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Large-scale computations in combination with new mathematical analysis tools make studies of

the large-scale patterns, which are termed turbulent superstructures, in extended turbulent con-

vection flows now accessible. Here, we report recent analyses in the Eulerian and Lagrangian

frames of reference that reveal the characteristic spatial and temporal scales of the patterns as a

function of Prandtl number, the dimensionless number which relates momentum to temperature

diffusion in the working fluid.

1 Introduction

Turbulent convection flows in nature that evolve in horizontally extended systems are often

organised in prominent and regular patterns that persist for long times and extend over

scales which are much larger than the typical height scale. Examples are cloud streets in

the atmosphere or granulation patterns at the solar surface. This large-scale order which

we will term turbulent superstructure of convection is observed albeit the flows are highly

turbulent. The patterns appear in turbulent convection flows with very different molecular

dissipation properties. The Prandtl number Pr, which relates the viscosity ν to temperature

diffusivity κ and which is defined as

Pr =
ν

κ
, (1)

is for example very small for most astrophysical applications (Pr ∼ 10−3 or even smaller).

The Prandtl number is of the order one for atmospheric flows (Pr ≈ 0.7) and larger than

one for heat transport in oceans (Pr ≈ 7). Rayleigh-Bénard convection (RBC) is the sim-

plest turbulent convection flow and can be considered as a paradigm for the applications in

atmospheric, geo- and astrophysical systems1, 2. With the steady increase of computational

resources, this large-scale structure formation in turbulent RBC flows is now accessible in

direct numerical simulations (DNS), which resolve all involved scales of turbulence3–6.

In the present work, we discuss our recent numerical studies in such extended RBC

flows. The turbulent superstructures and statistics of the involved turbulence fields will

be investigated in the Eulerian and Lagrangian frames of reference. While the frame of

reference remains at a fixed position to study the space-time evolution of the flow in the

Eulerian view, it is co-moving with fluid parcels in the Lagrangian view. Two points are
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Figure 1. Vertical velocity snapshot taken in the midplane for a low-Prandtl-number convection flow (left) at

Pr = 0.005 and a high-Prandtl-number flow (right) at Pr = 7 both at a Rayleigh number Ra = 105.

reported here in detail. (i) The characteristic spatial and temporal scales of the large-

scale convection patterns are analysed as a function of the Prandtl number Pr at a fixed

Rayleigh number Ra. The latter dimensionless parameter measures the strength of the

thermal driving of the convection flow by means of the applied temperature difference

∆T = Tbottom − Ttop. The Rayleigh number is given by

Ra =
gα∆TH3

νκ
, (2)

with g being the acceleration due to gravity, α the thermal expansion coefficient, and H the

height of the layer. Fig. 1 displays two snapshots of the vertical velocity field component

in the horizontal mid plane between the heating and cooling plates. The Prandtl number

differs by more than three orders of magnitude, from Pr = 0.005 in the left panel to

Pr = 7 in the right one. It is clearly visible that the convective turbulence is significantly

different as Pr changes. In case of Pr = 0.005, RBC is dominated by fluid inertia7–9

while the temperature field is very diffusive. At Pr = 7, the velocity field fluctuations

are much smaller (see colour bars) and the fluid motion is much less vigorous. It can

also be observed that the typical width of the rolls (take the mean distance between blue-

coloured downwellings) varies slightly with Pr. (ii) We also access the large-scale patterns

by a Lagrangian approach. The spatial positions of an ensemble of massless Lagrangian

tracer particles, which are initially seeded and advected in the turbulent flow, are therefore

composed to a graph that is partitioned by a spectral clustering technique and reflects again

the large-scale organisation of convective turbulence.

We solve the three-dimensional equations of motion in the Boussinesq approximation.

