000845769 001__ 845769
000845769 005__ 20240711101551.0
000845769 0247_ $$2doi$$a10.1016/j.electacta.2018.04.154
000845769 0247_ $$2ISSN$$a0013-4686
000845769 0247_ $$2ISSN$$a1873-3859
000845769 0247_ $$2WOS$$aWOS:000433582000034
000845769 0247_ $$2altmetric$$aaltmetric:42059542
000845769 037__ $$aFZJ-2018-02978
000845769 082__ $$a540
000845769 1001_ $$0P:(DE-Juel1)151295$$aRakousky, Christoph$$b0
000845769 245__ $$aThe stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers
000845769 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000845769 3367_ $$2DRIVER$$aarticle
000845769 3367_ $$2DataCite$$aOutput Types/Journal article
000845769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1526395688_6520
000845769 3367_ $$2BibTeX$$aARTICLE
000845769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845769 3367_ $$00$$2EndNote$$aJournal Article
000845769 520__ $$aThe investment costs for polymer electrolyte membrane (PEM) water electrolysis can be reduced if systems are operated at elevated current densities. However, it remains unknown how this affects long-term stability. In this study, we elucidate the durability and degradation phenomena that occur in our test cells at high (2 A cm−2) and elevated (up to 3 A cm−2) current densities during constant and intermittent operation. Up to 2 A cm−2, stable cell performance was achieved under both regime. At elevated current densities, two primary factors caused performance degradation, namely the increase in ohmic cell resistance and the appearance of mass-transport resistance, both of which contribute to the voltage increase in equal measures. By varying the way in which the cell is assembled, it was found that both effects relate to the anti-corrosion coating of the titanium porous transport layer (PTL), which was stable at 2 A cm−2 but detached at certain points and adhered to the anodic side of the catalyst-coated membrane (CCM) under operation at elevated current densities. The results of this study indicate that PEM water electrolyzers can be coupled to intermittent power profiles from renewable energy sources without substantially affecting long-term stability.
000845769 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000845769 588__ $$aDataset connected to CrossRef
000845769 7001_ $$0P:(DE-Juel1)172827$$aKeeley, Gareth$$b1$$ufzj
000845769 7001_ $$0P:(DE-Juel1)129946$$aWippermann, Klaus$$b2$$ufzj
000845769 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b3$$eCorresponding author$$ufzj
000845769 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4$$ufzj
000845769 773__ $$0PERI:(DE-600)1483548-4$$a10.1016/j.electacta.2018.04.154$$gVol. 278, p. 324 - 331$$p324 - 331$$tElectrochimica acta$$v278$$x0013-4686$$y2018
000845769 8564_ $$uhttps://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.pdf$$yRestricted
000845769 8564_ $$uhttps://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.gif?subformat=icon$$xicon$$yRestricted
000845769 8564_ $$uhttps://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845769 8564_ $$uhttps://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845769 8564_ $$uhttps://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845769 8564_ $$uhttps://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845769 909CO $$ooai:juser.fz-juelich.de:845769$$pVDB
000845769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172827$$aForschungszentrum Jülich$$b1$$kFZJ
000845769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129946$$aForschungszentrum Jülich$$b2$$kFZJ
000845769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b3$$kFZJ
000845769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000845769 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b4$$kRWTH
000845769 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000845769 9141_ $$y2018
000845769 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bELECTROCHIM ACTA : 2015
000845769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845769 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845769 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845769 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845769 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845769 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845769 920__ $$lyes
000845769 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000845769 980__ $$ajournal
000845769 980__ $$aVDB
000845769 980__ $$aI:(DE-Juel1)IEK-3-20101013
000845769 980__ $$aUNRESTRICTED
000845769 981__ $$aI:(DE-Juel1)ICE-2-20101013