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The John von Neumann Institute for Computing (NIC) was established in 1998 by Forschungs-

zentrum Jülich and Deutsches Elektronen-Synchrotron DESY to support the supercomputer- 

oriented simulation sciences. In 2006, GSI Helmholtzzentrum für Schwerionenforschung joined 

NIC as a contract partner.

The core task of NIC is the peer-reviewed allocation of supercomputing resources to computational  

science projects in Germany and Europe. The NIC partners also support supercomputer-aided 
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between particle-based and continuum-based descriptions of materials. 
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Preface
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Godehard Sutmann
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E-mail: g.sutmann@fz-juelich.de

Roland G. Winkler

Institute of Complex Systems and Institute for Advanced Simulation,

Forschungszentrum Jülich, 52425 Jülich, Germany

E-mail: r.winkler@fz-juelich.de

The research groups of the John von Neumann Institute for Computing (NIC) regularly

conduct workshops on leading-edge subjects in computational physics. In this tradition,

the Computational Materials Physics Group organized a workshop on Hybrid Particle-

Continuum Methods jointly with the Institute of Advanced Simulation on March 4–7,

2013 at the Forschungszentrum Jülich. The goal of the workshop was to foster the

exchange of ideas between the communities working on complex fluids and complex

solids. Particular emphasis was placed on continuum-mediated interactions between

particles as well as on the adaptive and non-adaptive coupling between particle-based and

continuum-based descriptions of materials.

This proceedings volume collects selected invited and contributed presentations of the

workshop. It covers subjects from modelling of hydrodynamic interactions between parti-

cles in complex fluids or environments, through coarse-grained descriptions of biological

systems, to the coupling of atomically represented regions with various continuum-based

theories for fluids and solids. Special aspects are long-time-scale properties of systems

with slow collective dynamics, the development of efficient adaptive resolution algorithms,

and the coupling of quantum-mechanically treated regions with continuum descriptions.

In the preparation of the workshop, the editors stimulated the authors of the proceedings

to provide a pedagogical introduction to their field of expertise and to the methods used in

addition to the overview of their results. We hope that readers of this volume agree that

this goal has been achieved.

Besides the editors, Martina Kamps, Britta Hoßfeld, and Elke Bielitza at Forschungszen-

trum Jülich as well as Erik Luijten (Northwestern University) helped in organizing the

workshop.

Jülich, March 2013

Martin H. Müser Godehard Sutmann Roland G. Winkler
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Coupling Molecular Dynamics to a

“Continuum” Mesh Background

Colin Denniston1, Frances E. Mackay1, and Santtu T. T. Ollila1,2

1 Department of Applied Mathematics, University of Western Ontario,

London, ON, N6A 5B7, Canada

E-mail: {cdennist, fmackay}@uwo.ca

2 Department of Applied Physics, Aalto University School of Science and Technology,

P.O. Box 11000, FIN-00076 Aalto, Espoo, Finland

E-mail: santtu.ollila@aalto.fi

We review different schemes to couple molecular dynamics simulations to a continuum fluid

solvent represented on a discrete regular mesh. In particular, we look at stress coupling and

velocity-dependent force coupling methods.

1 Introduction

Traditional modelling techniques fall into two broad classes: particle-based methods and

continuum models. The prototypical particle method, molecular dynamics (MD), solves

Newton’s equations of motion for each particle, typically an atom or molecule. The par-

ticles interact with each other using forces derived from either ab initio techniques (us-

ing quantum mechanics) or phenomenological principles (force fields chosen so that they

reproduce known behaviour). In order to use MD for simulating colloidal particles im-

mersed in a solvent, for every colloidal particle one would need at least 100-1000 solvent

molecules depending on how tightly packed the particles are (a large distance between

colloids means that space needs to be filled with solvent molecules). Hence, to simulate

several thousand colloids in solution, still a tiny block of material, one would need to track

more than a million entities (colloids plus solvent molecules) in the molecular dynamics

simulations. Using large-scale parallel computer computations, it is possible to do such a

simulation, but only for time scales up to one nano-second (in real-time, the actual simula-

tion would take days to run). The problem is that if hydrodynamic effects are fundamental

to the problem one wishes to study, the dynamics are expected to occur on time scales

of microseconds to milliseconds, thousands of times longer than the longest molecular

dynamics simulation possible.

