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a b s t r a c t

Hyperspectral images can be used to uncover physiological processes in plants if interpreted properly.

Machine Learning methods such as Support Vector Machines (SVM) and Random Forests have been

applied to estimate development of biomass and detect and predict plant diseases and drought stress.

One basic requirement of machine learning implies, that training and testing is done in the same domain

and the same distribution. Different genotypes, environmental conditions, illumination and sensors vio-

late this requirement in most practical circumstances. Here, we present an approach, which enables the

detection of physiological processes by transferring the prior knowledge within an existing model into a

related target domain, where no label information is available. We propose a two-step transformation of

the target features, which enables a direct application of an existing model. The transformation is eval-

uated by an objective function including additional prior knowledge about classification and physiolog-

ical processes in plants. We have applied the approach to three sets of hyperspectral images, which were

acquired with different plant species in different environments observed with different sensors. It is

shown, that a classification model, derived on one of the sets, delivers satisfying classification results

on the transformed features of the other data sets. Furthermore, in all cases early non-invasive detection

of drought stress was possible.

� 2017 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and

Remote Sensing, Inc. (ISPRS). This is an open access article under the CC BY-NC-ND license (http://creati-

vecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In recent years, several research groups have successfully

demonstrated the detection of plants’ physiological processes

(e.g. plant stress) from hyperspectral images by using (supervised)

methods of Machine Learning (e.g. Karimi et al. (2006), Mucherino

et al. (2009), Römer et al. (2011)). Typically, each approach has

been developed from scratch, i.e. a new model has been derived

from data, which were measured in a specific experiment. How-

ever, considering the effort of labelling training data, the question

arises how far a model is transferable to other data sets obtained

by different sensors observing different plants in different

environments.

Generally, most methods of Machine Learning are based on the

fundamental assumption that training and test data have the same

underlying feature space and distribution (Pan and Yang, 2010). In

most real world applications this constraint is violated by varying

measuring setup, different sensors or changing environment (e.g.

illumination or background).

Strategies of reusing knowledge from a source domain (consist-

ing of a feature space and feature distribution) and a source task

(consisting of a label space and a predictive function) for learning

a predictive function in a target domain with a target task are

addressed in Transfer Learning (Pan and Yang, 2010). Subject to dif-

ferent settings, specific subcategories have been identified. In

Transductive Transfer Learning the domains of source and target

are different, whereas the tasks are the same. Labelled data are only

available in the source domain. Different domains are caused either

by different feature spaces or by different feature distributions. The

latter case is also known as Domain Adaptation (Arnold et al., 2007).

In this paper we propose a Domain Adaptation approach for the

detection of water limitation based on hyperspectral images. We

focus on stress responses which

� are in early states and cannot be perceived by the naked eye,

� progress continuously and can be characterised by a set of ordi-

nal, subsequent stages.
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The detection of such physiological processes is challenging as

the hyperspectral data sets are influenced by the environmental

factors of real world applications, and the invisibility of processes

prevents a labelling.

Based on the hypothesis that this knowledge allows the reuse of

an existing classification model in a different target domain, we

propose a transformation of the features of the target domain

and formulate an objective function, which enables an evaluation

of the transformation parameters without using labelled data in

the target domain. The objective function is based on general char-

acteristics about classification and the biological knowledge about

the ordinal scale of the process.

In this study we focus on the automated detection of drought

stress induced changes in leaf pigments and leaf structure. Drought

stress, caused by water scarcity, is one of the biggest challenges in

global crop production and it has been estimated that drought can

cause a depreciation of crop yield up to 70% in conjunction with

other abiotic stresses (Pennisi, 2008; Tuberosa and Salvi, 2006).

Prolonged water scarcity initiates invisible biochemical and phys-

iological processes and, subsequently leads to an impairment of

crop growth and yield.

The recent rapid developments of destructive and non-

destructive technologies offer new opportunities for an effective

and high-throughput analysis of plant characteristics. The connec-

tivity and flow of these data, towards molecular breeding and

farming, has been hampered by a bottleneck at the level of pheno-

typing, the so called phenomics bottleneck (Tardieu and Schurr,

2009). Effective use of sensors could contribute towards a pinpoint

accuracy in phenotyping, reduced experimental requirements and

will enable multiple, simultaneous and objective data to be

collected.

Drought is a spatial-temporal process, which triggers various

reactions within the plants. As a first intermittent reaction many

plants close their leaf stomata, limiting the transpiration loss in

periods of limited soil water availability. This physiological reac-

tion normally cannot be detected by hyperspectral imaging as no

plant pigments are affected. If water however remains a limiting

resource for a longer time period, plants react by changing growth

patterns and resource allocation in their organs. Leaf pigments may

be broken down, leaf surface may be come pigmented and leaf

anatomy changes. These responses however are very variable.

Depending of the ecological niche of each species and the develop-

mental stage plants may react very different to a limitation of

water. Often drought responses proceed from older to younger

leaves and, within a leaf, from the tip towards the leaf base.

The derivation of a source model requires labelled data for the

invisible stages of drought stress. However, while it is quite easy

to manually identify perfectly healthy and dead leaf pigments, it

is not possible to visually grade the stage of senescence for

presymptomatic stress detection. Therefore, while the change from

healthy to senescent pigments is a continuous process, it is not

possible to manually get continuous labels from the image alone.

