001     845769
005     20240711101551.0
024 7 _ |a 10.1016/j.electacta.2018.04.154
|2 doi
024 7 _ |a 0013-4686
|2 ISSN
024 7 _ |a 1873-3859
|2 ISSN
024 7 _ |a WOS:000433582000034
|2 WOS
024 7 _ |a altmetric:42059542
|2 altmetric
037 _ _ |a FZJ-2018-02978
082 _ _ |a 540
100 1 _ |a Rakousky, Christoph
|0 P:(DE-Juel1)151295
|b 0
245 _ _ |a The stability challenge on the pathway to high-current-density polymer electrolyte membrane water electrolyzers
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1526395688_6520
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The investment costs for polymer electrolyte membrane (PEM) water electrolysis can be reduced if systems are operated at elevated current densities. However, it remains unknown how this affects long-term stability. In this study, we elucidate the durability and degradation phenomena that occur in our test cells at high (2 A cm−2) and elevated (up to 3 A cm−2) current densities during constant and intermittent operation. Up to 2 A cm−2, stable cell performance was achieved under both regime. At elevated current densities, two primary factors caused performance degradation, namely the increase in ohmic cell resistance and the appearance of mass-transport resistance, both of which contribute to the voltage increase in equal measures. By varying the way in which the cell is assembled, it was found that both effects relate to the anti-corrosion coating of the titanium porous transport layer (PTL), which was stable at 2 A cm−2 but detached at certain points and adhered to the anodic side of the catalyst-coated membrane (CCM) under operation at elevated current densities. The results of this study indicate that PEM water electrolyzers can be coupled to intermittent power profiles from renewable energy sources without substantially affecting long-term stability.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Keeley, Gareth
|0 P:(DE-Juel1)172827
|b 1
|u fzj
700 1 _ |a Wippermann, Klaus
|0 P:(DE-Juel1)129946
|b 2
|u fzj
700 1 _ |a Carmo, Marcelo
|0 P:(DE-Juel1)145276
|b 3
|e Corresponding author
|u fzj
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 4
|u fzj
773 _ _ |a 10.1016/j.electacta.2018.04.154
|g Vol. 278, p. 324 - 331
|0 PERI:(DE-600)1483548-4
|p 324 - 331
|t Electrochimica acta
|v 278
|y 2018
|x 0013-4686
856 4 _ |u https://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845769/files/1-s2.0-S0013468618309150-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:845769
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)172827
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129946
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145276
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 4
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ELECTROCHIM ACTA : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21