Continuum hydrodynamic models also have difficulty with this type of problem. In

the continuum description, we average over large regions of solvent, allowing modelling

on much larger length and time scales. However, if we wish to model a colloidal particle

in a solvent, we must treat the particle surface as a moving boundary and must be able

to resolve the particle shape with the mesh used for the continuum model. While we can

coarse grain the mesh somewhat between the colloids, we still end up with millions of

mesh nodes. Further, these nodes must be constantly rearranged because the boundaries

(the particles) are moving. This limits a typical simulation to small numbers of colloids;

however, one can typically simulate their dynamics on hydrodynamic time scales.
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Attempts have been made to merge aspects of molecular dynamics and continuum

models. In the simplest of these types of models, the solvent is present only in an effective

interaction between the colloids, which are usually modelled as point particles1. However,

these implicit solvent models still rely on Brownian dynamics, not hydrodynamics. Other

than a Stokes drag force, hydrodynamics are not present in these models. Such models are

incapable of reproducing many effects seen in experiments. This is most likely due to their

inability to capture the local pressure gradients changes that result from colloids displacing

the fluid solvent under confinement. For this, the hydrodynamic effects of the solvent must

be present in the model.

In this paper we review methods for simulating discrete particles, or extended objects,

interacting with a fluid that is simulated on a mesh. In Sec. 2, we look at how forces are

transmitted from a fluid to a solid immersed in the fluid both in the continuum case and in a

discretized representation of the continuum. An examination of how a velocity-based force

coupling between the particles and fluid can be used to generate consistent and conservative

forces in a discrete-time simulation is done in Sec. 3. Finally in Sec. 4, we discuss how the

volume of an object can be kept fixed during the course of such a simulation.

2 Forces on Objects in a Fluid

At the continuum level, the fluid motion is governed by the continuity and Navier-Stokes

equations,

∂tρ+ ∂β (ρuβ) = 0

∂t (ρuα) + ∂β (ρuαuβ) = ∂βσαβ + Fα, (1)

where ρ is the fluid density, uα is the velocity, Fα is a local external force, and the total

stress tensor σαβ is

σαβ = −Pαβ + ηαβγν∂γuν , (2)

where the viscosity tensor is typically of the form

ηαβγν = η

[
δαγδβν + δανδβγ − 2

3
δαβδγν

]
+ Λδαβδγν . (3)

Here, η represents the shear viscosity, and Λ, the bulk viscosity. For simple fluids,

Pαβ = −ρa0δαβ , where a0 represents the square of the isothermal speed of sound in the

fluid.

The boundary conditions for a fluid are commonly specified as a “no-slip” condition

for the velocity at the bounding surface, in addition to the obvious “no-flow” through the

surface. While this is almost always a very good assumption at the macroscopic scale,

there is often some microscopic slip and possibly even some driving if there is a gradi-

ent of the surface energy. At the microscopic scale, the velocity normal to the surface is

indeed always zero assuming it is an impenetrable surface. However, the tangential veloc-

ity will typically only relax to the value specified by the macroscopic boundary condition

in a steady-state situation (which normally still occurs very quickly in the vicinity of the

boundary). The boundary condition at a fluid boundary may also be specified by a con-

dition on the stress, which may be more general than a condition on the velocity. In the

next subsection we discuss the usual conditions used for sharp interfaces in a continuum

2



inside

outside

n̂

Figure 1. Left: Sharp interface in a continuum fluid. Right: Grid representation from a stencil used to interpolate

a set of surface nodes on a circle. The result is a fuzzy interface interpolated onto a fluid mesh.

fluid and then go on to discuss how this translates to a more diffuse interface on a fluid

simulation mesh.

2.1 Sharp Interface in a Continuum Fluid

Consider a particle in a fluid like the one in Fig. 1 (left). If the interface between the fluid

and particle is sharp, the local force that the fluid outside exerts on the particle is

dFα = nβσαβdS, (4)

where n is a unit normal pointing out, σαβ is the total stress tensor in the fluid (including

hydrostatic pressure and viscous stresses) and is measured just outside the surface, and dS
is a surface element. If we neglect elastic forces at the interface (such as surface tension)

then force balance at the interface would dictate that nβ(σo,αβ − σi,αβ) = 0, where o and

i indicate the outside and inside respectively. If we account for elastic properties of the

interface in terms of a surface tension s, then we have the more general expression2

nβ(σo,αβ − σi,αβ) = s

(
1

R1
+

1

R2

)
+ ∂αs, (5)

where R1 and R2 are the local principal radii of curvature of the surface. The first term

on the right-hand side is the Laplace pressure term and the second term is the Marangoni

force. We see that generally this means that the total stress is not necessarily continuous

across a sharp interface. In the most common situation, the Laplace term results in a jump

in the pressure from inside to outside and the Marangoni force results in a jump in the shear

stress at the interface (assuming σαβ = −pδαβ + σ′
αβ , where p is the pressure and σ′ is

the viscous stress).