Hence, either an unsupervised regression model or a discretization

into ordinal classes are feasible options. Römer et al. (2012) have

presented an unsupervised regression method for early detection

of drought induced stress with hyperspectral images based on

cluster analysis. However, as described in detail later in this manu-

script, the mightiness of classes from similar spectra is an impor-

tant optimization criteria. Therefore, discrete ordinal classes as

used in Behmann et al. (2014b) are preferable for the presented

method. In Behmann et al. (2014a) the authors show that this ordi-

nal classification approach outperforms non-linear regression with

regard to plant stress detection in hyperspectral data. This

multi-class model is based on the previous knowledge that process

the of the drought induced stress forms an ordinal order, mainly

related to chlorophyll degradation (Merzlyak et al., 1999). The

model classifies each pixel into a drought class, following an ordi-

nal scale from healthy to stressed. The drought states are a discrete

representation of the progressive process of the drought induced

stress. The model provides a description of the drought state of a

plant; the relative frequencies of the drought classes enable an

early detection of drought induced stress (Behmann et al., 2014b).

Furthermore, we assume, that the spectral information of the

hyperspectral images is adequately represented by a set of com-

monly used Vegetation Indices (VI, Table 1). However, although

the indices are usually invariant to changes in the environment

(Jensen, 2009), a simple reuse of the model does not provide suffi-

cient results (Fig. 1).

The contribution of this paper is an unsupervised method,

which allows the reuse of a classification model for the early detec-

tion of physiological plant processes from hyperspectral images.

The method is characterized by

� the handling of data without any labels in the target domain, as

well as without the need for labels at training time,

� the transformation of the feature space of the target domain,

� the use of biological knowledge for evaluating the transforma-

tion parameters, and

� the application of a source model which is not changed in the

target domain.

We demonstrate the applicability of the proposed approach on

three sets of hyperspectral images. Two sets have been measured

in drought stress experiments on single barley plants. The experi-

ments were set up in two consecutive years in foliar tunnels in Ger-

many. The third data set was collected on maize, grown up in the

field under different treatments in Italy. It is obvious that the trans-

fer from barley in foliar tunnels in Germany to maize on the field in

Italy is rather challenging. However, we will show that an ordinal

classification model, derived from one of the sets, delivers satisfy-

ing classification results on the transformed features of the other

data sets and that the classification result enables an early detec-

tion of drought effects.

2. Related work

Classic machine learning methods assume the same domain D

and the same learning task T for training and test data. A domain

consists of a feature space X and a probability distribution

PðXÞ : D ¼ fX; PðXÞg. For a given domain, a task consists of a label

space Y and a predictive function f ð�Þ : T ¼ fY; f ð�Þg (Pan and

Yang, 2010).

Transfer Learning differentiates between a source domain

DS ¼ fXS; PðXSÞgwith a source task TS ¼ fYS; f Sð�Þg, and a target

domain DT ¼ fXT; PðXTÞg with a target task TT ¼ fYT; f Tð�Þg,

where DS – DT, or TS –TT (Pan and Yang, 2010). The target

predictive function f Tð�Þ is to be learned by reusing knowledge

from DS and TS.

Subject to the availability of labels and different relations

between the source and target domain and the source and the tar-

get task, specific subcategories of Transfer Learning have been

identified (for a full taxonomy see, e.g. Pan and Yang, 2010). Prob-

lems in which labelled data are only available in the source domain

are addressed in Transductive Transfer Learning. Furthermore, the

source and the target domain are different (DS – DT), while the

source task and the target task are the same (TS ¼TT). The dif-

ferent domains are caused either by different feature spaces

(XS – XT) or by different feature distributions

(PðXSÞ– PðXTÞ). In this paper, we focus the latter case, which

is also known as unsupervised Domain Adaptation.
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The challenge of unsupervised Domain Adaptation is the lack of

labels in the target domain which prevents the evaluation by clas-

sic evaluation procedures like a covariance matrix. Previous work

in the field of unsupervised Domain Adaptation has used either

subspace-based approaches or sample reweighting approaches.

Blitzer et al. (2011) proposed a method which projects the features

of source and target domain into a subspace where a common lin-

ear model is learned. Their approach requires both, unlabelled

source and target data at training time.

Huang et al. (2006) proposed an universal method which over-

comes slight differences between probability distributions in

source and target domain by sample reweighting. The weights

for the training points are estimated by matching the training

and test points in a reproducing kernel Hilbert space.

Remote sensing of hyperspectral images in general and domain

adaptation in particular have been intensively studied for remote

sensing, overviews are given in Gómez-Chova et al. (2015) and

Tuia et al. (2014).

In remote sensing, Vogt et al. (2017) present a multiple-source

selection approach, were labelled data from a subset of domains is

combined. The weights for the combination are estimated by

boosting. Liu and Li (2014) use boosting to estimate weights to

combine features with small divergences in different domains.

An overview of SVM in remote sensing is given by Mountrakis

et al. (2011). Bruzzone and Marconcini (2009) use SVM in their

proposed Domain Adaptation SVM (DASVM) for multispectral

images. They assume that both, source data and target data, are

available at training time and adjust the separating hyperplane

iteratively by substituting source domain training data with

pseudo-labelled target domain data. Items are replaced from the

source domain with the highest distance to the hyperplane by

pseudo-labelled data from the target domain closest to the hyper-

plane. For evaluation, they present a circular validation strategy,

which subsequently adapts the resulting classification model for

the target domain back to the source domain. The problems, diffi-

culties and limits of DASVM are discussed in Bruzzone and

Table 1

List of the used vegetation indices.

