000845651 001__ 845651
000845651 005__ 20240712113128.0
000845651 0247_ $$2doi$$a10.1140/epjst/e2017-70080-x
000845651 0247_ $$2ISSN$$a1951-6355
000845651 0247_ $$2ISSN$$a1951-6401
000845651 0247_ $$2WOS$$aWOS:000407636700005
000845651 037__ $$aFZJ-2018-02867
000845651 082__ $$a530
000845651 1001_ $$0P:(DE-HGF)0$$aHeuer, Andreas$$b0$$eCorresponding author
000845651 245__ $$aNonlinear response from the perspective of energy landscapes and beyond
000845651 260__ $$aBerlin$$bSpringer$$c2017
000845651 3367_ $$2DRIVER$$aarticle
000845651 3367_ $$2DataCite$$aOutput Types/Journal article
000845651 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1525874579_30654
000845651 3367_ $$2BibTeX$$aARTICLE
000845651 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845651 3367_ $$00$$2EndNote$$aJournal Article
000845651 520__ $$aThe paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.
000845651 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000845651 588__ $$aDataset connected to CrossRef
000845651 7001_ $$0P:(DE-HGF)0$$aSchroer, Carsten F. E.$$b1
000845651 7001_ $$0P:(DE-Juel1)169877$$aDiddens, Diddo$$b2$$ufzj
000845651 7001_ $$0P:(DE-HGF)0$$aRehwald, Christian$$b3
000845651 7001_ $$0P:(DE-HGF)0$$aBlank-Burian, Markus$$b4
000845651 773__ $$0PERI:(DE-600)2267176-6$$a10.1140/epjst/e2017-70080-x$$gVol. 226, no. 14, p. 3061 - 3078$$n14$$p3061 - 3078$$tEuropean physical journal special topics$$v226$$x1951-6401$$y2017
000845651 8564_ $$uhttps://juser.fz-juelich.de/record/845651/files/10.1140_epjst_e2017-70080-x.pdf$$yRestricted
000845651 8564_ $$uhttps://juser.fz-juelich.de/record/845651/files/10.1140_epjst_e2017-70080-x.gif?subformat=icon$$xicon$$yRestricted
000845651 8564_ $$uhttps://juser.fz-juelich.de/record/845651/files/10.1140_epjst_e2017-70080-x.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845651 8564_ $$uhttps://juser.fz-juelich.de/record/845651/files/10.1140_epjst_e2017-70080-x.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845651 8564_ $$uhttps://juser.fz-juelich.de/record/845651/files/10.1140_epjst_e2017-70080-x.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845651 8564_ $$uhttps://juser.fz-juelich.de/record/845651/files/10.1140_epjst_e2017-70080-x.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845651 909CO $$ooai:juser.fz-juelich.de:845651$$pVDB
000845651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b0$$kFZJ
000845651 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169877$$aForschungszentrum Jülich$$b2$$kFZJ
000845651 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000845651 9141_ $$y2018
000845651 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J-SPEC TOP : 2015
000845651 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845651 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845651 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845651 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845651 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845651 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845651 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845651 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845651 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000845651 980__ $$ajournal
000845651 980__ $$aVDB
000845651 980__ $$aI:(DE-Juel1)IEK-12-20141217
000845651 980__ $$aUNRESTRICTED
000845651 981__ $$aI:(DE-Juel1)IMD-4-20141217