Sometimes it is useful to have the interface represented as a set of boundary conditions

for the fluid velocity instead of as a force at the interface. This is typically the case for

a solid-fluid interface, rather than an interface between two fluids. In this case, one can

3



obtain the boundary condition for tangential flow3

(uα − vα)tα =
Ls

η
σαβnβtα +

LM

η
tα∂αs, (6)

where u is the fluid velocity at the interface, v is the velocity of the solid, and tα is any

vector normal to n. The slip length Ls and Marangoni length LM are material parameters

that characterize the interface. They are typically microscopic length scales (thus the con-

ventional approximation of no-slip, or Ls = 0). Note that inherent in the sharp interface

model is that the boundary conditions depend only on the instantaneous values of the con-

tinuum solution extrapolated to the boundary. The relaxation time for the velocity to attain

these values can be characterized by an interfacial Reynolds number Rei ≡ ρξδu/η where

ξ is the true microscopic interface width and δu is the difference in the velocity at the wall

and just outside the interfacial region. As ξ is microscopic, Rei is typically extremely and

hence the “steady-state” assumption at the interface is reasonably justified.

2.2 Fuzzy Interface on a Mesh

Consider now a fluid simulated on a discrete mesh. The fluid could be simulated by any

of a number of methods, such as a finite-difference scheme, a spectral scheme, or a lattice

Boltzmann scheme. We will assume that the mesh on which the fluid is simulated has cells

of equal sizes, all of which are cubes, similar to the grid in the right hand side of Fig. 1,

pictured in two-dimensions for clarity.

The object immersed in the fluid is also discretized and is represented by a series of

nodes on its surface (surface nodes, fluid mesh). The surface nodes typically do not coin-

cide with the fluid mesh and are commonly arranged as a triangulation of the surface. The

surface nodes need to be spaced at distances closer than the spacing of the fluid mesh ∆x
in order to be able to construct an “impenetrable” surface, although spacings much less

than ∆x would be inefficient and should be avoided.

In order to interact with the fluid, we need to interpolate quantities such as the density

ρ, velocity ui, and/or the stress σαβ to the surface, and the surface location and local ve-

locity v onto the fluid mesh. This is accomplished for each node, labelled by the index i
and located at (xi, yi, zi), by assigning weights ξαi = φi(xα)φi(yα)φi(zα), which satisfy

Σiξαi = 1, to the nearby fluid mesh sites, labelled α and located at (xα, yα, zα), based

on the distance between the site and the particle node. These weights can then be used to

perform a weighted sum of, say, the fluid velocity at the nearby sites, to obtain an inter-

polated fluid velocity at the surface node. Conversely, any force we apply to the surface

node due to its interaction with the fluid can, using Newton’s third law dictating equal and

opposite forces, be transmitted back onto the fluid weighted by ξαi. We describe two such

interpolation schemes. The first, which we refer to as the trilinear stencil, assigns weights

to each of the 8 nearest grid points according to

φj(rα) = 1− |∆r|, (7)

where |∆r| corresponds to the scalar absolute value of ∆r = (rα − rj) /∆x. Here, rα
gives the position of the grid point, ri is the position of the particle node, and ∆x is

the lattice spacing. The second method we have implemented is based on the immersed

boundary method4, 5. Here, a smoothing kernel is used to spread the influence of a point
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particle to a compact support. For this, we use a 4-point approximation to the Dirac delta

function, providing a support of 64 grid points, with grid weights given by6

φj(rα) =





1
8 (3− 2∆r +

√
1 + 4∆r − 4∆r2), 0 < ∆r < 1;

1
8 (5− 2∆r −

√
−7 + 12∆r − 4∆r2), 1 < ∆r < 2;

0, 2 < ∆r.