They couple the velocity field u(x, t) with the temperature field T (x, t). The equations

are made dimensionless by using the height of the extended layer H , the free-fall velocity

Uf =
√
gα∆TH and the imposed temperature difference ∆T . This implies a natural

convective time unit, the free-fall time Tf = H/Uf . The equations contain the three

control parameters: the Rayleigh number Ra, the Prandtl number Pr and the aspect ratio

Γ = L/H with the cell length L = Lx = Ly that is set to values of L = 16 or 25
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Figure 2. Turbulent superstructures in extended turbulent Rayleigh-Bénard convection flows which are obtained

by time averaging. The top row shows the time-averaged temperature field in the mid plane between the cold

and hot plates, z = H/2, and the bottom row shows the time-averaged velocity field (streamlines viewed from

below). The Prandtl number grows from left to right: Pr = 0.005 (sodium), 0.021 (mercury), 0.7 (air) and 7

(water).

throughout the work. The coupled equations are given by

∇ · u = 0 , (3)

∂u

∂t
+ (u ·∇)u = −∇p+

√

Pr

Ra
∇

2
u+ Tez , (4)

∂T

∂t
+ (u ·∇)T =

1√
RaPr

∇
2T . (5)

No-slip boundary conditions for the fluid are applied at all walls, i.e., ui = 0. The side

walls are thermally insulated, i.e., ∂T/∂n = 0 with n being the normal direction. At the

top and bottom a constant dimensionless temperature of T = 0 and 1 is maintained, re-

spectively. The equations are numerically solved by the Nek5000 spectral element method

package10, 11. The production jobs required up to 65,536 MPI tasks. Each of the Np mass-

less Lagrangian tracer particles is advanced corresponding to

dXi

dt
= u(Xi, t) , (6)

with i = 1 . . . Np. The Lagrangian particles are advected by a 3-step explicit Adams-

Bashforth scheme. The interpolation of the velocity field to the particle position is done

spectrally.

2 Eulerian Analysis of Turbulent Superstructures

We start with a statistical analysis of the convection flow in the Eulerian frame of reference.

Fig. 2 displays time-averaged convection flows at different Prandtl number. All streamline

plots in the bottom row of the figure reveal clearly patterns of circulation rolls and cells that
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fill the whole layer reminiscent to patterns at onset of convection at much smaller Rayleigh

number6. They are connected with hotter and cooler ridges of up- and downwelling fluid in

the top row figures. We note that these patterns – the turbulent superstructures of convec-

tion – are obtained at a Rayleigh number Ra = 105 for all Prandtl numbers and for both

fields: the very small ones at Pr = 0.005 and 0.021 in which RBC is dominated by fluid

inertia7–9 (similar to classical Kolmogorov turbulence) and for the highest one at Pr = 7
where velocity field fluctuations are smaller (see also Fig. 1 again). For all cases the flow

is fully chaotic and time-dependent.

The time average, which is conducted for a time period τ ∼ 101 – 102Tf with

Tf = H/Uf being the free-fall time unit, generates coarse-grained temperature and ve-

locity fields. On the one hand, this time τ has to be long enough to remove small-scale

fluctuations and to reveal the superstructures (see again Fig. 2). On the other hand, τ has to

be short enough such that the large-scale patterns are not removed completely. The slow-

est time scale in the turbulent flow is a vertical dissipation time Td = max(tκ, tν) with

tκ = H2/κ and tν = H2/ν, neglecting here the even longer horizontal dissipation time,

Γ2Td. Thus Tf ≪ τ ≪ Td with τ being the time scale that separates the fast small-scale

dynamics from the gradual variation of the superstructures. This suggests the following

Reynolds-type decomposition of the RBC fields inspired by Ref. 13–15

ui(x; t, τ) = Ui(x; τ) + u′

i(x, t) , (7)

θ(x; t, τ) = Θ(x; τ) + θ′(x, t) , (8)

where θ is the temperature deviation from the linear diffusion profile Tlin, θ(x, t) =
T (x, t)− Tlin(z), and the slow fields are given by

Ui(x, y, z, τ) =
1

τ

∫ τ/2

−τ/2

ui(x, y, z; t
′, τ) dt′ , (9)

Θ(x, y, z, τ) =
1

τ

∫ τ/2

−τ/2

θ(x, y, z; t′, τ) dt′ . (10)
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Figure 3. Typical scales of turbulent superstructures obtained by Fourier analysis. Left: time- and azimuthally

averaged power spectra EU (k) and EΘ(k). Data are for Ra = 105 and Pr = 0.7. A corresponding typical

wavelength is found from the maximum wavenumber of each of the spectra. Right: Typical wavelengths, λU and

