520-5835
|2 ISSN
024 7 _ |a WOS:000430022000027
|2 WOS
037 _ _ |a FZJ-2018-02761
082 _ _ |a 540
100 1 _ |a Brugnoni, Monia
|0 P:(DE-Juel1)IHRS-BioSoft-140004
|b 0
245 _ _ |a Swelling of a Responsive Network within Different Constraints in Multi-Thermosensitive Microgels
260 _ _ |a Washington, DC
|c 2018
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1552414389_13871
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report on the swelling of a polymeric network in doubly thermoresponsive microgels. Silica-core double-shell and hollow double-shell microgels made of an inner poly(N-isopropylmethacrylamide) and an outer poly(N-isopropylacrylamide) shell are studied by exploiting the distinct temperature sensitivities of the polymers. The swelling states of the two shells can be tuned by temperature changes enabling three different swelling states: above, below, and between the distinct volume phase transition temperatures of the two polymers. This enables to investigate the effect of different constraints on the swelling of the inner network. Small-angle neutron scattering with contrast variation in combination with computer simulation discloses how the expansion of the inner shell depends on the material and swelling state of its constraints. In the presence of the stiff core, the microgels show a considerable interpenetration of the polymeric shells: the inner network expands into the outer deswollen shell. This interpenetration vanishes when the outer network is swollen. Furthermore, as predicted by our computer simulations, an appropriate choice of cross-linking density enables the generation of hollow double-shell nanocapsules. Here, the inner shell undergoes a push–pull effect. At high temperature, the collapsed outer shell pushes the swollen inner network into the cavity. At lower temperature, the swelling of the outer network contrary pulls the inner shell back toward the external periphery.
536 _ _ |0 G:(DE-HGF)POF3-6G15
|f POF III
|x 0
|c POF3-6G15
|a 6G15 - FRM II / MLZ (POF3-6G15)
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
536 _ _ |a Amphoteric Microgels for Uptake and Release of Polyelectrolytes (jhpc41_20160501)
|0 G:(DE-Juel1)jhpc41_20160501
|c jhpc41_20160501
|f Amphoteric Microgels for Uptake and Release of Polyelectrolytes
|x 2
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 2 7 |a Materials Science
|0 V:(DE-MLZ)SciArea-180
|2 V:(DE-HGF)
|x 1
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|1 EXP:(DE-MLZ)FRMII-20140101
|0 EXP:(DE-MLZ)KWS2-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|x 0
700 1 _ |a Scotti, Andrea
|0 0000-0002-8988-330X
|b 1
700 1 _ |a Rudov, Andrey A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Gelissen, Arjan P. H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Caumanns, Tobias
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Radulescu, Aurel
|0 P:(DE-Juel1)130905
|b 5
700 1 _ |a Eckert, Thomas
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pich, Andrij
|0 0000-0003-1825-7798
|b 7
700 1 _ |a Potemkin, Igor I.
|0 0000-0002-6687-7732
|b 8
700 1 _ |a Richtering, Walter
|0 P:(DE-Juel1)IHRS-BioSoft-140012
|b 9
|e Corresponding author
773 _ _ |a 10.1021/acs.macromol.7b02722
|g Vol. 51, no. 7, p. 2662 - 2671
|0 PERI:(DE-600)1491942-4
|n 7
|p 2662 - 2671
|t Macromolecules
|v 51
|y 2018
|x 1520-5835
856 4 _ |u https://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845534/files/acs.macromol.7b02722.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845534
|p VDB:MLZ
|p VDB
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-Juel1)IHRS-BioSoft-140004
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130905
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 9
|6 P:(DE-Juel1)IHRS-BioSoft-140012
913 1 _ |a DE-HGF
|9 G:(DE-HGF)POF3-6G15
|x 0
|4 G:(DE-HGF)POF
|v FRM II / MLZ
|1 G:(DE-HGF)POF3-6G0
|0 G:(DE-HGF)POF3-6G15
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-600
|b Forschungsbereich Materie
|l Großgeräte: Materie
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACROMOLECULES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACROMOLECULES : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS-FRM-II
|l JCNS-FRM-II
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21