001     845654
005     20240711085701.0
024 7 _ |a 10.1007/s11090-018-9898-y
|2 doi
024 7 _ |a 0272-4324
|2 ISSN
024 7 _ |a 1572-8986
|2 ISSN
024 7 _ |a WOS:000433079900010
|2 WOS
037 _ _ |a FZJ-2018-02870
082 _ _ |a 540
100 1 _ |a Rezanka, Stefan
|0 P:(DE-Juel1)144899
|b 0
245 _ _ |a A TEM Investigation of Columnar-Structured Thermal Barrier Coatings Deposited by Plasma Spray-Physical Vapor Deposition (PS-PVD)
260 _ _ |a Dordrecht
|c 2018
|b Springer Science + Business Media B.V.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1528296172_30175
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The plasma spray-physical vapor deposition technique (PS-PVD) is used to deposit various types of ceramic coatings. Due to the low operating pressure and high enthalpy transfer to the feedstock, deposition from the vapor phase is very effective. The particular process conditions allow for the deposition of columnar microstructures when applying thermal barrier coatings (TBCs). These coatings show a high strain tolerance similar to those obtained by electron beam-physical vapor deposition (EB-PVD). But compared to EB-PVD, PS-PVD allows significantly reducing process time and costs. The application-related properties of PS-PVD TBCs have been investigated in earlier work, where the high potential of the process was described and where the good resistance to thermo-mechanical loading conditions was reported. But until now, the elementary mechanisms which govern the material deposition have not been fully understood and it is not clear, how the columnar structure is built up. Shadowing effects and diffusion processes are assumed to contribute to the formation of columnar microstructures in classical PVD processing routes. For such structures, crystallographic textures are characteristic. For PS-PVD, however, no crystallographic textures could initially be found using X-ray diffraction. In this work a more detailed TEM investigations and further XRD measurements of the columnar PS-PVD microstructure were performed. The smallest build units of the columnar TBC structure are referred to as sub-columns. The observed semi-single crystal structure of individual sub-columns was analyzed by means of diffraction experiments. The absence of texture in PS-PVD coatings is confirmed and elementary nucleation and growth mechanisms are discussed.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Somsen, Christoph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Eggeler, Gunther
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Mauer, Georg
|0 P:(DE-Juel1)129633
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 4
|u fzj
700 1 _ |a Guillon, Olivier
|0 P:(DE-Juel1)161591
|b 5
|u fzj
773 _ _ |a 10.1007/s11090-018-9898-y
|0 PERI:(DE-600)2018594-7
|n 4
|p 791-802
|t Plasma chemistry and plasma processing
|v 38
|y 2018
|x 1572-8986
856 4 _ |u https://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.pdf?subformat=pdfa
|x pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845654/files/10.1007_s11090-018-9898-y.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845654
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161591
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLASMA CHEM PLASMA P : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l JARA-ENERGY
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21