Name Short Formula Reference

Normalized Vegetation Index NDVI R800�R680

R800þR680

Rouse et al. (1973)

Simple Ratio Index SR R800

R670

Rouse et al. (1973)

Enhanced Vegetation Index EVI 2:5 R800�R670

R800þ6R670�7:5R490þ1
Huete et al. (1997)

Atmospherically Resistant Vegetation Index ARVI R800�2ðR670�R490Þ
R800þ2R670�R490

Kaufman and Tanré (1996)

Sum Green Index SG 1
n

P599
i¼500Ri

Gamon and Surfus (1999)

Red Edge NDVI RENDVI R750�R705

R750þR705

Gitelson and Merzlyak (1994)

Modified Red Edge Simple Ratio Index mRESR R750�R445

R705�R445

Sims and Gamon (2002)

Modified Red Edge NDVI mRENDVI R750�R705

R750þR705�2R445

Sims and Gamon (2002)

Vogelmann Red Edge Index 1 VOG1 R740

R720

Vogelmann et al. (1993)

Vogelmann Red Edge Index 2 VOG2 R734�R747

R715þR726

Vogelmann et al. (1993)

Vogelmann Red Edge Index 3 VOG3 R734�R747

R715þR720

Vogelmann et al. (1993)

Red Edge Position Index REP argmaxðR690�740Þ0 Curran et al. (2001)

Photochemical Reflectance Index PRI R531�R570

R531þR570

Gamon et al. (1992)

Structure Insensitive Pigment Index SIPI R800�R445

R800þR680

Penuelas et al. (1995)

Red Green Ratio Index RGRI MeanR500�600

MeanR600�700

Gamon and Surfus (1999)

Plant Senescence Index PSRI R680�R500

R750

Merzlyak et al. (1999)

Carotenoid Reflectance Index 1 CAR1 1
R510
� 1

R550
Gitelson et al. (2002)

Carotenoid Reflectance Index 2 CAR2 1
R510
� 1

R700
Gitelson et al. (2002)

Anthocyanin Reflectance Index 1 ANTH1 1
R550
� 1

R700
Gitelson et al. (2001)

Anthocyanin Reflectance Index 2 ANTH2 R800ð
1

R550
� 1

R700
Þ Gitelson et al. (2001)

Datt Index 1 Datt1 R860

R550

Datt (1998)

Datt Index 2 Datt2 R860

R708

Datt (1998)

Datt Index 3 Datt3 R860

R550R708

Datt (1998)

Fig. 1. Classification of barley leafs into senescence classes, ordered from vital to stressed using data from 2010 with a model from 2010 (a). Classification of data from 2010

with a model from 2011 leads to an insufficient result (b) and reclassification by applying the Domain Adaptation approach (c). (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
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Marconcini (2010). Especially, they deduce the complexity of the

problem from the Jensen-Shannon-Divergence. Instead of SVM,

Paul et al. (2016) use logistic regression to improve the training

and classification performance.

However, the aforementioned approaches are not suitable to

our problem due to specific characteristics:

� Only unlabelled target data is available at training time.

� Our source model contains multiple linear predictors.

� Wemake no assumptions about the distance between the prob-

ability distributions of source and target domain.

Instead, we propose a transformation of the target domain fea-

tures which enables a direct application of the source model.

Firstly, we perform a z-score transformation which translates and

scales the target features rawly. Secondly, a cubic polynomial is

used for a precise adjustment. The second transformation is evalu-

ated by an objective function including, additional prior knowledge

about classification and physiological drought processes in plants.

3. Experimental procedure

In this section, we present three data sets of hyperspectral

images which are captured from two different plants species in dif-

ferent environments under different conditions (Section 3.1). For

each of the data sets we derive a source model (Section 3.2) which

will be used in Section 4.

3.1. Experimental setup and hyerspectral images

Three sets of hyperspectral images from different experiments

have been used for this study (Fig. 2). Two sets were measured

in drought stress experiments on single barley (Hordeum vulgare)

plants in laboratory, while the third set was measured on maize

(Zea mays), grown up in the field under different treatments

(untreated, irrigated, fertilized, and a combination of irrigated

and fertilized).

The first barley experiment was set up in 2010 (Römer et al.,

2012). Twelve plants of cultivar ‘‘Scarlett” were cultivated in single

pots under controlled conditions in the greenhouse. At develop-

mental stage BBCH311, which corresponds to the end of tillering

and the beginning of the main shoot, the plants were divided into

two groups, six plants each. While the first group was well watered,

the second one was stressed by a reduced irrigation. The second bar-

ley experiment was conducted in 2011 under the same experimental

conditions (Römer et al., 2012). Now, twelve plants of cultivars

‘‘Wiebke” and ‘‘Barke” were grown. At developmental stage BBCH31

they were divided into three groups, each of four plants. Again, one

group continued growing under optimal conditions, while the others

were drought stressed (reduced watered and unwatered).

In both barley experiments, the plants were observed with the

hyperspectral imager SOC-700 from Surface Optics (Ocean Optics,

San Diego, CA, USA). The imager has a spatial resolution of

640 � 640 pixels and a spectral resolution of approximately

4 nm. It measures 120 equally distributed bands in the range of

430–890 nm. The images were recorded in the laboratory under

controlled illumination, provided by six 400W halogen lamps.

The sensor and the lamps were arranged above the imaging posi-

tion of a single pot.

In the 2010 barley experiment, the measurements started two

days after water reduction. In nine sessions within the next

30 days a total of 108 images were recorded. In the 2011 barley

experiment, the measurements started one day after water reduc-

tion and were continued daily for the next 20 days. The observa-

tion of the unwatered plants was stopped after eleven days,

when the drought symptoms differentiating unwatered plants

from the controls. In total, 204 images were recorded in 2011.

The third data set was obtained using a different sensor on a dif-

ferent species (maize) under different illumination conditions in a

field experiment in Northern Italy. The maize plants were grown

in plots of 15 m � 16.5 m under four different treatments:

untreated, irrigated, fertilized, and a combination of irrigated and

fertilized. The hyperspectral images were acquired July 22nd 2010,

44 days after seeding, from four meters above the canopy; each

treatment was observed by three images of different areas of a cor-

responding plot. In order to attain similar illumination conditions,

themeasurementswere conducted between 10.00 and 14.00 h local

time under cloudless sky. The images were recorded by a PS V10E

sensor (Spectral Imaging Ltd, Oulu, Finland). They have a spatial res-

olution of 1392 � 840 pixels and a spectral resolution of 1040 bands

in the range of 400–1000 nm. This instrumentwasmounted in nadir

position in a boom lift at 4 m from top-of-canopy level and moved

horizontally (Römer et al., 2012). In total, 12 images were recorded.

