000845719 001__ 845719
000845719 005__ 20210129233609.0
000845719 0247_ $$2Handle$$a2128/18511
000845719 037__ $$aFZJ-2018-02931
000845719 1001_ $$0P:(DE-HGF)0$$aGauding, M.$$b0$$eCorresponding author
000845719 1112_ $$aNIC Symposium 2018$$cJülich$$d2018-02-22 - 2018-02-23$$wGermany
000845719 245__ $$aUsing Highly-Resolved Direct Numerical Simulations to Analyse the Universality of Small-Scale Turbulence
000845719 260__ $$aJülich$$bForschungszentrum Jülich GmbH, Zentralbibliothek$$c2018
000845719 29510 $$aNIC Symposium 2018
000845719 300__ $$a405 - 412
000845719 3367_ $$2ORCID$$aCONFERENCE_PAPER
000845719 3367_ $$033$$2EndNote$$aConference Paper
000845719 3367_ $$2BibTeX$$aINPROCEEDINGS
000845719 3367_ $$2DRIVER$$aconferenceObject
000845719 3367_ $$2DataCite$$aOutput Types/Conference Paper
000845719 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1526562848_29533
000845719 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000845719 4900_ $$aNIC Series$$v49
000845719 520__ $$aThe universality of a passive scalar advected in homogeneous isotropic turbulence is studied by scale-by-scale budget equations for higher order moments. Based on an analytical development of structure functions in the dissipative range, a scaling for higher order structure functions is proposed. A similarity scale analysis is used to show the validity of the proposed scaling in the dissipative range and the inertial range. The analysis is based on highly resolved direct numerical simulations (DNS) with different Reynolds numbers. To this end, a comprehensive DNS data base of turbulence has been created. To resolve all relevant scales of turbulence the grid size is as high as 68 billion grid points. This data base allows a consistent analysis of small-scale turbulence and scaling laws of turbulent flows.
000845719 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000845719 7001_ $$0P:(DE-Juel1)168541$$aGöbbert, Jens Henrik$$b1
000845719 7001_ $$0P:(DE-HGF)0$$aDanaila, L.$$b2
000845719 7001_ $$0P:(DE-HGF)0$$aVarea, E.$$b3
000845719 8564_ $$uhttps://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.pdf$$yOpenAccess
000845719 8564_ $$uhttps://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.gif?subformat=icon$$xicon$$yOpenAccess
000845719 8564_ $$uhttps://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000845719 8564_ $$uhttps://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000845719 8564_ $$uhttps://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000845719 8564_ $$uhttps://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000845719 909CO $$ooai:juser.fz-juelich.de:845719$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000845719 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168541$$aForschungszentrum Jülich$$b1$$kFZJ
000845719 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000845719 9141_ $$y2018
000845719 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000845719 920__ $$lyes
000845719 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x0
000845719 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000845719 980__ $$acontrib
000845719 980__ $$aVDB
000845719 980__ $$acontb
000845719 980__ $$aI:(DE-Juel1)NIC-20090406
000845719 980__ $$aI:(DE-Juel1)JSC-20090406
000845719 980__ $$aUNRESTRICTED
000845719 9801_ $$aFullTexts