(8)

The inevitable result of the interpolation stencil is that the interface is spread out onto

the fluid mesh (see right-side of Fig. 1). As a result, any force transmitted from the surface

to the fluid will also be spread out over a similar area. This broadening of the interface

results in the discontinuities in the stress expected from Eq. 5 also becoming diffuse. As a

result, if we want to use Eq. 4 to compute the force on the surface from the fluid we need to

be at the outer edge of the surface, so step out one mesh unit, ∆x, along the surface normal,

to the outer dashed line shown in Fig. 1. While this can be done7, it is a bit cumbersome

and worthwhile only if there are forces associated with other degrees of freedom such as

those associated with a structured fluid. In a simple fluid it is usually easier to use a force

coupling associated with an effective boundary condition for the fluid velocity, something

we discuss in detail in the next section.

3 Velocity Coupling

3.1 Continuous Time

A concrete example for which analytic results are available is the case of the objects in the

fluid being spheres. If an impenetrable sphere of radius a is moving at a constant speed

v relative to the background fluid (or, more precisely, relative to a fluid that is at rest an

infinite distance from the particle) and has no-slip boundary conditions it experiences a

drag force of

FS = −6πηav, (9)

as long as v ≡ |v| is relatively small. If the sphere is in a shear flow, but kept from rotating,

it experiences a drag torque of

TS = 4πηa3s0ŵ, (10)

where s0 is the shear rate and ŵ is a unit vector normal to the shear plane. These ex-

pressions give us the “Stokes” drag that can be used to verify the accuracy of numerical

implementations.

Based on the idea that the total drag force on a sphere is proportional to its velocity

relative to the fluid background, people have tried8 a local force coupling between the

surface and fluid of the form

F = ±λγ(v − u) (11)

where instead of the far-field velocity, the local velocity of the fluid u is substituted (+ sign

for force of particle on fluid and − for force of fluid on particle), and λ is the density of

nodes on the surface of the sphere. The result is that in this case γ bears little relation

to the Stokes drag. In fact, Navier-Stokes equations with this sort of coupling, called the
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Brinkman equations, have been studied in detail8 and it is possible to show9, that the drag

force and torque felt by such a particle, for large γ, is

F

FS
=

2β2

2β2 + 9
, (12)

T

TS
=

β2

β2 + 9
, (13)

where β = a
√

γλ
η . We can then see that as γ → ∞, F/FS → 1 − 9/(2β2) so that the

approach to Stokes drag (and torque) go like 1/γ for large γ. As a result, if we want to use

Eq. 11 as a force coupling for no-slip particles, we will need to use a large value of γ. Thus,

the main disadvantage to using Eq. 11 in a simulation is that it can effectively introduce stiff

terms that are likely to cause numerical instabilities. This leads to the temptation to use a

small value of γ for ease of computation, and make the particle’s “hydrodynamic” radius an

effective derived quantity. Unfortunately, this will lead to numerous inconsistencies10. For

example, the drag force and torque depend on the particle radius in very different ways (cf.

Eq. 11 and 10) so using these expressions, along with Eq. 13 give very different predictions

for an effective hydrodynamic radius at finite γ. For very small particles where thermal

fluctuations are important, there will also be a different prediction for the hydrodynamic

radius from the diffusion coefficient. However, small γ also causes problems in the regime

where there are thermal fluctuations due to dissipation.

As we noted above, the approach to Stokes drag, and hence v − u ∝ 1/γ for large γ.

To see how much dissipation this causes, consider the power output from this force alone

(i.e. not counting any dissipation in the fluid):

P ∼ F · v − F · u ∼ γ(v − u)2 ∝ 1/γ, (14)

where the last relation is valid in the large γ limit. As a result we see that this coupling

results in no dissipation for γ = 0 (no coupling) and for γ = ∞, but finite dissipation

otherwise. In a fluid with thermal fluctuations, the first case clearly corresponds to the

particle velocity and the fluid velocity to be statistically independent variables with both u,

v, and v − u being Gaussian random variables with variance ∼ kBT . The other extreme,

γ → ∞ corresponds to a constraint that v and u are identical and v − u = 0 so that some

degrees of freedom have been removed from the system. It is clear that γ = ∞ is not

practical for a simulation. For finite γ there is dissipation so that, in principle, one might

think you should add fluctuations to satisfy the fluctuation-dissipation theorem. However,

doing this will keep v and u statistically independent and 〈(v − u)2〉 ∼ kBT . If you

are modelling a point particle, this may be a reasonable assumption. However, if you are

trying to model an impenetrable surface, this is not at all what you want. This brings up the

question of whether you can make γ “big enough” so that the dissipation is minimized and

is small compared to the typical thermal fluctuations in the fluid. To consider how large γ
needs to be, first note that it has units of mass per time. So, given an appropriate mass scale,

γ gives us a time scale over which v − u → 0. As most of the dissipation will also occur

during this same time scale, this suggests that if this time scale is comparable to the time

step of the simulation, the dissipation occurs in a shorter time scale than resolved in the

simulation. In fact, as we will see next, it is actually possible to eliminate the dissipation

entirely in a discrete time simulation.