λΘ, versus Prandtl number. The Rayleigh number is kept constant at a value of Ra = 105.
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The subsequent superstructure analysis will focus on the symmetry plane at z = 1/2
(which is equivalent with an averaging over height). We will consider mostly

Θ(x, y, z = 1/2, τ) and Uz(x, y, z = 1/2, τ). Both fields are transformed into Fourier

space giving Ûz(k, kφ, τ) and Θ̂(k, kφ, τ). Azimuthally averaged Fourier spectra follow

as

Eω(k, τ) =
1

2π

∫ 2π

0

|ω̂(k, kφ, τ)|2 dkφ , (11)

with ω = {U,Θ} and ω̂ = {Û , Θ̂}. We use the simplified notation U = Uz and Û = Ûz ,

respectively. All spectra show a global maximum and a sliding time average yields a

unique maximum wavenumber k∗U,Θ = 2π/λU,Θ which depends on Rayleigh and Prandtl

numbers3. The wavelength λU,Θ(Ra, Pr)/2 is thus considered as a typical mean width of

the superstructure rolls. Fig. 3 summarises the results for data at different Prandtl num-

ber and Ra = 105. It is seen that wavelengths are larger than the critical wavelength

λc = 2π/kc ≈ 2 at the onset of Rayleigh-Bénard convection at Rac = 1708. Further-

more, it is observed that the wavelength grows with Pr at fixed Ra. Interestingly, the

figure shows also that λΘ & λU in some cases. At the onset of convection, both wave-

lengths are exactly the same since both fields are perfectly synchronised in the mid plane.

Hot fluid is advected upwards (θ, uz > 0) while cold fluid is brought down (θ, uz < 0).

This perfect synchronicity breaks down with increasing Ra since the temperature field is

also stirred by horizontal velocity fluctuations which “ inflates ” the temperature patterns

compared to the vertical velocity.

A typical time scale of the evolution of the large-scale patterns or superstructures in

our flow should be connected with a looping (or turnover) time that a fluid parcel takes in

one of the rolls that we displayed in the bottom row of Fig. 2. One can estimate this time

scale by the ellipsoidal circumference, ℓ ≈ π(a + b) with a and b being the half-axes and

root mean square velocity urms. The looping time is given by

Tloop =
ℓ

urms
=

π
(

1

4
λU + 1

2
H
)

〈u2
i 〉

1/2
V,t

, (12)

We detect Tloop = 7, 9, 19 and 64Tf for the simulations at Pr = 0.005, 0.021, 0.7 and

7. The typical averaging time scale, τ(Ra, Pr), to reveal the superstructure patterns and

to study their gradual dynamical evolution, should be a few multiples of Tloop. We took

τ = 3Tloop to obtain the patterns in Fig. 2.

3 Spectral Clustering of a Lagrangian Particle Graph

Only a few numerical studies of turbulent convection in the Lagrangian frame of refer-

ence exist currently although they gave useful insights on the local turbulent heat transfer

mechanisms16–18. For large-aspect ratio flows, such studies are missing completely which

provides further motivation for the present work. Our first investigations in this direction

are currently conducted in a slightly smaller convection cell at an aspect ratio Γ = 16 at

Ra = 105 and Pr = 0.7. Fig. 4 illustrates the evolution of the Lagrangian tracer particle

ensemble in the top row, while displaying a sequence of temperature contour plots at the

mid plane in the bottom row. The temperature contours result from an accumulated time

averaging as the flow and the tracer ensemble advance in time. All Lagrangian tracers
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Figure 4. Lagrangian particle ensemble evolution (viewed from the top) in the upper row at Pr = 0.7 and

Rayleigh number Ra = 105. Red coloured tracers in the top panels carry locally more heat than 1.5×Nu. Blue

coloured tracers are below this threshold. The bottom row displays contour plots of the temperature in the mid

plane which are successively longer averaged in time (from left to right) as the tracer ensemble gets advected in

time. Thus finer contours are smeared out and the large-scale superstructure pattern become more clearly visible.