The water status of the analysed barley plants was estimated by

measuring the water content and water potential at the time point

when the hyperspectral images were taken. Variations in leaf

water potentials (L, MPa) were measured with a Scholander pres-

sure chamber (Scholander et al., 1965), following the methodolog-

ical procedures described by Turner (1988). The plant water

Chlorophyll concentrations were measured with a SPAD Chloro-

phyll meter (SPAD 502, Konica Minolta Sensing Europe B.V., MN

Nieuwegein, NL) and estimating by using the mean value of 3 mea-

surements per leaf.

Hyperspectral images were radiometrically calibrated by sub-

tracting the dark frame and calculating the relative reflectance by

using the ratio to a white reference panel, which was available in

each image.

The separation of background pixels and plant pixels was done

by learning a SVM model, which has been derived using Active

Learning (Lewis and Gale, 1994). Active Learning starts with a

small set of training data from what a SVM classifier is learned.

The classifier is applied to each hyperspectral signature to estimate

the classification probabilities via Platt scaling (Platt, 2000). In each

Active Learning iteration the hyperspectral signatures, which are

most unlikely, were clustered by using the k-Means algorithm.

The resulting centroids ensure a wide range of hyperspectral signa-

tures which could not be reliable assigned to a class, wherefore

they were manually labelled by the user. The process is terminated

by the user if the classifier is evaluated as confident. This iterative

procedure converges quickly and is user friendly since only few

data, which obviously differ due to the clustering, has to be

labelled (Schmitter et al., 2015).

3.2. Source model

We use an ordinal SVM model as source model. It is based on

the previous knowledge that drought induced stress forms an ordi-

nal order, mainly related to chlorophyll degradation (Merzlyak

et al., 1999). The model classifies each pixel into a drought class,

the entity of classes follows an ordinal scale from vital to stressed.

The required labels were generated by performing the unsuper-

vised clustering algorithm k-Means (MacQueen et al., 1967) on the

hyperspectral signatures. The centroids of the resulting clusters are

sorted in ascending order from 1 to k (vital to stressed) to represent

the order of the drought stress process (Behmann et al., 2014b). For

the parameter k, we chose k ¼ 10.

1 The BBCH (Biologische Bundesanstalt, Bundessortenamt und CHemische Indus-

trie) scale is an uniform coding of the growth stages of mono- and dicotyledonous

plants (Hess et al., 1997).
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Subsequently, the feature space was reduced by a feature

extraction in which each observed spectrum was represented by

a set of commonly used Vegetation Indices (Table 1).

On the basis of the vegetation indices and the ranked labels the

ordinal SVM was learned. The ordinal structure was accomplished

by dividing the multi-class problem in n � 1 binary classification

problems (Frank and Hall, 2001). Based on the prior knowledge

about the ordinal structure, only the discriminant between neigh-

bouring classes had to be learned.

A schematic representation of a result ordinal classification

model is depicted in Fig. 3a.

4. Method

Here we present the Transfer Learning approach for the early

detection of drought stress in hyperspectral images. As source

model we assume an ordinal SVM model which has been used

for the early detection of drought stress of a specific plant in a

specific year under a specific setting (Section 3). The source model

has to be applied to hyperspectral images from a different year

and/or a different plant species in a different setting. Thus, the

source task and the target task are the same (TS ¼TT), whereas

the source domain and the target domain are different (DS – DT).

The difference is caused either by different feature spaces

(XS – XT) or by different feature distributions (PðXSÞ– PðXTÞ). In

order to ensure the same feature spaces XS ¼ XT, the set of Vege-

tation Indices (Section 3.2) is also derived for the hyperspectral

images of the target domain. However, a straightforward applica-

tion of the source model to the target domain leads to an insuffi-

cient classification result.

We overcome the differences of PðXSÞ and PðXTÞ by transforming

the target domain features (Section 4.1). This procedure is

schematically illustrated in Fig. 3. The source domain is success-

fully classified by the source model (Fig. 3a), however an applica-

tion of the source model to the target domain is not satisfying. A

transformation of the target domain features enables a successfully

classification by the source model (Fig. 3c). The transformation

parameters are found by an objective function (Section 4.2) in a

global optimization procedure (Section 4.3). The results are evalu-

ated by different validation criteria (Section 4.4).

4.1. Feature transformation

The feature transformation consist of two steps. In a first step,

the target domain features are rawly translated and scaled to

decrease the differences between PðXSÞ and PðXTÞ. We used the z-

score transformation to adapt the means and standard deviations

of the target domain features to the means and standard deviations

of the source domain features. The feature distributions PðXSÞ and

PðXTÞ are still not identical but the difference between them is sig-

nificantly reduced. The resulting transformed target domain fea-

tures are the input for the optimization of the feature

transformation in the next section. In a second step, a refined

transformation by a quadratic polynomial is used for a precise

adjustment. The adjustment was calculated for each Vegetation

Index separately due to their different calculation formulas and

Fig. 2. Representative top-view images of the plants of the three experiments that were used to develop the classification approach. (a) and (b) Potted barley plants that were

grown in the greenhouse in 2010 (a) and 2011 (b). (c) Top-of-canopy view of the maize experiment in Italy. Images were acquired at clear days under stable sunlight

illumination. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Schematic representation of the proposed feature transformation approach. Instances of four classes are represented by the shapes. A correct classification is reached if

the shapes are correctly separated by the dotted line. Application of the source model to source domain (a), target domain (b) and transformed target domain (c). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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the different ranges of the hyperspectral signal from which they

are composed.