6



3.2 Discrete Time

If we consider the simulation process as a sequence of discrete events, separated in time by

∆t, then we can view the interaction of the nodes making up a particle and the fluid mesh

as an instantaneous collision11. A node has an assigned mass mv and moves with velocity

v. Each tile of the fluid mesh has a mass ρ∆x3 and we can use the same stencil weights to

determine the total mass of fluid interacting with each surface node, mu and the velocity

of the fluid interpolated at the site of the surface node u. Then, conservation of momentum

requires that

muui +mvvi = muuf +mvvf , (15)

where i and f indicate the initial and final states (before/after collision). This, combined

with the conservation of kinetic energy, then requires that

|vi − ui| = |vf − uf |. (16)

We require two more conditions to determine all components of vf and uf . If we are

modelling an impenetrable surface, it makes sense to add the bounce condition that

n̂ · (vi − ui) = −n̂ · (vf − uf ). (17)

Similarly, no-slip can be imposed via

[(vi − ui)− n̂ · (vi − ui)] = − [(vf − uf )− n̂ · (vf − uf )] . (18)

Complete slip (Ls → ∞) can also be easily implemented by changing the sign on the right-

hand side. A finite slip length would be harder to implement and would probably require a

stochastic rotation of the tangential relative velocity (the magnitude of the tangential rela-

tive velocity is fixed by the conservation of energy and impenetrability constraints above).

For the no-slip case, the resulting change in momentum for the collision can be written

as

∆pnode = mv(vf − vi) = − 2mumv

mu +mv
(vi − ui), (19)

∆pfluid = mu(uf − ui) =
2mumv

mu +mv
(vi − ui). (20)

Note that in a discrete time simulation, there is no difference between imparting this change

in momentum instantaneously or via a force of the form F = ∆p/∆t as the momentum

transferred over the time ∆t will be just F∆t. Thus in a discrete time simulation, having a

force of the form in Eq. 11 with

γ =
2mumv

mu +mv

1

∆tcollision
, (21)

will result in energy conservation (at least no dissipation from the force coupling although

there may still be dissipation within the fluid itself).

There are various tests that can be performed to verify that these conditions result in

the desired behaviour. The most obvious are tests of relations Eq. 10 and 11. There are also

several other tests that have been used11 involving hydrodynamic interactions with walls,

with other particles, and tests of the fluctuation-dissipation theorem for small particles

undergoing Brownian motion in a fluid with thermal fluctuations.
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4 Constant Volume

In addition, if the surface is deformable, by connecting the nodes with springs, one of-

ten requires that the nodes maintain a constant particle volume, V , (the area enclosed by

the node-spring surface) throughout the simulations. While a numerically exact no-flow

boundary condition would make the surface impenetrable and thus conserve volume au-

tomatically, the conditions above are not numerically exact and so the volume can drift

slowly over time. To fix this, a volume constraint force can be introduced, corresponding

to the energy,

Evolume =
1

2
(V − V0)

2, (22)

where V0 is the starting volume of the colloidal particles. Since at each timestep only

information about the locations of the surface nodes is available, we employ the method of

Hong et al.12 in order to calculate the volume of these particles. This method utilizes the

divergence theorem to express the volume of a particle in terms of an integration over its

surface, ∫ ∫
▽ · r dV =

∫
r · n̂ dS,

2V =

∫
r · n̂ dS. (23)

Here, r is the position vector, and n̂ is the surface normal. If we calculate the surface

normal at the midpoint locations between the nodes in 2D, or the centre of a triangle for a

triangulated surface in 3D, and convert this integral to a sum at those locations, the volume

can be expressed (in 2D) as

V =
∑

i

1

4
[(yi+1 − yi)(xi+1 + xi)− (xi+1 − xi)(yi+1 + yi)] . (24)

Then the corresponding forces, ∂Evolume/∂xi,α that keep the volume constant are local and

easily computed.

