000845649 001__ 845649
000845649 005__ 20240712113128.0
000845649 0247_ $$2doi$$a10.1039/C7CP03716C
000845649 0247_ $$2ISSN$$a1463-9076
000845649 0247_ $$2ISSN$$a1463-9084
000845649 0247_ $$2pmid$$apmid:28702548
000845649 0247_ $$2WOS$$aWOS:000406334300037
000845649 037__ $$aFZJ-2018-02865
000845649 082__ $$a540
000845649 1001_ $$0P:(DE-HGF)0$$aSchmitz, Paulo$$b0
000845649 245__ $$aCounterintuitive trends of the wetting behavior of ionic liquid-based electrolytes on modified lithium electrodes
000845649 260__ $$aCambridge$$bRSC Publ.$$c2017
000845649 3367_ $$2DRIVER$$aarticle
000845649 3367_ $$2DataCite$$aOutput Types/Journal article
000845649 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525874397_30654
000845649 3367_ $$2BibTeX$$aARTICLE
000845649 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845649 3367_ $$00$$2EndNote$$aJournal Article
000845649 520__ $$aThe demand for high energy densities has brought rechargeable lithium metal batteries back into the research focus. Ionic liquids (ILs) are considered as suitable electrolyte components for these systems. In this work, the wetting behavior of 1-ethyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([C2MIm]TFSI), 1-butyl-3-methylimidazolium bis-((trifluoromethyl)sulfonyl)imide ([C4MIm]TFSI), 1-hexyl-3-methylimidazolium bis((trifluoromethyl)sulfonyl)imide ([C6MIm]TFSI), and N-butyl-N-methylpyrrolidinium bis((trifluoromethyl)sulfonyl)imide (Pyr14TFSI) on mechanically modified lithium electrodes, with and without lithium bis((trifluoromethyl)sulfonyl)imide (LiTFSI) conducting salt, is investigated and is compared to an organic carbonate-based electrolyte. Three different patterns were chosen for the lithium modification, enabling a surface area increase of 12%, 20%, and 56% for the modified lithium electrodes. Especially for pure ILs, the contact angle on lithium was significantly larger with higher surface areas of the lithium electrodes. Since the addition of LiTFSI remarkably decreased the contact angles of the ILs on the modified lithium surfaces, it could be shown that the effect of LiTFSI can be attributed to a decreased surface tension. This observation could be explained by an interruption of the ordering of ionic liquid cations and anions, which is supported by Raman spectroscopy and molecular dynamics (MD) simulations.
000845649 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000845649 588__ $$aDataset connected to CrossRef
000845649 7001_ $$0P:(DE-HGF)0$$aKolek, Martin$$b1
000845649 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b2$$ufzj
000845649 7001_ $$0P:(DE-HGF)0$$aStan, Marian Cristian$$b3
000845649 7001_ $$0P:(DE-HGF)0$$aJalkanen, Kirsi$$b4
000845649 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$ufzj
000845649 7001_ $$00000-0003-4378-4805$$aBieker, Peter$$b6$$eCorresponding author
000845649 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/C7CP03716C$$gVol. 19, no. 29, p. 19178 - 19187$$n29$$p19178 - 19187$$tPhysical chemistry, chemical physics$$v19$$x1463-9084$$y2017
000845649 8564_ $$uhttps://juser.fz-juelich.de/record/845649/files/c7cp03716c.pdf$$yRestricted
000845649 8564_ $$uhttps://juser.fz-juelich.de/record/845649/files/c7cp03716c.gif?subformat=icon$$xicon$$yRestricted
000845649 8564_ $$uhttps://juser.fz-juelich.de/record/845649/files/c7cp03716c.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845649 8564_ $$uhttps://juser.fz-juelich.de/record/845649/files/c7cp03716c.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845649 8564_ $$uhttps://juser.fz-juelich.de/record/845649/files/c7cp03716c.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845649 8564_ $$uhttps://juser.fz-juelich.de/record/845649/files/c7cp03716c.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845649 909CO $$ooai:juser.fz-juelich.de:845649$$pVDB
000845649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b2$$kFZJ
000845649 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000845649 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000845649 9141_ $$y2018
000845649 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000845649 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845649 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2015
000845649 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845649 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845649 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845649 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845649 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845649 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845649 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845649 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845649 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845649 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000845649 980__ $$ajournal
000845649 980__ $$aVDB
000845649 980__ $$aI:(DE-Juel1)IEK-12-20141217
000845649 980__ $$aUNRESTRICTED
000845649 981__ $$aI:(DE-Juel1)IMD-4-20141217