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An absolute scale match between experiment and simulation in atomic-resolution off-axis electron

holography is demonstrated, with unknown experimental parameters determined directly from the recorded

electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of

a pristine thin WSe2 flake can be measured uniquely, whereas some electron optical aberrations cannot be

determined unambiguously for a periodic object. The ability to determine local specimen and imaging

parameters directly from electron wave functions is of great importance for quantitative studies of

electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and

considering that aberrations change over time.
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Transmission electron microscopy (TEM) is a powerful
and versatile technique for imaging the microstructure of
materials at atomic resolution. Structural details that may
have a significant influence on material properties, such
as atomic arrangements, displacements, and local varia-
tions in composition at defects, interfaces, and surfaces
can be identified by the quantitative analysis of TEM
images [1]. A frequently applied approach to quantitative
TEM is to verify a structure model by matching exper-
imental images to simulations, ideally on the same
absolute scale, by using a forward modeling approach.
In recent years, significant advances have been made by
achieving absolute scale matches between experimental
images and simulations in both conventional coherent
high-resolution TEM and incoherent scanning TEM
[2–5]. Important prerequisites that have enabled these
developments include careful calibration of the detector
sensitivity and accurate characterization of the electron
microscope [6–8].
Despite the availability of aberration correctors and

highly stable electron microscopes, residual aberrations,
partial coherence effects, vibrations, external fields, and
detector properties can all have a significant influence on
the recorded signal [9–12]. As a result, a large number of
instrumental parameters need to be included in image
simulations, in addition to atomic structure models.
Although many instrumental parameters can in principle
be determined independently by performing additional
experiments [13–16], electron optical aberrations can vary
rapidly over time [17], meaning that the optical state of the
instrument during an experiment is often only partially
known. Other parameters, such as the local sample

thickness, tilt, drift, and vibrations, are either unpredictable
or very difficult to measure with sufficient accuracy.
Some of these difficulties can, in principle, be removed if

the full complex-valued electron wave function is recorded
using a technique such as off-axis electron holography. The
phase of the object-modulated wave function is highly
sensitive to important material properties, such as local
variations in charge density, dopant potential, and mag-
netization [18–24]. The application of electron holography
in a modern electron microscope that has a spatial reso-
lution of below 0.1 nm should therefore provide access to
both the structure and the functional properties of materials
with atomic spatial resolution at the same time. However,
the ability to use simulations that match experimentally
recorded wave functions quantitatively at atomic spatial
resolution is required for reliable interpretation of the
recorded signal, in order to realize the full potential of
electron holography.
Here, we demonstrate an absolute scale match of

simulated and experimental electron wave functions
recorded using off-axis electron holography at atomic
resolution. We implement a forward modeling approach
in the form of a fully automated optimization algorithm,
which is used to determine unknown experimental param-
eters from a recorded wave function of a pristine thin WSe2
flake, whose atomic structure is assumed to be known. In
this way, previous attempts to determine experimental
parameters from wave functions [25–27] are surpassed
on a quantitative level by replacing generic symmetry
arguments with matches to realistic simulations. The
regions of known crystal structure that are required for
our approach can often be found directly next to areas of
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interest, e.g., in support materials or pristine volumes
surrounding a defect [2,3].
For the automated determination of a large set of

unknown parameters that describe both the imaging con-
ditions of the electron microscope and the specimen, it is
advantageous if subsets of the parameters can be deter-
mined independently, thereby reducing the dimensions of
the search spaces, while increasing the number of opti-
mization problems to be solved. Here, we separate the
parameters into two sets: (A) Parameters that essentially
affect the amplitudes of the Fourier coefficients, and
(B) parameters that only affect the phases of the Fourier
coefficients.
Parameter set (A) contains six, usually unknown param-

eters to be determined: the local specimen tilt is described
by a two-dimensional vector ðtx; tyÞ; absorption is modeled

by calculating an absorptive potential as a fraction κ of the
elastic scattering potential [28]; an anisotropic Gaussian
envelope is applied to the Fourier coefficients, in order to
simulate an image spread with major axis σ1, minor axis σ2,
and orientation α with respect to the horizontal image axis,
describing the effects of thermal magnetic field noise,
mechanical vibrations, and electrical instabilities [29,30].
Although the specimen thickness can also be included as a
parameter during optimization, in layered materials such as
that investigated here, the thickness can be measured
independently by analyzing the mean phase and amplitude,
as described in our previous work [31].
The determination of parameter set (A) requires the

calculation of electron diffraction within the specimen, e.g.,
by the multislice method [32]. Since this calculation cannot
be described in a closed analytical form, the gradient of the
cost function to be minimized can only be calculated
numerically. In order to minimize the computational
demand, a non-gradient-based optimization algorithm,
such as the Simplex method described by Nelder and
Mead [33,34], can be used. Agreement between simulation
and experiment is quantified by the cost function