5 Concluding Remarks

Long-range hydrodynamic interactions, as described above, have been implemented into

the open-source molecular dynamics package, LAMMPS13, through the creation of a fix,

lb fluid. These interactions are treated by interpolating the MD particle density onto a

discrete lattice, which is then coupled to the fluid. A thermal lattice-Boltzmann algorithm is

used to model the fluid, which includes mass and momentum conserving noise, providing

a thermostat for both the particles and the fluid14.
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The smoothed profile method (SPM) provides an efficient numerical scheme for coupling con-

tinuum fluid dynamics with moving dispersed particles using a smeared interface between the

fluids and the particles. The SPM has been successfully applied to directly simulate several

dynamical problems of colloidal dispersions in incompressible fluids, including those involv-

ing sedimentation, diffusion, coagulation, rheology, and tumbling motion in shear flow as well

as electrophoresis in external electric fields. More recently, the SPM was extended to two im-

portant problems. The first extension simulates colloidal particles in compressible host fluids,

whereas the second extension simulates self-propelled swimming particles. A comprehensive

summary of SPM is provided in this paper.

1 Introduction

Interparticle interactions in colloidal dispersions mainly consist of thermodynamic poten-

tial interactions as well as hydrodynamic interactions. Whereas the former applies to both

static and dynamic situations, the latter only applies to dynamic situations. Although ther-

modynamic interactions in static situations have been studied extensively and are treated

as effective interactions, the nature of dynamic interactions is poorly understood. Be-

cause hydrodynamic interactions are essentially long-range, many-body effects, they are

extremely difficult to study using analytical means alone. Numerical simulations can be

used to investigate the role of hydrodynamic interactions in colloidal dynamics.

Several numerical methods have been developed to simulate the dynamics of colloidal

dispersions. Two of the most well-known methods include Stokesian dynamics1 and the

Eulerian–Lagrangian method2. The former is the most widely used method because of

its proper treatment of hydrodynamic interactions between spherical particles in a New-

tonian fluid at zero Reynolds number. Furthermore, it can be implemented as a O(N)
scheme for N particles by utilizing the fast multi-pole method3. However, it is not easy to

address dense dispersions and dispersions consisting of non-spherical particles by means

of Stokesian dynamics due to the complicated mathematical structures used in Stokesian

dynamics. In contrast, the Eulerian–Lagrangian method is a very natural and sensible ap-

proach for stimulating solid particles. It is possible to apply this method to dispersions

consisting of many particles with different shapes. However, numerical efficiencies arise

from the following concerns: i) the re-construction of irregular meshes according to the

temporal particle position is necessary for every simulation step, and ii) the Navier–Stokes

equation must be solved with boundary conditions imposed on the surfaces of all colloidal

particles. Thus, these computational demands are particularly cumbersome for systems

involving many particles, even if the shapes are all spherical.
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To overcome problems arising from the particle-fluid interface in the Eulerian–

Lagrangian method, we have developed an efficient direct numerical simulation (DNS)

method for colloidal dispersions. This method was named the ”smoothed profile method

(SPM)” because the original sharp interface between the colloids and solvent is replaced

by a smeared out, smoothed interface with a finite thickness4–20. This simple modification

greatly improves the resulting quality of the of numerical computations in comparison with

the original Eulerian–Lagrangian method for the following reasons:

1. Regular fixed Cartesian coordinates can be used for many particle systems by defining

a particle shape instead of providing boundary-fitted coordinates. The particle-fluid

interface has a finite volume (∝ πad−1ξ, with a and d as the particle radius and

system dimension) supported by multiple grid points. Thus, the round particles can

be treated in a fixed Cartesian coordinates without any difficulties. The simulation

scheme is thus free from the mesh re-construction problem that significantly sup-

presses the computational efficiency of the Eulerian–Lagrangian method. In addition,

the simple Cartesian coordinate enables the use of periodic boundary conditions as

well as fast Fourier transformations (FFT).

2. At the particle-fluid interfaces, the velocity component in the direction normal to the

interface of the host fluid must be equal to that of the particle. In the Eulerian–

Lagrangian method, this non-penetration condition is imposed by the Navier–Stokes

equation as the boundary condition defined for the particle-fluid interface. In the SPM,

however, this condition is automatically satisfied by an incompressibility condition on

the entire domain.

3. The computational demands for this method include sensitivity to the number of grid

points (volume of the total system). Nevertheless, because the method is insensitive

to the number of particles, it is suitable for simulating dense colloidal dispersions.