4.1.1. Refined transformation

Generally, the features do not follow a Gaussian distribution but

a skew-symmetric or a multi-modal distribution (Fig. 4). Thus, the

remaining differences between source and target domain are

adjusted by adapting the target features �xT , using a cubic

transformation:

x̂T ¼ t2�x
3
T þ t1�xT þ t0 ð1Þ

We have chosen the cubic polynomial as (i) it provides a suffi-

cient degree of freedom to transform the target domain features,

and (ii) regards negative values. The transformation parameters

t ¼ ft0; t1; t2g are determined by an optimisation approach. The

objective function is described in Section 4.2, and the optimisation

in Section 4.3.

4.2. Objective function

The objective function evaluates the transformation parameters

t in order to enable a directed search for the optimal transforma-

tion parameters. Common validation strategies for classification

and Transfer Learning are cross-validation (Kohavi et al., 1995) or

the confusion matrix (Congalton, 1991). These strategies require

labelled data to estimate the optimal classifier. However, the pro-

posed setting deals with non-existent labels in the target domain,

wherefore these strategies are inapplicable. Instead, we propose an

objective function that evaluates previous knowledge about simi-

larities in the occurrence of the same process from different plants

in different environments under different conditions. The knowl-

edge is represented by four criteria:

� Mixing (Mix) evaluates a basic characteristic of classification: the

diversity of the features within a class should be as small as

possible.

� Deviation (D) evaluates a basic characteristic of Domain Adapta-

tion: the difference between the distribution of the transformed

target features and the distribution of the source features,

which should be as small as possible.

� Smoothness (S): evaluates biological knowledge about the spatial

propagation of the drought stress process: drought induced

stress proceeds smoothly and continuously in every plant. Thus,

neighbouring pixels should be assigned to the same or to a

neighbouring drought class.

� Mightiness (M) evaluates an assumption about similar states of

the drought stress: the distributions of the drought classes in

source and target domain should not be too far apart.

The combination of these criteria summarise the prior knowl-

edge and integrates it into the optimisation procedure. Each crite-

rion is assigned with a weight wi:

min ZðtÞ ¼ w1Mixþw2Dþw3Sþw4M; ð2Þ

where 0 < wi < 1; i ¼ 1; . . . ;4 and
P4

i¼1wi ¼ 1. Whereas distinct

values for the different weights would be possible our experiments

have suggested that same values (wi ¼ 0:25; i ¼ 1; . . . ;4) are both

appropriate and robust.

The evaluation criteria are estimated with the transformed tar-

get features x̂T and their feature distribution PðbXTÞ. The minimisa-

tion of the objective function leads to optimal transformation

parameters.

4.2.1. Mixing

Classification aims to group similar data points by minimising

the differences of instances within a class and maximising the dif-

Fig. 4. Impact of the raw (z-score) and refined transformation to the feature distribution using the example of the Structure Insensitive Pigment Index (top row) and the

corresponding classification results (bottom row). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ference to instances in other classes.Mixing validates the scattering

of the instances within a class. In contrast to smoothness, which

validates the spatial distribution of the labels, mixing validates

the diversity of the features.

For estimating the differences within a class, a k-means cluster-

ing is performed for each class. The similarity between the cen-

troids c within a class is estimated by the (Pearson) correlation

coefficient r (Murphy, 2012). These coefficients are averaged for

each class to evaluate the mixing within a class. The average of

all classes is added to the objective function:

Mix ¼
1

4!k

Xk

l¼1

X4

i¼1

X5

j¼iþ1

r
ðlÞ

i;j ð3Þ

where r
ðlÞ

i;j represents the correlation coefficient between the i-th

centroid and the j-th centroid within the l-th drought class. In each

of the drought classes, the k-Means builds five clusters. The choice

of five clusters bases on an empirical determination of the data

within the drought classes.

4.2.2. Deviation

A successful classification is based on the assumption that the

distribution of train and test data do not differ. Thus, the deviation

measures the distance between PðXSÞ and PðbXTÞ, which has to be

minimal.

In order to estimate the deviation, we use the Jensen-Shannon-

Divergence (JSD), which is a non-parametric measure to compare

distributions. The JSD bases on the Kullback-Leibler-Divergence

DKLðPkQÞ (Murphy, 2012):

JSDðPkQÞ ¼
1

2
DKLðPkMÞ þ

1

2
DKLðQkMÞ ð4Þ

with

M ¼
1

2
ðP þ QÞ ð5Þ

DKLðPkQÞ is the Kullback-Leibler-Divergence of two discrete distri-

butions P and Q:

DKLðPkQÞ ¼
X

i

log2

PðiÞ

QðiÞ

� �
PðiÞ ð6Þ

The deviation D between PðXSÞ and PðbX TÞ is determined by the

mean JSD of all distributions PðxiSÞ and Pðx̂iTÞ:

D ¼
1

n

Xn

i¼1

JSDðPðxiSÞjjPðx̂
i
TÞÞ ð7Þ

where PðxiÞ is the distribution of the i-th feature.

4.2.3. Smoothness

According to the prior knowledge about the propagation of

drought induced stress, neighbouring pixels likely refer to the

same stage of drought. Smoothness introduces this spatial infor-

mation into the objective function.

The smoothness is derived from a label image YT which is gen-

erated by assigning a label to each plant pixel. The labels are esti-

mated by applying the source model to the transformed target

features. YT should exhibit an ordinal class structure which corre-

sponds to the gradual drought stress propagation. The position and

magnitude of transitions between classes within the label images

are derived by calculating the gradient image DYT , which detects

local changes in an image (Canny, 1986). Background pixels, which

were removed during preprocessing, occur in the label image as

zeros, to obtain a complete image. Thus the gradient image con-

tains irrelevant transitions from background to plant, which are

removed in each iteration of the optimization procedure.

