000845557 001__ 845557
000845557 005__ 20240712084529.0
000845557 0247_ $$2doi$$a10.1103/PhysRevApplied.9.044017
000845557 0247_ $$2Handle$$a2128/18431
000845557 0247_ $$2WOS$$aWOS:000429779300001
000845557 0247_ $$2altmetric$$aaltmetric:42059379
000845557 037__ $$aFZJ-2018-02782
000845557 082__ $$a530
000845557 1001_ $$0P:(DE-HGF)0$$aRöhr, Jason A.$$b0
000845557 245__ $$aCharge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements
000845557 260__ $$aCollege Park, Md. [u.a.]$$bAmerican Physical Society$$c2018
000845557 3367_ $$2DRIVER$$aarticle
000845557 3367_ $$2DataCite$$aOutput Types/Journal article
000845557 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525756391_17691
000845557 3367_ $$2BibTeX$$aARTICLE
000845557 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845557 3367_ $$00$$2EndNote$$aJournal Article
000845557 520__ $$aExtracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density–voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2,2′,7,7′-tetrakis(N,N-di-4-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density–voltage curves from space-charge-limited current measurements.
000845557 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000845557 588__ $$aDataset connected to CrossRef
000845557 7001_ $$0P:(DE-HGF)0$$aShi, Xingyuan$$b1
000845557 7001_ $$0P:(DE-HGF)0$$aHaque, Saif A.$$b2
000845557 7001_ $$0P:(DE-Juel1)159457$$aKirchartz, Thomas$$b3
000845557 7001_ $$0P:(DE-HGF)0$$aNelson, Jenny$$b4$$eCorresponding author
000845557 773__ $$0PERI:(DE-600)2760310-6$$a10.1103/PhysRevApplied.9.044017$$gVol. 9, no. 4, p. 044017$$n4$$p044017$$tPhysical review applied$$v9$$x2331-7019$$y2018
000845557 8564_ $$uhttps://juser.fz-juelich.de/record/845557/files/r%C3%B6hr18prapp.pdf$$yOpenAccess
000845557 8564_ $$uhttps://juser.fz-juelich.de/record/845557/files/r%C3%B6hr18prapp.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845557 909CO $$ooai:juser.fz-juelich.de:845557$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000845557 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159457$$aForschungszentrum Jülich$$b3$$kFZJ
000845557 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000845557 9141_ $$y2018
000845557 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845557 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000845557 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV APPL : 2015
000845557 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845557 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845557 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845557 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845557 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845557 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845557 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845557 920__ $$lyes
000845557 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000845557 9801_ $$aFullTexts
000845557 980__ $$ajournal
000845557 980__ $$aVDB
000845557 980__ $$aUNRESTRICTED
000845557 980__ $$aI:(DE-Juel1)IEK-5-20101013
000845557 981__ $$aI:(DE-Juel1)IMD-3-20101013