The SPM has been successfully used to directly simulate various dynamical problems

of colloidal dispersion in incompressible fluids, including sedimentation20, diffusion9, 12, 13,

coagulation8, 19, rheology11, 14, 17, tumbling motion in shear flow15, and electrophoresis in

external electric fields7, 10. Several simulation methods similar in spirit to the SPM have

also been proposed in recent publications22–25. A comprehensive summary of SPM is pro-

vided in this study including the recent key extensions for stimulating colloidal particles in

compressible host fluids18 and also for stimulating the self-propelled swimming of parti-

cles21.

2 Colloids in Incompressible Fluids

2.1 Working Equations

The motion of the host fluid is determined by the Navier-Stokes equation with the following

incompressibility condition:

∇ · uf = 0 (1)

ρ (∂t + uf · ∇)uf = ∇ · σ (2)
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where ρ is the total mass density of the fluid, uf is the host fluid velocity field, σ is the

stress tensor

σ = −pI + σ′ (3)

σ′ = η
[
∇uf + (∇uf )

t]
(4)

and η is the shear viscosity of the fluid. Consider a mono-disperse system containing N -

spherical particles with a radius a, massMp, and moment of inertia Ip = 2/5Mpa
2I (with

I the unit tensor). The evolution of colloids is described by the Newton-Euler equations28,

Ṙi = Vi Q̇i = Qi skew (Ωi) (5)

MpV̇i = F H
i + F C

i + F ext
i Ip · Ω̇i = NH

i +N ext

where Ri and Vi denote the centre of mass positions and the velocity of the particle

i, respectively, and Qi is the orientation matrixb. Hence, Ωi the angular velocity and

skew (Ωi) is the skew-symmetric angular velocity matrix:

skew(Ωi) =




0 −Ωz
i Ωy

i

Ωz
i 0 −Ωx

i

−Ωy
i Ωx

i 0


 (6)

The forces on the particles are comprised of hydrodynamic contributions arising from fluid-

particle interactions F H, colloid-colloid interactions due to the core particle potential F C

(which prevents particle overlap), and a possible external field contribution F ext (such as

gravity). Likewise, the torques on the particles can be divided into a hydrodynamic NH

and an external contribution N ext (for simplicity, the particle-particle interactions are as-

sumed to be described by a radial potential). Subsequently, we consider buoyancy-neutral

particles, for which F ext = N ext = 0. Finally, the conservation of momentum between

the fluid and the particles implies the following hydrodynamic force and torque on the i-th
particle:

F H
i =

∫
dSi · σ (7)

NH
i =

∫
(x−Ri)× (dS i · σ) (8)

where
∫

dSi indicates an integral over the surface of the particle. In addition, thermal

fluctuations can be introduced by adding a random stress tensor sin Eq. 3, that satisfies the

fluctuation-dissipation relation:26

〈sik(x, t)sjl(x′, t′)〉 = 2kBTη(δijδkl + δilδkj)δ(x− x′)δ(t− t′), (9)

where kB is the Boltzmann constant, T is the temperature. Alternatively, it is also pos-

sible to introduce thermal fluctuations by adding Langevin random forces and torque to

Eq. 59, 11–13.

bFor numerical stability, we use quaternion instead of rotation matrices to represent the rigid body dynamics of

the particles.
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2.2 Simulation Procedure for Incompressible Fluids

We now present the computational algorithm used to simulate the motion of spherical

particles using the SPM. We require that all field variables are defined over the entire com-

putational domain (fluid + particle). The concentration field for the colloids is described

as follows:

φ(x, t) =
N∑

i=1

φi(x, t), (10)

where φi ∈ [0, 1] is the smooth profile field of particle i. This field is defined as unity within

the particle domain, as zero in the fluid domain, and as a smooth interpolation between the

two extremes within the interface region. Several possible mathematical forms exist for

φi(x), however, we adopted the following definition of φi:

φi(x) = g(|x−Ri|), (11)

g(x) =
h((a+ ξ/2)− x)

h((a+ ξ/2)− x) + h(x− (a− ξ/2))
, (12)

h(x) =

{
exp

(
−∆2/x2

)
x ≥ 0,

0 x < 0.
(13)

where a, ξ, and ∆ are the radius of the particle, the interfacial thickness, and lattice spacing,

respectively. The particle velocity field is defined in a similar fashion:

φup(x, t) =

N∑

i=1

{Vi(t) +Ωi(t)× ri(t)}φi(x, t) (14)

with ri = x − Ri, which allows one to define the total fluid velocity field using the

following expression:

u(x, t) ≡ (1− φ)uf + φup (15)

where the incompressibility condition is satisfied over the entire domain ∇ · u = 0. The

evolution equation for u is then derived assuming momentum-conservation between fluid

and particles6, 10

ρ (∂t + u · ∇)u = ∇ · σ + ρφfp (16)

where φfp represents the force density field needed to maintain rigidity constraints on the

particle velocity field.