Δ
2 ¼

X

g

jAexpðgÞ−AsimðgÞj2

þ 2Aexpð0ÞAsimð0Þ½1− cosðϕexpð0Þ−ϕsimð0ÞÞ�; ð1Þ

where the first term accumulates the squared differences of

the Fourier coefficient amplitudes AexpðgÞ and AsimðgÞ for
diffraction vectors g, and the second term describes the
difference between the mean phase values ϕexpð0Þ and

ϕsimð0Þ weighted by the product of the mean amplitudes.
The mean phase of the wave function measured using

off-axis electron holography is sensitive not only to the
mean electrostatic potential in the specimen, but also to
small mistilts of the sample from a crystallographic zone
axis [31]. It is therefore highly beneficial to include the
mean phase in the cost function. For this purpose, potentials
derived from density functional theory (DFT) provide more

accurate estimates of the mean inner potential than those
obtained using independent atomic form factors [19]. We
follow this approach here by using electrostatic potentials
for WSe2 calculated using the DFT-based method described
in the same work.
The simulated wave function determined using param-

eter set (A) can be regarded as the wave function at the exit
plane of the sample. Comparison with the experimental
wave function then allows the determination of parameter
set (B), which comprises the coherent aberrations of the
imaging system. The effects of aberrations can be removed
from the experimental image wave function ΨiðgÞ by
applying an exponential phase factor exp½iχðgÞ�, thereby
obtaining an experimental exit-plane wave function

ΨðgÞ ¼ ΨiðgÞ exp½iχðgÞ�: ð2Þ

The aberration function χðgÞ is a polynomial series written
in terms of the diffraction vector, containing all of the
coherent aberration terms that are relevant for a specific
instrument. Since χðgÞ and its derivative can be calculated
analytically, gradient-based optimization algorithms that
typically converge faster than non-gradient-based algo-
rithms can be used. Here, a Sequential Least Squares
Programming (SLSQP) algorithm [34,35] was applied to
minimize the total squared difference

Δ
2
rms ¼

X

g

jΨExpðgÞ −Ψ
SimðgÞj2; ð3Þ

whereΨExpðgÞ andΨSimðgÞ are the complex-valued Fourier
coefficients of the experimental and simulated exit-plane
wave functions, respectively. In this way, strong influences
of Fourier coefficients with low signal-to-noise ratios on
the parameter estimation are avoided.
Here, aberrations up to second order were included as

variables in the minimization, which comprised in total
nine coefficients: image shift A0, defocus C1, twofold
astigmatism A1, coma B2, and threefold astigmatism A2

[36]. Additional knowledge about strong higher-order
aberration coefficients was obtained from independent
measurements performed using the Zemlin tableau method
[13]. The measurements indicate the presence of spherical
aberrations with CS ¼ 16 μm and C5 ¼ −6.5 mm, which
are both considered to be constant.
In the present study, we applied the forward modeling

approach to analyze electron wave functions of ultrathin
WSe2 with the 2H crystal structure recorded using off-axis
electron holography. WSe2 forms pristine surfaces due to
the absence of surface reconstructions and belongs to the
class of layered transition metal dichalcogenides that have
thickness variations in integer multiples of a single layer
[37], simplifying the determination of sample thickness, as
large areas of constant thickness can often be found.
Figure 1 shows the phase of a reconstructed and

normalized electron wave function of WSe2, with a vacuum
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region on the right and a clean area on the left. The bright
nonuniform contrast close to the specimen edge is asso-
ciated with surface contamination. The specimen thickness
was measured to be precisely five layers (3.9 nm) by
analyzing the mean phase and amplitude [31].
The electron holograms were recorded using the CS and

CC corrected PICOmicroscope [38] operated at 80 kV with
identical experimental conditions as described in Ref. [31].
After acquisition, the detector modulation transfer function
(MTF) was deconvolved from both object and reference
holograms. Reconstruction of the holograms was carried
out using a Python-based algorithm [39] by applying a
40 mrad aperture with a smoothness of 1 mrad to a sideband
in Fourier space. Normalization was achieved by (i) regis-
tration against a reference electron hologram recorded with
the same instrument settings from a vacuum region [40] and
(ii) subsequent removal of a residual phase ramp extrapo-
lated from the vacuum region close to the specimen
edge [41,42].
Six nonoverlapping regions across the image from the

top (A1) to the bottom (A6) were selected for detailed
analysis, each containing 7 × 4 orthorhombic unit cells.
Commensurate sampling with the periodic structure yields
sharp peaks in the Fourier transform of the wave function,
as shown in Fig. 2. The diffraction pattern corresponds to
the hexagonal crystal structure visible in the phase image in
all of the selected sample areas. However, the maxima in
the phase image do not exhibit the circular shapes that are

expected for projections of atomic columns, as a result of a
combination of residual aberrations, sample mistilt, drift,
and anisotropic vibrations.
Electron wave functions were simulated using a multi-

slice approach, as implemented in the Dr. Probe software
package [32,43]. Electron scattering potentials were
derived from electrostatic potentials of WSe2 calculated
using DFT, as described in Ref. [19]. In addition, a global

