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The universality of a passive scalar advected in homogeneous isotropic turbulence is studied by
scale-by-scale budget equations for higher order moments. Based on an analytical development
of structure functions in the dissipative range, a scaling for higher order structure functions is
proposed. A similarity scale analysis is used to show the validity of the proposed scaling in
the dissipative range and the inertial range. The analysis is based on highly resolved direct
numerical simulations (DNS) with different Reynolds numbers. To this end, a comprehensive
DNS data base of turbulence has been created. To resolve all relevant scales of turbulence the
grid size is as high as 68 billion grid points. This data base allows a consistent analysis of
small-scale turbulence and scaling laws of turbulent flows.

1 Introduction

The motion of turbulent flows is a complex, non-linear multi-scale phenomenon, posing
some of the most fundamental problems in classical physics. A precise prediction of the
statistical properties of turbulence based on the governing equations would be of tremen-
dous practical importance for a wide field of applications ranging from geophysics to com-
bustion science. In these disciplines the transport and mixing of a passive scalar species
by turbulence is of special interest. A passive scalar is advected by the velocity field but
has itself a negligible effect on the flow. The scalar species can be a concentration field,
a pollutant, or it can be interpreted as a temperature field in the case that buoyancy forces
are small compared to inertial forces. The dynamic of the scalar field exhibits complex
behaviour due to the non-linear coupling with the velocity field. The dominant process
for turbulent mixing is the stretching and folding mechanism imposed by the velocity field
on regions of locally homogeneous concentration. Stretching and folding increases local
concentration gradients until molecular diffusion becomes significant and dissipates local
variations of the scalar. This process generates a cascade of different scales and has two
important implications. Firstly, turbulence dramatically enhances the rate of mixing, but
secondly, stretching and folding creates locally confined strong bursts in the scalar field.
The occurrence of very large but relatively rare events affects the statistics of the scalar field
and results in a deviation from Gaussianity. In the literature this phenomenon is called in-
ternal intermittency. Despite decades of research, the physical mechanism behind internal
intermittency is still unresolved, see Sreenivasan and Antonia1.

Direct numerical simulations (DNS) has become a profound and well established tool
to fundamentally investigate scaling properties of turbulence. DNS solves the governing
equations, namely the Navier-Stokes equations, for all relevant scales and provides access
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to spatially and temporally resolved three-dimensional fields. However, numerical ap-
proaches to solve the Navier-Stokes equations are very challenging, since one has to cope
with a tremendous number of degrees of freedom. Using the scale separation between large
and small scales, the number of required grid points N3 to resolve all relevant degrees of
freedom can be expressed as a function of the Reynolds number, i.e.

N3 ∝ Re
9/2
λ , (1)

where Reλ is the Reynolds number based on the Taylor length scale. Eq. 1 reveals that the
computational cost increases dramatically with Reynolds number. However, the growing
capabilities of recent supercomputers have enabled DNS of turbulent flows at adequately
high Reynolds numbers close to experiments at laboratory scale.

The remainder of the paper is as follows. In Sec. 2 we present the direct numerical
simulations on which the analysis is based. In Sec. 3 the impact of intermittency on scalar
structure functions is studied in the context of universality and self-similarity.

2 Direct Numerical Simulations

In order to tackle the turbulence problem, we developed a massive-parallel DNS code
named psOPEN. The DNS code solves the three-dimensional incompressible Navier-
Stokes equations in the vorticity formulation together with an advection-diffusion equa-
tion for a passive scalar φ. A uniform mean gradient Γ is imposed on the scalar field in
x2-direction and injects continuously energy into the scalar field to keep statistics in a sta-
tistically steady state. We consider a passive scalar with unity Schmidt number Sc = ν/D,
so that the kinematic viscosity ν equals the molecular diffusivity D.

