000845638 001__ 845638
000845638 005__ 20220930130148.0
000845638 0247_ $$2Handle$$a2128/18486
000845638 0247_ $$2URN$$aurn:nbn:de:0001-2018050906
000845638 0247_ $$2ISSN$$a1866-1793
000845638 020__ $$a978-3-95806-299-3
000845638 037__ $$aFZJ-2018-02854
000845638 041__ $$aEnglish
000845638 1001_ $$0P:(DE-Juel1)165707$$aWei, Jing$$b0$$eCorresponding author$$ufzj
000845638 245__ $$aReactions between nitrite and soil organicmatter and their role in nitrogen trace gasemissions and nitrogen retention in soil$$f- 2017-12-11
000845638 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2018
000845638 300__ $$aXXII, 160 S.
000845638 3367_ $$2DataCite$$aOutput Types/Dissertation
000845638 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000845638 3367_ $$2ORCID$$aDISSERTATION
000845638 3367_ $$2BibTeX$$aPHDTHESIS
000845638 3367_ $$02$$2EndNote$$aThesis
000845638 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1526285653_6734
000845638 3367_ $$2DRIVER$$adoctoralThesis
000845638 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v409
000845638 502__ $$aUniversität Bonn, Diss., 2018$$bDissertation$$cUniversität Bonn$$d2018
000845638 520__ $$aAs a key intermediate of both nitrification and denitrification, nitrite (NO$_{2}^{‒}$) is highly chemically reactive to soil organic matter (SOM), and it was proved previously that considerable amounts ofnitrogen (N) trace gases, including nitrous oxide (N$_{2}$O) and nitrogen oxides (NO$_{x}$), were produced from the reactions of NO$_{2}^{‒}$ with SOM in chemical assays decades ago. However, the role of NO$_{2}^{‒}$‒SOM reactions in nitrogen trace gas emissions and nitrogen retention in soils has been neglected until recently. It is vital to identify and quantify major sources and sinks of nitrogen trace gases for the sake of the environment. On the other hand, better understanding of N$_{2}$O sources and nitrogen retention is also essential to improve the nitrogen use efficiency and soil fertility in agriculture. Therefore, this thesis aimed to gain a better understanding of the contribution of NO$_{2}^{‒}$‒SOM reactions to nitrogen trace gas emissions and nitrogen retention in soil. Emissions of N$_{2}$O and carbon dioxide (CO$_{2}$) from the reactions of NO$_{2}^{‒}$ with lignin and ligninderivatives (4‐hydroxybenzoic acid, 4‐hydroxybenzaldehyde, 4‐hydroxy‐3‐methoxybenzoic acid, 4‐hydroxy‐3‐methoxybenzaldehyde, 4‐hydroxy‐3,5‐dimethoxybenzoic acid, 4‐hydroxy‐3,5‐dimethoxybenzaldehyde), as well as N$_{2}$O isotopic signatures, were studied in chemical assays at pH 3‒6. Among the six tested lignin derivatives, the highest N$_{2}$O emission was found in the 4‐hydroxy‐3,5‐dimethoxybenzaldehyde treatment, and the dependency of N$_{2}$O and CO$_{2}$ on pH varied according to the structures of the organic substances. Most interestingly, N$_{2}$O $^{15}$N site preference (SP) varied largely from 11.9‒37.4 ‰ depending on pH and structures of lignin derivatives, which was undistinguishable from other N$_{2}$O sources, such as nitrification, denitrification, and abiotic hydroxylamine oxidation. Furthermore, real‐time N$_{2}$O isotopic characterization revealed that SP also shifted largely during the reaction of NO$_{2}^{‒}$ with lignin derivatives. Hyponitrous acid and nitramide pathways, which could be responsible for N$_{2}$O formation, were proposed to explain the shift of N$_{2}$O SP values. [...]
000845638 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000845638 8564_ $$uhttps://juser.fz-juelich.de/record/845638/files/Energie_Umwelt_409.pdf$$yOpenAccess
000845638 8564_ $$uhttps://juser.fz-juelich.de/record/845638/files/Energie_Umwelt_409.gif?subformat=icon$$xicon$$yOpenAccess
000845638 8564_ $$uhttps://juser.fz-juelich.de/record/845638/files/Energie_Umwelt_409.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845638 8564_ $$uhttps://juser.fz-juelich.de/record/845638/files/Energie_Umwelt_409.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845638 8564_ $$uhttps://juser.fz-juelich.de/record/845638/files/Energie_Umwelt_409.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845638 8564_ $$uhttps://juser.fz-juelich.de/record/845638/files/Energie_Umwelt_409.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845638 909CO $$ooai:juser.fz-juelich.de:845638$$pVDB$$pVDB:Earth_Environment$$pdriver$$purn$$popen_access$$popenaire$$pdnbdelivery
000845638 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845638 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000845638 9141_ $$y2018
000845638 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165707$$aForschungszentrum Jülich$$b0$$kFZJ
000845638 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000845638 920__ $$lyes
000845638 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000845638 980__ $$aphd
000845638 980__ $$aVDB
000845638 980__ $$aUNRESTRICTED
000845638 980__ $$abook
000845638 980__ $$aI:(DE-Juel1)IBG-3-20101118
000845638 9801_ $$aFullTexts