001     845667
005     20210129233544.0
024 7 _ |a 10.1111/pce.13180
|2 doi
024 7 _ |a 0140-7791
|2 ISSN
024 7 _ |a 1365-3040
|2 ISSN
024 7 _ |a pmid:29498070
|2 pmid
024 7 _ |a WOS:000434162400017
|2 WOS
024 7 _ |a altmetric:33882507
|2 altmetric
037 _ _ |a FZJ-2018-02880
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Sakowska, Karolina
|0 0000-0003-4186-2558
|b 0
245 _ _ |a Leaf and canopy photosynthesis of a chlorophyll deficient soybean mutant
260 _ _ |a Oxford [u.a.]
|c 2018
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1527688348_1910
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The photosynthetic, optical, and morphological characteristics of a chlorophyll‐deficient (Chl‐deficient) “yellow” soybean mutant (MinnGold) were examined in comparison with 2 green varieties (MN0095 and Eiko). Despite the large difference in Chl content, similar leaf photosynthesis rates were maintained in the Chl‐deficient mutant by offsetting the reduced absorption of red photons by a small increase in photochemical efficiency and lower non‐photochemical quenching. When grown in the field, at full canopy cover, the mutants reflected a significantly larger proportion of incoming shortwave radiation, but the total canopy light absorption was only slightly reduced, most likely due to a deeper penetration of light into the canopy space. As a consequence, canopy‐scale gross primary production and ecosystem respiration were comparable between the Chl‐deficient mutant and the green variety. However, total biomass production was lower in the mutant, which indicates that processes other than steady state photosynthesis caused a reduction in biomass accumulation over time. Analysis of non‐photochemical quenching relaxation and gas exchange in Chl‐deficient and green leaves after transitions from high to low light conditions suggested that dynamic photosynthesis might be responsible for the reduced biomass production in the Chl‐deficient mutant under field conditions.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Alberti, Giorgio
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Genesio, Lorenzo
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Peressotti, Alessandro
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Delle Vedove, Gemini
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gianelle, Damiano
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Colombo, Roberto
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rodeghiero, Mirco
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Panigada, Cinzia
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Juszczak, Radosław
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Celesti, Marco
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Rossini, Micol
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Haworth, Matthew
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Campbell, Benjamin W.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Mevy, Jean-Philippe
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Vescovo, Loris
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Cendrero-Mateo, M. Pilar
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Rascher, Uwe
|0 P:(DE-Juel1)129388
|b 17
700 1 _ |a Miglietta, Franco
|0 P:(DE-HGF)0
|b 18
773 _ _ |a 10.1111/pce.13180
|0 PERI:(DE-600)2020843-1
|n 6
|p 1427-1437
|t Plant, cell & environment
|v 41
|y 2018
|x 0140-7791
856 4 _ |u https://juser.fz-juelich.de/record/845667/files/pce.13180.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845667/files/pce.13180.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845667/files/pce.13180.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845667/files/pce.13180.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845667/files/pce.13180.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845667/files/pce.13180.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845667
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)129388
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PLANT CELL ENVIRON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b PLANT CELL ENVIRON : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21