The system of equations is solved by a standard Fourier pseudo-spectral method in a
triply periodic cubic box with size 2π by following an approach similar to that of Man-
sour and Wray2. An integrating factor technique is used for an exact integration of the
viscous and diffusive terms. Temporal integration is performed by a low-storage, stability
preserving, third-order Runge-Kutta scheme. The non-linear term is computed in physical
space and a truncation technique with a smooth spectral filter is applied to remove aliasing
errors. An external stochastic forcing3 is applied to the velocity field to maintain a statisti-
cally steady state. The forcing is statistically homogeneous and isotropic, and limited to a
low wave-number range so that the small scales are not affected by the forcing scheme. For
optimal performance on the BlueGene/Q system, the code psOPEN has been parallelised
by a hybrid MPI/OpenMP technique. To improve the parallel efficiency a novel paral-
lel pencil-FFT library has been developed. The library utilises an asynchronous approach
with the aim to overlap communication and computation. With this technique, the strong
scaling of psOPEN on JUQUEEN reveals an excellent efficiency up to 458,752 cores.

In the frame of this project, we have created a comprehensive DNS data base of turbu-
lence at various Reynolds numbers. The DNS has been conducted on the supercomputer
JUQUEEN. The Reynolds number is varied between Reλ = 88 and Reλ = 754 by solely
adjusting the kinematic viscosity ν, while keeping all other parameters constant. Charac-
teristic parameters are summarised in Tab. 1, where N denotes the number of grid points
along one coordinate axis, 〈k〉 the mean kinetic energy, 〈ε〉 the mean energy dissipation,
〈φ2〉 the mean scalar variance, and 〈χ〉 the mean scalar dissipation. Ensemble-averages
are denoted by angular brackets and are computed over the whole computational domain
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R0 R1 R2 R3 R4 R5 R6

N 5123 10243 10243 20483 20483 40963 40963

Reλ 88 119 184 215 331 529 754
ν 0.01 0.0055 0.0025 0.0019 0.0010 0.00048 0.00027
〈k〉 11.15 11.20 11.42 12.70 14.35 23.95 24.41
〈ε〉 10.78 10.52 10.30 11.87 12.55 28.51 26.71
〈φ2〉 1.95 1.89 1.94 2.47 2.25 2.41 2.43
〈χ〉 3.92 3.90 4.01 5.00 4.76 6.78 6.14
tavg/τ 100 30 30 10 10 2 3
M 189 62 61 10 10 6 9
κmaxη 3.93 4.99 2.93 4.41 2.53 2.95 1.95

Table 1. Summary of different DNS cases. Reynolds number variation between Reλ = 88 and Reλ = 754.

due to homogeneity and over a time frame tavg due to stationarity. To improve the accuracy
of statistics, averages are computed over M statistically independent ensembles, with M
between 6 for case R5 and 189 for case R0.

An adequate resolution of relevant length and time scales is of primary importance for
the accuracy of the DNS. To ensure an appropriate resolution of the smallest scales in the
present DNS, the number of grid points has been increased to as high as 4096×4096×4096.
Following Ishihara et al.4, a resolution condition of κmaxη > 2.0 is maintained for all
cases, where κmax is the highest resolved wave-number mode and η = (ν3/〈ε〉)1/4 is
the Kolmogorov length scale. Recent theoretical studies have pointed out the need for
high spatial resolution. This is especially important for the computation of higher-order
moments, which are relevant for the study of intermittency. Further details about the DNS
are presented by Gauding et al.5, Peters et al.6, and Goebbert et al.7.

3 Universality of Higher Order Statistics in Small-Scale Turbulence

Fully developed turbulence is characterised by a large range of length scales, varying from
the so-called integral length scale lt, at which large velocity fluctuations occur on average,
down to the smallest scale, the so-called Kolmogorov or dissipation scale η, at which
turbulent fluctuations are dissipated. Before turning to a quantitative analysis of turbulence
we present a visualisation of the data obtained from DNS. Fig. 1 shows the iso-surface of
the enstrophy. The enstrophy is a small-scale quantity, that is characterised by a high level
of intermittency. Fig. 1 reveals an enormous number of degrees of freedom represented by
the interaction of vortices that tend to cluster in coherent structures.

