000845654 001__ 845654
000845654 005__ 20240711085701.0
000845654 0247_ $$2doi$$a10.1007/s11090-018-9898-y
000845654 0247_ $$2ISSN$$a0272-4324
000845654 0247_ $$2ISSN$$a1572-8986
000845654 0247_ $$2WOS$$aWOS:000433079900010
000845654 037__ $$aFZJ-2018-02870
000845654 082__ $$a540
000845654 1001_ $$0P:(DE-Juel1)144899$$aRezanka, Stefan$$b0
000845654 245__ $$aA TEM Investigation of Columnar-Structured Thermal Barrier Coatings Deposited by Plasma Spray-Physical Vapor Deposition (PS-PVD)
000845654 260__ $$aDordrecht$$bSpringer Science + Business Media B.V.$$c2018
000845654 3367_ $$2DRIVER$$aarticle
000845654 3367_ $$2DataCite$$aOutput Types/Journal article
000845654 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528296172_30175
000845654 3367_ $$2BibTeX$$aARTICLE
000845654 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845654 3367_ $$00$$2EndNote$$aJournal Article
000845654 520__ $$aThe plasma spray-physical vapor deposition technique (PS-PVD) is used to deposit various types of ceramic coatings. Due to the low operating pressure and high enthalpy transfer to the feedstock, deposition from the vapor phase is very effective. The particular process conditions allow for the deposition of columnar microstructures when applying thermal barrier coatings (TBCs). These coatings show a high strain tolerance similar to those obtained by electron beam-physical vapor deposition (EB-PVD). But compared to EB-PVD, PS-PVD allows significantly reducing process time and costs. The application-related properties of PS-PVD TBCs have been investigated in earlier work, where the high potential of the process was described and where the good resistance to thermo-mechanical loading conditions was reported. But until now, the elementary mechanisms which govern the material deposition have not been fully understood and it is not clear, how the columnar structure is built up. Shadowing effects and diffusion processes are assumed to contribute to the formation of columnar microstructures in classical PVD processing routes. For such structures, crystallographic textures are characteristic. For PS-PVD, however, no crystallographic textures could initially be found using X-ray diffraction. In this work a more detailed TEM investigations and further XRD measurements of the columnar PS-PVD microstructure were performed. The smallest build units of the columnar TBC structure are referred to as sub-columns. The observed semi-single crystal structure of individual sub-columns was analyzed by means of diffraction experiments. The absence of texture in PS-PVD coatings is confirmed and elementary nucleation and growth mechanisms are discussed.
000845654 536__ $$0G:(DE-HGF)POF3-113$$a113 - Methods and Concepts for Material Development (POF3-113)$$cPOF3-113$$fPOF III$$x0
000845654 588__ $$aDataset connected to CrossRef
000845654 7001_ $$0P:(DE-HGF)0$$aSomsen, Christoph$$b1
000845654 7001_ $$0P:(DE-HGF)0$$aEggeler, Gunther$$b2
000845654 7001_ $$0P:(DE-Juel1)129633$$aMauer, Georg$$b3$$eCorresponding author$$ufzj
000845654 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b4$$ufzj
000845654 7001_ $$0P:(DE-Juel1)161591$$aGuillon, Olivier$$b5$$ufzj
000845654 773__ $$0PERI:(DE-600)2018594-7$$a10.1007/s11090-018-9898-y$$n4$$p791-802$$tPlasma chemistry and plasma processing$$v38$$x1572-8986$$y2018
000845654 8564_ $$uhttps://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.pdf$$yRestricted
000845654 8564_ $$uhttps://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.gif?subformat=icon$$xicon$$yRestricted
000845654 8564_ $$uhttps://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845654 8564_ $$uhttps://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845654 8564_ $$uhttps://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845654 8564_ $$uhttps://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845654 909CO $$ooai:juser.fz-juelich.de:845654$$pVDB
000845654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129633$$aForschungszentrum Jülich$$b3$$kFZJ
000845654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich$$b4$$kFZJ
000845654 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161591$$aForschungszentrum Jülich$$b5$$kFZJ
000845654 9131_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000845654 9141_ $$y2018
000845654 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845654 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845654 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLASMA CHEM PLASMA P : 2015
000845654 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845654 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845654 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845654 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845654 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845654 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845654 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845654 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000845654 9201_ $$0I:(DE-82)080011_20140620$$kJARA-ENERGY$$lJARA-ENERGY$$x1
000845654 980__ $$ajournal
000845654 980__ $$aVDB
000845654 980__ $$aI:(DE-Juel1)IEK-1-20101013
000845654 980__ $$aI:(DE-82)080011_20140620
000845654 980__ $$aUNRESTRICTED
000845654 981__ $$aI:(DE-Juel1)IMD-2-20101013