The evaluation of the spatial smoothness is based on the rela-

tive frequencies hðDYTÞ of the magnitudes in the gradient image.

Transition between classes which differ widely are not desirable

for what reason each relative frequency is weighted by its strength

i:

hwðDYT i Þ ¼ hðDYT i Þi; i ¼ 1; . . . ; s ð8Þ

where s is the maximum magnitude. Thus, small magnitudes con-

tribute less to the criterion than higher magnitudes. Enabling a

comparable criterion, the weighted frequencies are normalised:

�hwðDYTÞ ¼
hwðDYTÞ

jhwðDYTÞj
ð9Þ

The knowledge about the drought stress process expects small

magnitudes. Thus, the spacial smoothness S is integrated into the

objective function by only regarding magnitudes greater than two:

S ¼
Xs

i¼3

�hwðDYT i Þ ð10Þ

4.2.4. Mightiness

The propagation of the drought induced stress and the drought

stress status is similar albeit not equal in both domains. Therefore,

the distribution of the drought classes should be distributed simi-

larly in both domains. Care must be taken to reflect this assump-

tion in the formula appropriately. If there is a substantial

difference between source and target domain, as in the case of bar-

ley and maize, hyperspectral responses to drought stress are rather

different, caused by the different pigment structures in different

species. Even after refined transformation as described in 4.1.1,

labels tend to cluster in one class rather than distributing over

all classes. The task of the criterion mightiness is to enforce this

spreading. Although it seems counter-intuitive at first glance this

is best achieved by assuming that the class distributions are similar

in source and target domain, as long as no other information (that

for instance one species or variety might be more resistant then the

other) is available.

The similarity of the class distributions is assessed by the rela-

tive class frequencies of source hðySÞ and target domain hðyTÞ. The

deviation of these two class distributions is used to evaluate the

mightiness M:

M ¼ jhðyTÞ � hðySÞj þ � ð11Þ

All classes are supposed to occur in the classification and a suf-

ficient number of items should be assigned to each class. Small or

empty classes should be avoided, wherefore a penalty term � is

added for each class which contains less than 1% of the instances.

Furthermore, the penalty is added, if a class contains a significant

larger number (40%) of instances than the other classes. These

thresholds for the penalty term were chosen on the basis of a ten

class problem (k ¼ 10). The penalty term raises for each class

which violates the mentioned regulations. This penalty term also

ensures that the objective function convergences to a solution, in

which all classes occur.

All terms, except the penalty term, are normalised to ½0;1�. This

allows a comparison of the influences of the different criteria to the

objective function.

4.3. Optimization algorithm

The optimal parameters for the transformation of the target

domain features are found by minimising the proposed objective

function (Eq. (2)). For optimising the parameters an optimisation

method has to be chosen according to characteristics of the objec-

tive function. In our case, the features follow skew-symmetric or
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multi-modal distributions and the terms of the objective function

have conflicting goals. Furthermore, the objective function is

discontinuous (and not differentiable), as it is updated by using a

classification within each optimization iteration. Thus, no

Hessian-matrix is computable, wherefore a gradient-free optimiza-

tion method is required. Another requirement is that three trans-

formation parameters are needed for each feature, which leads to

a high number of parameters. Since no assumptions about a unique

local optimum are present, a global optimization procedure is

desirable.

Algorithm 1. Optimization of the transformation parameters.

Input: source domain data xS, target domain data xT , source

model m, annealing schedule TempðxÞ

Output: transformation parameters t

(1) Similarity transformation

(2) t  t0 Initial transformation parameter

while Znew > 0:01 & k < kmax do

(3) tnew  select transformation parameters

(a) x̂T ¼ tnew2 x2T þ tnew1 xT þ tnew0  transform target features

(b) Apply classificationmodelm to transformed features x̂T
(c) Evaluate the transformation parameter via the

objective function

Znewðt
newÞ ¼ w1Dþw2Sþw3M þw4Mix

(4) DZ ¼ Znewðt
newÞ � ZðtÞ

(5) T  schedule Tempðk=kmaxÞ

if DZ > 0 then

(6) t  tnew accept new parameters

else

(7) t  tnew accept new parameters with probability eDZ=T

end if

end while

We used the well known global optimization algorithm Simu-

lated Annealing (Kirkpatrick et al., 1983), which minimises a given

objective function without the need of derivations. Besides, this

method is likely to find near-optimal values (local optima not far

from the global optimum) for a large amount (23 � 3 = 69 param-

eters) of parameters under adversary conditions. The algorithm

adapts the controlled cooling of heated material to achieve a

low-energy state. In each step, the algorithm samples new trans-

formation parameters by altering the actual parameters uniformly

with a given length. The decrease of the length during the opti-

mization process, enables large alternation at the beginning and

smaller alternation at the end. The objective function is evaluated

for each trial of new parameters and their evaluation value is com-

pared to the evaluation value of the current parameters. If the new

parameters have a lower evaluation value they are always

accepted. Otherwise, the new parameters are only accepted with

a certain probability which can exceed local minima. The probabil-

ity of accepting alternated parameters decreases during the opti-

mization process like the decreasing temperature of the cooling

of heated material. The decreasing probability of accepting param-

eter with higher evaluation values and the shrinking range where

possible new parameters are sampled enables the optimization

procedure to find and converge to a global minimum.