The standard paradigm of turbulence is that under the condition of sufficiently high
Reynolds numbers, the small scales of the flow decouple from the large scales. While the
large scales are non-universal and depend on the initial and boundary conditions, the small
scales should reveal in a statistical sense universal properties. The notion of small-scale
universality was first put forward by Kolmogorov in 1941. In Kolmogorov8, the velocity
increment ∆ui = ui(x + r) − ui(x) was introduced as the difference of the velocity
fluctuations ui(x; t) separated by a distance r. The statistical moments of the velocity
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Figure 1. Iso-surface of the enstrophy obtained from case R4 coloured by the value of the passive scalar. The
turbulent field exhibits coherent structures that represent the interaction of vortices of different size and intensity.

increment are known as structure functions, where

Dp,0(r) = 〈(u1(x1 + r, x2, x3)− u1(x1, x2, x3))
p〉 , (2)

is the longitudinal velocity structure function of order p, which is independent of position x
and the direction of r. Kolmogorov hypothesised that in the dissipative range for small
values of r, the distribution function of ∆u should depend only on two parameters, namely
the viscosity ν and the mean energy dissipation rate 〈ε〉. Because only two quantities with
different physical units are involved, this was viewed as a claim of universality. However,
Landau15 argued that universality would be violated due to the intermittent character of the
dissipation.

Kolmogorov’s scaling theory was extended to scalar turbulence by Obukhov9 and
Corrsin10 (in the following referred to as KOC theory). Similar to Eq. 2, a scalar struc-
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Figure 2. Terms in Eqs. 4 and 5 for the second (top) and fourth (bottom) order scalar structure function equation
for case R0 (left) and for case R5 (right). The diamond symbols represent the sum Tr2n(r)+Pr2n(r)+D2n(r),
which balances the term E2n(r) for all scales. This indicates that the budget is satisfied.

ture function of order p is defined by

Sp(r) = 〈(φ(x+ r)− φ(x))p〉 = 〈(∆φ)p〉 . (3)

Transport equations for the even moments of the scalar increment ∆φ can be derived as
presented in Danaila et al.11 and Gauding et al.12 and read

∂

∂t

〈
(∆φ)2n

〉
(r) +

∂

∂ri

〈
(∆ui)(∆φ)2n

〉
(r)

︸ ︷︷ ︸
−Tr2n

+ 2nΓ
〈
(∆u2)(∆φ)2n−1

〉
(r)︸ ︷︷ ︸

−Pr2n

= J2n(r) , (4)

where J2n collects all terms that contain the molecular diffusivity D, i.e.

J2n(r) = 2D
∂2

∂r2
i

〈(∆φ)2n〉
︸ ︷︷ ︸

D2n

−n(2n− 1)〈(∆φ)2n−2 (χ(x) + χ(x+ r))〉︸ ︷︷ ︸
E2n

, (5)

with χ being the scalar dissipation. Eq. 4 is exact, which means that it is derived from
first-principles without any approximation beside of incompressibility and homogeneity.

Even though Eq. 4 is exact, it cannot be solved directly, because it is not closed.
Nonetheless, all terms can be obtained from DNS. This is displayed in Fig. 2, where the
terms of the transport equations for the second and fourth order scalar structure functions
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are shown for Reλ = 88 and Reλ = 529. The second order scale-by-scale budget equa-
tion has been widely studied in literature because it represents the inter-scale transport of
scalar energy. Here, the sum of inter-scale transport Tr2, production Pr2 and diffusive
transport D2 is independent of r and equals 2〈χ〉. Two separate analytical solutions can be
derived for different range of scales. The first solution is obtained in the dissipative range
for r → 0, where the diffusive term D2 and the mean scalar dissipation balance 〈χ〉, i.e.

〈(∆φ)2〉 =
〈χ〉
6D

r2 . (6)

The second solution is obtained in the inertial range, where the transport term Tr2 balances
the mean scalar dissipation, i.e.

〈(∆uL)(∆φ)2〉 = −2

3
〈χ〉r , (7)

with ∆uL being the longitudinal velocity increment in the direction of r. Note that Eq. 7
is only satisfied for sufficiently large Reynolds number, which is the case for Reλ = 529
as shown in Fig. 2. Otherwise, finite Reynolds number contributions from the diffusive
transport term and the large-scale production term are not negligible in the inertial range.
The scale-by-scale budget for higher order structure function, i.e. 〈(∆φ)4〉, is significantly
different from the second order as displayed by Fig. 2. For higher orders (n ≥ 2), the
so-called dissipative source term E2n is a multi-scale correlation between the local scalar
increments (∆φ)2n−2 and the local scalar dissipation χ. Thereby, E2n is a function of r
and represents the non-trivial coupling between intermittent fluctuations in the dissipative
and the inertial range. Peters et al.6 and Gauding et al.12 showed that the dissipative source
term plays an important role for the failure of classical theories to correctly describe the
scaling of higher order structure functions.

