001     845712
005     20210129233606.0
024 7 _ |a 10.1007/s00429-018-1670-9
|2 doi
024 7 _ |a 0340-2061
|2 ISSN
024 7 _ |a 1432-0568
|2 ISSN
024 7 _ |a 1863-2653
|2 ISSN
024 7 _ |a 1863-2661
|2 ISSN
024 7 _ |a pmid:29730826
|2 pmid
024 7 _ |a WOS:000443296300002
|2 WOS
024 7 _ |a 2128/21713
|2 Handle
024 7 _ |a altmetric:40779037
|2 altmetric
037 _ _ |a FZJ-2018-02924
082 _ _ |a 610
100 1 _ |a Janouschek, Hildegard
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Using coordinate-based meta-analyses to explore structural imaging genetics
260 _ _ |a Berlin
|c 2018
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536756161_29948
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Imaging genetics has become a highly popular approach in the field of schizophrenia research. A frequently reported finding is that effects from common genetic variation are associated with a schizophrenia-related structural endophenotype. Genetic contributions to a structural endophenotype may be easier to delineate, when referring to biological rather than diagnostic criteria. We used coordinate-based meta-analyses, namely the anatomical likelihood estimation (ALE) algorithm on 30 schizophrenia-related imaging genetics studies, representing 44 single-nucleotide polymorphisms at 26 gene loci investigated in 4682 subjects. To test whether analyses based on biological information would improve the convergence of results, gene ontology (GO) terms were used to group the findings from the published studies. We did not find any significant results for the main contrast. However, our analysis enrolling studies on genotype × diagnosis interaction yielded two clusters in the left temporal lobe and the medial orbitofrontal cortex. All other subanalyses did not yield any significant results. To gain insight into possible biological relationships between the genes implicated by these clusters, we mapped five of them to GO terms of the category “biological process” (AKT1, CNNM2, DISC1, DTNBP1, VAV3), then five to “cellular component” terms (AKT1, CNNM2, DISC1, DTNBP1, VAV3), and three to “molecular function” terms (AKT1, VAV3, ZNF804A). A subsequent cluster analysis identified representative, non-redundant subsets of semantically similar terms that aided a further interpretation. We regard this approach as a new option to systematically explore the richness of the literature in imaging genetics.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Eickhoff, Claudia
|0 P:(DE-Juel1)174483
|b 1
|u fzj
700 1 _ |a Mühleisen, Thomas
|0 P:(DE-Juel1)156419
|b 2
|u fzj
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 3
|u fzj
700 1 _ |a Nickl-Jockschat, Thomas
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
773 _ _ |a 10.1007/s00429-018-1670-9
|0 PERI:(DE-600)2303775-1
|n 7
|p 3045–3061
|t Brain structure & function
|v 223
|y 2018
|x 1863-2661
856 4 _ |u https://juser.fz-juelich.de/record/845712/files/Janouschek2018_Article_UsingCoordinate-basedMeta-anal.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/845712/files/Janouschek2018_Article_UsingCoordinate-basedMeta-anal.pdf?subformat=pdfa
|y Restricted
856 4 _ |y Published on 2018-05-05. Available in OpenAccess from 2019-05-05.
|u https://juser.fz-juelich.de/record/845712/files/ALE%20Imaging%20Genetics%20Rev1.pdf
856 4 _ |y Published on 2018-05-05. Available in OpenAccess from 2019-05-05.
|x pdfa
|u https://juser.fz-juelich.de/record/845712/files/ALE%20Imaging%20Genetics%20Rev1.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:845712
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)174483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BRAIN STRUCT FUNCT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b BRAIN STRUCT FUNCT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21