4.4. Evaluation of ordinal classification

After the optimization of the transformation parameters the

resulting classification, of the transformed target domain by the

source model, needs to be evaluated. The evaluation has to cover

aspects of the classification and the ordinal class structure. Com-

mon metrics to assess the performance of a classification model

(e.g. overall accuracy) do not cover all aspects of ordinal classifica-

tion. The overall accuracy validates the quality of a classification in

which every misclassification is treated equally. However, the ordi-

nal structure of the model and the distances between ‘‘true” and

‘‘predicted” classes are not considered. These two criteria are

included into the evaluation, since the drought states are sorted

and the state ‘‘vital” is assigned to the first class and the drought

state ‘‘stressed” is assigned to the last class. The following criteria

cover these aspects and were used to validate the results of the

proposed method:

� Overall Accuracy (O.A.)

� Root-mean-squared error (RMSE)

� Spearman’s rank correlation coefficient (Spearman, 1904)

The RMSE is a common measure to estimate the mean differ-

ence between the ‘‘true” and ‘‘predicted” classes. The class ranking

is also used for the validation of the ordinal structure by the Spear-

man’s rank correlation coefficient �1 6 rS 6 1 (Cardoso and Sousa,

2011). The results of the proposed method are evaluated by all

three criteria, since they evaluate different aspects: O.A. evaluates

the correct classified data, MSE evaluates the mean difference and

rS evaluates the ordinal structure.

5. Results and discussion

We demonstrate the applicability of the proposed transforma-

tions by using the three data sets described in Section 3. From each

of the data sets, we have selected a representative hyperspectral

image out of the reduced watered group, in which the advanced

stages of drought effects were already visible.

For each of the three selected images, a source model (Sec-

tion 3.2) has been learned on the basis of randomly selected

labelled pixels (unsupervised labelling in Section 3.2). Subse-

quently, each source model was applied to each of the two remain-

ing hyperspectral images (target domains) by using our approach

described in Sections 4.1 and 4.2. To reveal the improvement of

the proposed method the source model has also been applied to

the untransformed features of the target domains.

For the evaluation of our method each source model has been

applied to its own domain, the experiment the model is learned

on, to obtain labels. These labels are compared (i) to the results

of the application of the source model to the untransformed fea-

tures, and (ii) to the results of the proposed method. These com-

parisons are based on the criteria for validating ordinal

classification results introduced in (Section 4.4). As all labels are

estimations which are based on a discretization of a continuous

process, we primary consider improvements which are achieved

by the approach.

Besides, we applied the optimised transformation parameters

to the series of images and analysed the target domains with the

source models in order to examine if an early detection of drought

stress is possible (Section 5.2).

5.1. Domain adaptation

In Fig. 5, we exemplify the results from DS ¼ Barley2010 and

DT ¼ Maize. This is the most challenging adaptation since the

measurement setting and the plants greatly differ in the experi-

ments. Due to these differences, the application of the source

model to the untransformed target features leads to a classification

result where most of the instances have been assigned to a healthy

class, while some inter-classes are under-represented (Fig. 5b). In
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general, the classification result of the transformed features

(Fig. 5c) corresponds to the biological characteristics. Thus, the fea-

ture transformation improves the classification result significantly,

which is rather astonishing taking the substantial differences

between the different scenarios (barley vs. maize, Germany vs.

Italy, foliar tunnels vs. open field) into account.

We could confirm the visual impression by estimating the listed

evaluation criteria for ordinal classification (Section 4.4). The val-

ues for the comparison of the untransformed classification result

with the results of the source model are shown in Table 2. The

RSME of the depicted label image (Fig. 5) is 1.75 and decreases to

1.39 if we apply the proposed method (Table 2, row 2). Since this

metric evaluates the values of the differences between expected

and actual classification result, the classification could be

improved. Furthermore the ordinal structure of this example could

be improved, since rS and the overall accuracy could be increased

by transforming the features.

The comparison of all transfer examples in Table 2 shows that

the overall accuracy could be increased in all cases. Furthermore,

the RMSE is reduced for all examples. Spearman’s rank correlation

coefficient rS increases in all cases except the transfer from

DS ¼ Barley2010 to DT ¼ Maize (Table 2, rows 4). However, these

measures show that our approach improves the classification

result w.r.t. the ordinal structure.

5.2. Early detection of drought stress

In this section, we show the use of results of the for the early

detection of drought effects. In order to draw conclusions about

this development, the separation of the treatments (e.g. reduced

watered and well-watered for barley in 2010) within the series of

hyperspectral images must be regarded. Therefore, the health states

of the individual plants are described by summarising the classifi-

cation result for each image within a histogram, containing the rel-

ative frequencies of classes. For more details see Behmann et al.

(2014b).

5.2.1. Drought stress in barley

The relative class frequencies of each image are used to esti-

mate the stress state of the plant. Therefore a linear SVM model

was learned on basis of the histograms of a vital plant at the first

observation day and a reduced watered plant at the last observa-

tion day. The stress status of a plant was estimated by the SVM

output, which is the normalised distance to the discrimination

function. The mean SVM scores and the standard deviation are

shown in Figs. 6 and 7 for each treatment. The normalised dis-

tances to the discrimination functions are used for a one-way

ANOVA test which checks the separability of the different treat-

ments with a significance level of 5%.

Pigment degradation can originate from drought induced stress

or occurs naturally during leaf senescence. Both processes can be

identified in Fig. 6. The degradation from senescence causes a rise

of the degraded pigments in the reduced watered (red) and the

well-watered (green) plants. Drought causes an additional increase

of degraded pigments in the reduced watered plants (red in Fig. 6).

SPAD measurements confirmed the constant decrease in the

chlorophyll content in the droughted plants with faster rate than

in the control ones (data not shown). Nevertheless, no inflexion

point could be seen in the curve of SPAD value data. In Fig. 7 the

increasing amount of degraded pigments is only affected by

drought stress, since the amount of degraded pigments does not

raise in the well-watered (green) plants.