A generalised theory for structure functions of arbitrary even order can be developed
similar to Eq. 6 in the limit r → 0 by

〈(∆φ)2n〉 = C2n〈χn〉τnη r̃2n , (8)

with the normalised separation distance r̃ = r/η, and the Kolmogorov time scale τη ,
defined as τη = (ν/〈ε〉)1/2. The constant C2n is a function of the order, but not of the
Reynolds number. Eq. 8 generalises the KOC scaling theory to higher orders and indicates
a dependence of higher order structure functions on the corresponding moments of the
scalar dissipation 〈χn〉. A justification of Eq. 8 form DNS is given by Fig. 3, where the
scalar structure functions 〈(∆φ)2n〉 are shown for different orders. It is clearly seen that an
adequate collapse with the KOC scales 〈χ〉 and τη applies only for the second order (and
not for higher orders), while a normalisation according to Eq. 8 is reasonably supported
also for higher orders. The collapse of the curves is not limited to the dissipative range, but
reaches into the inertial range. This finding signifies that both dissipative and inertial range
intermittency have the same Reynolds number dependence and reveal a scaling with 〈χn〉.
It is important to emphasise that it is not possible to derive Eq. 8 from pure dimensional
arguments, because 〈χ〉n and 〈χn〉 have the same dimensions.

In a next step, we examine the conditions under which Eq. 4 satisfies universality. The
universality we put forward is limited to a certain range of scales and is different from
that first claimed by Kolmogorov, in the sense that we show exactly how the scales are to
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Figure 3. Higher order scalar structure function 〈(∆φ)2n〉, normalised with conventional KOC scaling (left) and
the modified scaling according to Eq. 8.

be obtained from the hierarchy of structure functions. We define functional forms for the
different terms, i.e.

S2n = 〈(∆φ)2n〉 = α2nf2n(r̃)

−Tr2n =
∂

∂ri
〈(∆ui)(∆φ)〉2n = β2ng2n(r̃)

−Pr2n = 2nΓ〈(∆u2)(∆φ)〉2n−1 = γ2nΓh2n(r̃)

E2n = nD(2n− 1)〈(∆φ)2n−2
[
χ(x+ r) + χ(x)

]
〉 = δ2nk2n(r̃) ,

(9)

and thereby have to distinguish between functions which are Reynolds number dependent
(and do not depend on the scale r) and normalised structure functions which depend only
on the normalised spatial increment r̃. Following Eq. 8, we introduced r̃ = r/η, with η as
the relevant characteristic length scale. Substituting Eq. 9 into Eq. 4 gives

[
β2nη

2

Dα2n

]
g2n(r̃) +

[
γ2nΓη2

Dα2n

]
h2n(r̃) = [2] f ′′2n(r̃)−

[
δ2nη

2

Dα2n

]
k2n(r̃) . (10)

For universality of Eq. 10, all terms within square brackets must evolve in exactly the same
way. Since the first term on the right-hand is constant, all other terms are also required
to be constant. This is easy to show for the normalised transport term (first term) and
the normalised dissipation source term (last term), which turn into constants by defining
a scaling with the moments of the scalar dissipation, i.e. β2n = δ2n = 〈χn〉τn−1

η , and
α2n = 〈χn〉τnη , as proposed by Eq. 8. However, the second term in Eq. 10 corresponds
to a production term due to the mean gradient Γ. As shown by Fig. 2 the production term
is mainly active at large scales and drops quickly towards the inertial range. The energy
injection mechanism is a non-universal phenomenon, that cannot be expressed by using
only small-scale quantities like 〈χn〉 and τη , see Lumley13. As a consequence, the scaling
with 〈χn〉 as indicated by Eq. 8 is only valid over a restricted range of scales limited to
the dissipative range and parts of the inertial range. When the large-scale term comes into
play, the scaling is changed and requires information about the non-universality at large
scales.

In summary, we developed a theory that combines exact results from first principles
to introduce a new scaling for higher-order scalar structure functions. The scaling was
justified by using data from highly resolved DNS for a wide range of Reynolds numbers.
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