001     845719
005     20210129233609.0
024 7 _ |a 2128/18511
|2 Handle
037 _ _ |a FZJ-2018-02931
100 1 _ |a Gauding, M.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a NIC Symposium 2018
|c Jülich
|d 2018-02-22 - 2018-02-23
|w Germany
245 _ _ |a Using Highly-Resolved Direct Numerical Simulations to Analyse the Universality of Small-Scale Turbulence
260 _ _ |a Jülich
|c 2018
|b Forschungszentrum Jülich GmbH, Zentralbibliothek
295 1 0 |a NIC Symposium 2018
300 _ _ |a 405 - 412
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1526562848_29533
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a NIC Series
|v 49
520 _ _ |a The universality of a passive scalar advected in homogeneous isotropic turbulence is studied by scale-by-scale budget equations for higher order moments. Based on an analytical development of structure functions in the dissipative range, a scaling for higher order structure functions is proposed. A similarity scale analysis is used to show the validity of the proposed scaling in the dissipative range and the inertial range. The analysis is based on highly resolved direct numerical simulations (DNS) with different Reynolds numbers. To this end, a comprehensive DNS data base of turbulence has been created. To resolve all relevant scales of turbulence the grid size is as high as 68 billion grid points. This data base allows a consistent analysis of small-scale turbulence and scaling laws of turbulent flows.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Göbbert, Jens Henrik
|0 P:(DE-Juel1)168541
|b 1
700 1 _ |a Danaila, L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Varea, E.
|0 P:(DE-HGF)0
|b 3
856 4 _ |u https://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845719/files/nic_2018_gauding.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:845719
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168541
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2018
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21