Debye-Waller factor with B ¼ 0.003 nm2 [44] was applied
to the potentials to take into account the damping effect of
thermal atom vibrations. A comprehensive list of all
parameters known from independent measurements and
unknown parameters determined by automated forward
modeling is given in Table S1 in the Supplemental
Material [45].
The results of the automated procedure used to determine

the parameters for set (A) in region A1 are shown in the
form of diffraction patterns in Fig. 2 (see Fig. S1 in the
Supplemental Material for all regions [45]). The quality of
the match is confirmed from the residual amplitude
differences, which are, on average, 2 orders of magnitude
smaller than the experimental amplitudes. Values of the
best-fitting parameters for all six regions are plotted
in Fig. 3.
An anisotropic image spread was consistently found for

all of the regions, with σ1 ¼ 38.3� 0.6 pm and
σ2 ¼ 27.8� 0.3 pm. The anisotropy and the larger value
when compared to the estimate of 25 pm made in previous
work [30] are most likely a result of the longer exposure
times used for off-axis electron holography. The absorption
parameter κ shows no systematic change across the field of
view. The fitted value of 7.5%� 0.5% is in the range
obtained by others [2,3,46]. In contrast, a systematic
variation in specimen tilt is observed across the image,
indicating a bending of the WSe2 flake. Remarkably small
errors of less than 0.1° are obtained for the measured values
of specimen tilt. To the best of our knowledge, this is one of
the most precise local specimen orientation measurements
achieved so far using TEM for very thin samples [47–49].

FIG. 2. Comparison of experimental and simulated Fourier
coefficients. Amplitudes of the Fourier coefficients of (a) the
experimental and (b) the best matching simulated wave function
in region A1 plotted on a logarithmic color scale. (c) Absolute
differences between experimental and simulated amplitudes
plotted on a linear gray scale. The scale bar in the diffraction

patterns corresponds to 4 nm−1.

FIG. 1. Electron optical phase image of a WSe2 flake. The wave
function was reconstructed from an off-axis electron hologram,
with a 40 mrad aperture applied to the sideband. Colored
rectangles mark six subregions A1–A6 of 7 × 4 orthorhombic
unit cells selected for further analysis. The scale bar is 2 nm. The
gray scale covers phase values from 0 rad (black) to 1.2 rad
(white).
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The uniqueness of the solution was confirmed by
repeated optimization trials started at random points in
the six-dimensional search space. The reliability and
robustness of the algorithm was tested successfully in a
statistical approach, in which experimental data were
substituted by simulations that included a realistic amount
of recording noise for a large set of different parameter
scenarios. We found that, for similar noise amplitudes as in
the experimental data, the algorithm always converged to
the correct solution with uncertainties in the determined
parameter values that were even smaller than those
obtained in the experimental case.
The strong effects of residual aberrations on the details of

the atomic structure in the wave function are visualized in
Fig. 4 for area A1 (cf. Figs. S2 and S3 in the Supplemental

Material for results from all of the regions [45]). After
aberration correction, the experimental and simulated wave
functions match remarkably well. The residual differences
displayed on the right show no prominent features that are
related to the crystal structure. In all six regions, the root-
mean-square deviation Δrms is between 0.076 and 0.090,
which is very close to the vacuum noise level of the
experimental wave function (0.072).
Equally good correspondence between simulation and

experiment was found for several different aberration sets

by starting the optimization at random points in the search

space. The existence of multiple equally low minima for

Δrms is a consequence of the periodic nature of the

exponential phase factor exp ½iχðgÞ�. In combination with

a sparse and regular excitation of Fourier coefficients,

aberration functions that differ exactly by multiples of 2π at

the positions of the excited beams result in identical values

for ΨðgÞ in Eq. (2) (cf. Fig. S4 in the Supplemental

Material [45]).
In our experiments, we expect that temporal changes

between prior aberration correction and the acquisition of
the hologram are below 5 nm for C1 and A1 and below
1 μm for A2 and B2. We found that A2 is particularly
difficult to determine, as its rotational symmetry corre-
sponds well to the hexagonal symmetry of the WSe2 [001]
diffraction pattern. The equivalent solutions that are found
here are separated by at least 50–100 nm in both A2 and B2,
which can usually be distinguished by the Zemlin tableau
method. Table S2 and Fig. S5 in the Supplemental Material
show the results of at least four possible solutions found in
region A1 [45].
In all of the possible aberration sets that were found here,