The source model DS ¼ Barley2011 enables a separation of the

treatments at day 8 after drought induction. The transfer from the

DS ¼ Maize to DS ¼ Barley2010 enables a separation of the treat-

ments at day 14 after drought induction (Fig. 6 right). However, in

both cases, a detection of drought effects is possible, whereas

Table 2 indicates an usage of the source model from barley 2011.

In the 2011 data, source data DS ¼ Barley2010 and DS ¼ Maize

have been used (Fig. 7 left and right, respectively). In the first days

all treatments develop similar. The separation of the well watered

and unwatered treatments is possible from day 9 (barley source

model) and day 10 (maize source model) after drought induction

(Table 3). A first separation of the reduced-watered and fully

watered plants is possible at day 11 with the barley source model.

A reliable separation is possible from day 15 (barley source model)

and day 16 (maize source model).

The separation of the different treatments in the barley data

from 2010 with DS ¼ Barley2011 is possible on the same day as

in Behmann et al. (2014b) and one observation day earlier as in

Table 2

Results of the model transfer: application of the source model to the original target features data and the transformed target features.

Domain Untransformed Transformed

Source Target O.A. rS RMSE O.A. rS RMSE

Barley2010 Barley2011 0.25 0.78 2.14 0.36 0.89 1.36

Barley2010 Maize 0.23 0.60 1.75 0.43 0.86 1.39

Barley2011 Barley2010 0.23 0.49 3.05 0.31 0.65 2.25

Barley2011 Maize 0.13 0.89 2.31 0.26 0.77 1.87

Maize Barley2010 0.20 0.40 3.47 0.28 0.45 2.49

Maize Barley2011 0.20 0.83 2.80 0.40 0.88 1.32

Fig. 5. Classification result of the maize data with the maize model (a). Results of the application of the barley model for 2010 to the untransformed maize features (b) and the

transformed features (c). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Römer et al. (2012). DS ¼ Maize enabled a separation of the barley

data from 2010 on the same day than in Römer et al. (2012) and

one observation day later than Behmann et al. (2014b). For the bar-

ley data set from 2011 the no watered group was separable from

the fully watered withDS ¼ Barley2010 on the same day, and with

DS ¼ Maize on day later as in Römer et al. (2012). The separation

of the treatments, reduced watered and the fully watered, with

DS ¼ Maize was possible two days later and with

DS ¼ Barley2010 three days later than in Römer et al. (2012).

The analysis of water status in Barley 2011 experiments

revealed that the water potential increased at second time-point

of measurement for the unwatered variant and at fourth time-

Fig. 7. Result of the histogram classification of the barley data 2011 with the source model from barley 2010 (left) and the maize model (right). Well-watered plants (green)

are separable form the reduced watered plants (cyan) and the unwatered plants (red). (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)

Fig. 6. Result of the histogram classification of the barley data 2010 with the source model from barley 2011 (a) and the maize model (b). Well-watered (green) plants are

separable form the reduced watered (red) plants. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3

Results of the one-way ANOVA-test for the barley data from 2011. The resulting P-values show whether the treatments are separable or not.

Source domain Barley2010 Maize Barley2010 Maize

Day Reduced-watered/fully watered No water/fully watered

7 0.16 0.53 0.83 0.61

8 0.47 0.92 0.15 0.13

9 0.45 0.32 0.02 0.06

10 0.11 0.16 0.00 0.00

11 0.02 0.27 0.00 0.00

12 0.32 0.12 – –

13 0.19 0.10 – –

14 0.16 0.04 – –

15 0.06 0.02 – –

16 0.00 0.00 – –
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point for the variant with reduced watering, whereas for the con-

trol at the fifth day. The measured values of water content showed

changes at the same time points but in the opposite direction,

reduction at time points 2 and 4, for the unwatered and with

reduced watering variants, respectively. Based on these invasive

analysis data it can be concluded that the plants were suffering

from water lack.

5.2.2. Maize in the field

Due to the small amount of images, which were taken on the

same day, the resulting class frequencies of the maize data cannot

be analysed like the barley data sets. An intuitive and simple visu-

alisation of the class frequencies of the twelve maize images is not

possible, wherefore a dimensional reduction by a Principal Compo-

nent Analyse (PCA) was performed. The score values of the first

two principal components enable a simple visualisation, wherein

the different treatments can be depicted (Fig. 8).

As the barley models are based on drought stressed plants, a

differentiation between the ‘‘untreated” and ‘‘irrigated” maize

plants was the aim of this classification. Fig. 8 shows that the ‘‘ir-

rigated” plants are separable from the ‘‘untreated” plants for both

source models (DS ¼ Barley2010 and DS ¼ Barley2011). Further-

more, ‘‘irrigated and fertilised” plants are separable with

DS ¼ Barley2011 from all other treatments.

6. Conclusion

In this article we have described a novel method for unsuper-

vised Domain Adpatation. An unique feature of our approach is

that no labels are required in the target domain. We achieve the

appropriate adaptation by the careful design of an evaluation func-

tion which is based on biological plausibility. We showed that

unsupervised Domain Adaptation is able to uncover early stages

of drought stress in hyperspectral images by reusing an existing

model. A transformation of the target data overcame the differ-

ences between source and target domain and enabled the applica-

tion of the existing model. The lack of labels in the target domain

was tackled by introducing an objective function which evaluated

the transformation. In the objective function prior knowledge

about the characteristics of plants and the propagation of drought

induced stress was combined with characteristics from machine

learning. The suitability of this transfer was shown by applying it

to all combinations of the three proposed data sets and in all direc-

tions. The proposed method could improve the classification and

overcame even differences in crops and their environments. Espe-

cially the transfer from the laboratory to the field reveals the pos-

sibilities of Transfer Learning for stress detection.
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