000845569 001__ 845569 000845569 005__ 20210129233509.0 000845569 0247_ $$2doi$$a10.1016/j.soilbio.2018.03.010 000845569 0247_ $$2ISSN$$a0038-0717 000845569 0247_ $$2ISSN$$a1879-3428 000845569 0247_ $$2WOS$$aWOS:000432884100020 000845569 037__ $$aFZJ-2018-02794 000845569 082__ $$a570 000845569 1001_ $$00000-0002-8005-2569$$aWu, Di$$b0 000845569 245__ $$aPotential dual effect of nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrifier denitrification in the mitigation of peak N 2 O emission events in North China Plain cropping systems 000845569 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018 000845569 3367_ $$2DRIVER$$aarticle 000845569 3367_ $$2DataCite$$aOutput Types/Journal article 000845569 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525701018_17695 000845569 3367_ $$2BibTeX$$aARTICLE 000845569 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000845569 3367_ $$00$$2EndNote$$aJournal Article 000845569 520__ $$aThe winter wheat–summer maize rotation system in the North China Plain is a major source of nitrous oxide (N2O) emissions due to high nitrogen (N) fertilizer and irrigation water inputs. However, a detailed understanding of the contribution of N2O production sources is still limited because of the complexity of N2O generation in soils and a lack of relevant field studies. Moreover, the efficiency and mechanisms of N2O mitigation approaches in this area, i.e. the use of nitrification inhibitors, remains poorly understood. To elucidate the N2O production pathways from this rotation system and to evaluate the effect of a widely used nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on mitigating N2O emissions, we monitored N2O fluxes and analyzed isotopomer ratios of soil-emitted N2O during one rotation year. Results indicate that the application of DMPP significantly reduced N2O emissions by 67% in the winter wheat season and 47% in the summer maize season. Isotopomer analysis revealed that in the N-fertilized treatment, nitrification and/or fungal denitrification accounted for up to 36% of the N2O emission peaks observed after fertilization and irrigation events, whereas the nitrifier denitrification pathway was likely to be the major source, accounting for the remaining N2O emissions. The high effectiveness of the nitrification inhibitor on mitigating N2O emissions at high soil moisture may be attributed to the dual inhibitory effect on nitrifier denitrification, i.e. reducing the supply of nitrite, which is the substrate of nitrifier denitrification and inhibiting ammonia-oxidizing bacteria activities, which carry nitrifier denitrification. 000845569 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000845569 588__ $$aDataset connected to CrossRef 000845569 7001_ $$0P:(DE-HGF)0$$aZhao, Zichao$$b1 000845569 7001_ $$0P:(DE-HGF)0$$aHan, Xiao$$b2 000845569 7001_ $$00000-0002-0172-7776$$aMeng, Fanqiao$$b3$$eCorresponding author 000845569 7001_ $$0P:(DE-HGF)0$$aWu, Wenliang$$b4 000845569 7001_ $$0P:(DE-Juel1)166012$$aZhou, Minghua$$b5 000845569 7001_ $$0P:(DE-Juel1)142357$$aBrüggemann, Nicolas$$b6 000845569 7001_ $$0P:(DE-Juel1)145865$$aBol, Roland$$b7 000845569 773__ $$0PERI:(DE-600)1498740-5$$a10.1016/j.soilbio.2018.03.010$$gVol. 121, p. 147 - 153$$p147 - 153$$tSoil biology & biochemistry$$v121$$x0038-0717$$y2018 000845569 8564_ $$uhttps://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.pdf$$yRestricted 000845569 8564_ $$uhttps://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.gif?subformat=icon$$xicon$$yRestricted 000845569 8564_ $$uhttps://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000845569 8564_ $$uhttps://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.jpg?subformat=icon-180$$xicon-180$$yRestricted 000845569 8564_ $$uhttps://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.jpg?subformat=icon-640$$xicon-640$$yRestricted 000845569 8564_ $$uhttps://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000845569 909CO $$ooai:juser.fz-juelich.de:845569$$pVDB:Earth_Environment$$pVDB 000845569 9101_ $$0I:(DE-588b)5008462-8$$60000-0002-8005-2569$$aForschungszentrum Jülich$$b0$$kFZJ 000845569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142357$$aForschungszentrum Jülich$$b6$$kFZJ 000845569 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145865$$aForschungszentrum Jülich$$b7$$kFZJ 000845569 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000845569 9141_ $$y2018 000845569 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000845569 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOIL BIOL BIOCHEM : 2015 000845569 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000845569 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000845569 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000845569 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000845569 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000845569 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000845569 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000845569 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000845569 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000845569 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000845569 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000845569 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000845569 980__ $$ajournal 000845569 980__ $$aVDB 000845569 980__ $$aI:(DE-Juel1)IBG-3-20101118 000845569 980__ $$aUNRESTRICTED