essentially all of the aberration coefficients show a linear
variation across the field of view (cf. Table S3 and Fig. S6
in the Supplemental Material [45]), with the exception of
the defocus change, which is related to the local sample tilt
of the WSe2 flake. A spatial variation of the lower-order
aberrations is induced by the presentCS andC5 aberrations,
in combination with a large variation of the incident beam
tilt over the field of view. The beam tilt is caused by the
elliptical illumination used for off-axis electron holography,
with a strong variation expected along the direction of the
smallest beam diameter [50]. The local object tilt deter-
mined in the previous step therefore reflects a combination
of both specimen tilt and illumination tilt.
The automated numerical algorithms described here

converged fast, with minimal human bias. In particular,
the convergence times were about 2 min for the determi-
nation of parameter set (A) and 30 s for the determination
of parameter set (B) for each area using a single CPU on a
standard desktop computer. This enabled us to analyze the
solutions on a statistical basis, showing that parameters
which essentially affect the amplitudes of the Fourier
coefficients can be determined accurately and unambigu-
ously. In contrast, we found multiple solutions, which

FIG. 3. Fitted experimental parameters. The upper two plots
show the image spread parameters σ1, σ2 (left) and α (right), with
standard deviations indicated by confidence bands around the
mean value (dashed line). The lower plots show the absorption

parameter κ (left) and local specimen tilts tx and ty (right). The

error bars are estimated by means of the covariance matrix
calculated at the minimum of the optimization using a linear
approximation of the Jacobian matrix.

FIG. 4. Comparison between experimental and simulated wave
functions. (a)–(d) Real parts and (e)–(h) imaginary parts of the
electron wave functions corresponding to region A1. Experi-
mental wave functions (a),(e) before and (b),(f) after residual
aberration correction. (c),(g) Simulated wave function. (d),(h)
Residual differences between simulation and experiment after
aberration correction. The scale bar is 0.4 nm.
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provide equally good agreement between experiment and
simulation, for the residual coherent aberrations. This
ambiguity occurs, in general, for periodic objects and is
often overlooked or ignored in the process of numerical
aberration estimation and correction. The measurement of
aberrations shortly before or after the acquisition of
electron holograms is probably the most feasible way to
identify the correct solution, or at least to limit the number
of possible aberration sets. Another possibility to resolve
the ambiguity is to analyze other crystalline structures, or
the same structure at a different zone axis orientation, if this
is available in the same wave function.
The automation of the forward modeling approach

realized in our work allowed us to investigate multiple
smaller areas of the recorded wave function in a reasonable
time. In the present case, we found that many experimental
parameters vary dramatically over the field of view. Beam-
tilt-induced variations of lower-order aberrations may be a
general phenomenon in electron holography experiments
performed using elliptical illumination. Therefore, separat-
ing the field of view into multiple smaller areas may be a
suitable approach for the quantitative analysis of electron
holograms.
The primary requirement for the presented procedure is a

knowledge of the investigated crystal structure. In practice,
known crystal structures can often be found next to a region
of interest. For example, structural defects are often
embedded in pristine volumes of material. By dividing
the image into subregions, the unknown experimental
parameters can be measured in pristine areas and extrapo-
lated to the region of interest. Another possibility would be
to use support materials of known structure, such as
graphene. In such cases, the procedure can be applied to
determine the experimental parameters from regions that
contain the known structure, in order to simplify subsequent
analysis of an unknown structural feature in close proximity.
In summary, we have demonstrated absolute scale

agreement between experimental and simulated electron

wave functions, which is limited only by the experimental

recording noise and potential sample contamination. This

agreement has been achieved by using an innovative

numerical procedure, which exploits all of the information

carried by the complex-valued wave function in an electron

hologram. A particularly important aspect of the procedure

involves automation, which allows statistical analysis of the

robustness of the solution and the analysis of large areas.

By analyzing large areas that are subdivided into multiple

smaller regions, we demonstrated the locality of the

obtained results, finding a clear bending of the investigated

sample. Significant spatial variations of some of the

experimental parameters, such as the coherent aberrations,

were found. This variation is particularly relevant for the

quantification of localized defects, for which inaccurate

aberration correction could lead to incorrect conclusions.

With regard to the limited lifetime of optical states for

atomic resolution TEM, the determination of imaging

parameters directly from experimental images may be

the only practical way to perform fully quantitative analysis

during longer time-resolved experiments.
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