001     845569
005     20210129233509.0
024 7 _ |a 10.1016/j.soilbio.2018.03.010
|2 doi
024 7 _ |a 0038-0717
|2 ISSN
024 7 _ |a 1879-3428
|2 ISSN
024 7 _ |a WOS:000432884100020
|2 WOS
037 _ _ |a FZJ-2018-02794
082 _ _ |a 570
100 1 _ |a Wu, Di
|0 0000-0002-8005-2569
|b 0
245 _ _ |a Potential dual effect of nitrification inhibitor 3,4-dimethylpyrazole phosphate on nitrifier denitrification in the mitigation of peak N 2 O emission events in North China Plain cropping systems
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1525701018_17695
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The winter wheat–summer maize rotation system in the North China Plain is a major source of nitrous oxide (N2O) emissions due to high nitrogen (N) fertilizer and irrigation water inputs. However, a detailed understanding of the contribution of N2O production sources is still limited because of the complexity of N2O generation in soils and a lack of relevant field studies. Moreover, the efficiency and mechanisms of N2O mitigation approaches in this area, i.e. the use of nitrification inhibitors, remains poorly understood. To elucidate the N2O production pathways from this rotation system and to evaluate the effect of a widely used nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) on mitigating N2O emissions, we monitored N2O fluxes and analyzed isotopomer ratios of soil-emitted N2O during one rotation year. Results indicate that the application of DMPP significantly reduced N2O emissions by 67% in the winter wheat season and 47% in the summer maize season. Isotopomer analysis revealed that in the N-fertilized treatment, nitrification and/or fungal denitrification accounted for up to 36% of the N2O emission peaks observed after fertilization and irrigation events, whereas the nitrifier denitrification pathway was likely to be the major source, accounting for the remaining N2O emissions. The high effectiveness of the nitrification inhibitor on mitigating N2O emissions at high soil moisture may be attributed to the dual inhibitory effect on nitrifier denitrification, i.e. reducing the supply of nitrite, which is the substrate of nitrifier denitrification and inhibiting ammonia-oxidizing bacteria activities, which carry nitrifier denitrification.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhao, Zichao
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Han, Xiao
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Meng, Fanqiao
|0 0000-0002-0172-7776
|b 3
|e Corresponding author
700 1 _ |a Wu, Wenliang
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Zhou, Minghua
|0 P:(DE-Juel1)166012
|b 5
700 1 _ |a Brüggemann, Nicolas
|0 P:(DE-Juel1)142357
|b 6
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 7
773 _ _ |a 10.1016/j.soilbio.2018.03.010
|g Vol. 121, p. 147 - 153
|0 PERI:(DE-600)1498740-5
|p 147 - 153
|t Soil biology & biochemistry
|v 121
|y 2018
|x 0038-0717
856 4 _ |u https://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845569/files/1-s2.0-S003807171830083X-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845569
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 0000-0002-8005-2569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)142357
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOIL BIOL BIOCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21