Time instants in each of the three columns are the same, 1.3, 5.2 and 10.5 Tf . Here, Np = 65, 536.

were initially seeded on a uniform x-y grid very close to the bottom plate of the convection

cell. The tracers start to form a complex pattern: while most of them are rising they cluster

in the form of ridges that carry most of the heat from the bottom to the top (coloured in

red in the figure). In the mid column the tracer distribution agrees well with the Eulerian

temperature field superstructure which appears when the fluctuations are removed. Most

of the heat, again indicated by the red ridges, is carried upwards where the temperature

shows (consistently) local maxima in form of white contour ridges. If one would have

started tracer advection in a plane close to the top plate, Lagrangian tracers would have

accumulated in the local temperature minima (dark valleys). At later stages the correlation

between Lagrangian tracer pattern and Eulerian superstructure decays due to turbulent dis-

persion of neighbouring trajectories. This effect becomes particularly strong when the top

and bottom plates are reached by the Lagrangian tracers.

For a quantitative Lagrangian analysis we employ a spectral clustering approach to the

trajectories of the Np = 65, 536 tracer particles19–21. We fix a scale to a value ǫ = 1/8
for this data set, which corresponds to the thermal boundary thickness δT = 1/(2Nu),
where Nu is the dimensionless Nusselt number quantifying the global mean turbulent heat

transport in the convection domain. This scale ǫ ≈ δT is also a measure of the thickness of

thermal plume, the typical coherent structures in turbulent convection. We set up a network

with the particle trajectories as nodes and link two nodes if the respective trajectories stay

ǫ-close on average21. In addition, the links are weighted by 1/dij , where dij is the time

426



Figure 5. Clusters of Lagrangian particle trajectories that move in a coherent manner. A spectral approach fol-

lowed by k-means clustering on the dominant eigenvectors results in the identification of k = 14 clusters in this

case that are correlated with the corresponding temperature profiles in Fig. 4. Time instants are also the same as

in Fig. 4.

averaged Eulerian distance between mutual trajectories i and j19. Thus, the network is

described by a symmetric adjacency matrix A ∈ R
Np,Np . The non-normalised graph

Laplacian is formed by L = D−A, where D is the degree matrix (a diagonal matrix with

Dii =
∑Np

j=1
Aij , i = 1, . . . , Np). A generalised eigenvalue problem

Lv = λDv, (13)

with eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λNp
and eigenvectors vi, i = 1, . . . , Np solves

a balanced cut graph partitioning problem22. In particular, from the eigenvectors of the

k smallest magnitude eigenvalues, where k is determined by a spectral gap heuristics, a

k-clustering can be obtained, e.g. via a standard k-means algorithm. In our context, the

clusters obtained in this way correspond to bundles of trajectories, where trajectories within

a cluster are tightly coupled, but only loosely coupled to other trajectories outside.

In Fig. 5 we show preliminary results of this procedure for the trajectory data of Fig. 4.

The k = 14 extracted clusters (viewed from top) appear to align with the superstructures

visible in the temperature contours in Fig. 4 (bottom row). We can also see that this analysis

divides the rolls additionally into segments thus suggesting a cellular substructure. A more

detailed study taking also into account longer time spans, will require different metrics to

define distances between trajectories as well as a particle ensemble that is seeded uniformly

in the whole box.

4 Summary and Outlook

In this article, we have discussed some aspects of turbulent superstructures in horizon-

tally extended turbulent convection flows from both Eulerian and Lagrangian points of

view. These structures represent a large-scale organisation of turbulent flows which can be

studied now in large-scale computations. The typical spatial and temporal scales of these

structures have been determined by a Fourier spectral analysis. The circulation rolls that

compose the superstructure patterns are found to grow in their horizontal extension when

the Prandtl number is increased. The same holds for a typical time scale that is related

with these patterns, the looping time of a fluid parcel inside a circulation roll. Besides a

variation of the Prandtl number at constant Rayleigh number, it would also be interesting

to see how the typical scales vary when the Rayleigh number is increased.
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A spectral analysis of a graph which is built from Lagrangian tracer trajectories reveals

regions of strong spatial correlation. They are found to coincide well with the superstruc-

ture patterns. In the future, we will analyse in more detail how the trajectory clusters are

related to the local turbulent heat transfer. These studies are currently under way and will

be reported elsewhere.
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