We use a fractional step approach to update the total velocity field. Let un be the field

at time tn = nh (h is the time interval).

i) We first solve for advection and hydrodynamic viscous stress terms, and we then

propagate the particle positions (orientations) using the current particle velocities,
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which affords the following relation:

u∗ = un +

∫ tn+h

tn

ds∇ ·
[
1

ρ
(−p∗I + σ′)− uu

]
(17)

Rn+1
i = Rn

i +

∫ tn+h

tn

dsVi (18)

Qn+1
i = Qn

i +

∫ tn+h

tn

dsQiskew (Ωi) (19)

where the pressure term p∗ in Eq. 17 is determined by the incompressibility condition

∇ · u∗ = 0. The remaining updating procedure imposes a rigidity constraint on the

velocity field.

ii) The hydrodynamic force and torque exerted by the fluid on the colloids is determined

by assuming momentum conservation. The time integrated hydrodynamic force and

torque over a period h are equal to the momentum exchange over the particle domain

[∫ tn+h

tn

dsF H
i

]
=

∫
dx ρφn+1

i

(
u∗ − un

p

)
(20)

[∫ tn+h

tn

dsNH
i

]
=

∫
dx
[
rn+1
i × ρφn+1

i

(
u∗ − un

p

)]
(21)

Based on this and other forces acting on the colloids, the particles velocities are up-

dated as follows:

V n+1
i = V n

i +M−1
p

[∫ tn+h

tn

dsF H
i

]
+M−1

p

[∫ tn+h

tn

ds
(
F C
i + F ext

i

)
]

(22)

Ωn+1
i = Ωn

i + I−1
p ·

[∫ tn+h

tn

dsNH
i

]
+ I−1

p ·
[∫ tn+h

tn

dsN ext
i

]
(23)

iii) Finally, the resulting particle velocity field φn+1un+1
p is enforced on the total velocity

field as follows:

un+1 = u∗ +

[∫ tn+h

tn

ds φfp

]
(24)

[∫ tn+h

tn

ds φfp

]
= φn+1

(
un+1
p − u∗)− h

ρ
∇pp (25)

wherein the pressure is due to the rigidity constraint obtained from the incompress-

ibility condition ∇·un+1 = 0. The total pressure field is thus obtained as p = p∗+pp.

The above procedure defines the consistent time-propagation, {un;Rn
i ,Q

n
i ,Ω

n
i } →

{un+1;Rn+1
i ,Qn+1

i ,Ωn+1
i }, to simulate colloidal particles in incompressible fluids.
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3 Colloids in Compressible Fluids

3.1 Working Equations

The hydrodynamic equations consist of three conservation laws concerning mass, momen-

tum, and energy. The conservation equations of mass and momentum for incompressible

fluids are described by the following:

∂ρ

∂t
+∇ ·m = 0, (26)

∂m

∂t
+∇ · (mu) = ∇ · σ + ρφfp, (27)

where m(r, t) = ρ(r, t)u(x, t) is the momentum density field. We consider a compress-

ible Newtonian fluid, and the stress tensor is described as follows:

σ = −pI + η[∇u+ (∇u)t] +

(
ηv −

2

3
η

)
(∇ · u)I, (28)

where p(r, t) is the pressure, η is the shear viscosity, and ηv is the bulk viscosity. A body

force ρφfp is also added to satisfy the rigidity of the particles. Additionally, we assume a

barotropic fluid described by p = p(ρ), with a pressure gradient that is proportional to the

density:

∇p = c2∇ρ, (29)

where c is the speed of sound in the fluid. Eqs. 26-29 are closed to variables ρ, m, and p;

therefore, energy conservation does not need to be considered for barotropic fluids.

The motion of the dispersed particles is governed by Newton-Euler equations of motion

Eq. 5. The effect of thermal fluctuations on the particles dynamics is important when the

particle size is on the order of a micrometer or smaller. Fluctuations were introduced using

a random stress tensor s, which is added to the stress tensor Eq. 28. The random stress is

a stochastic variable satisfying the fluctuation-dissipation relation26:

〈sij(r, t)skl(r′, t′)〉 = 2kBTηijklδ(r
′ − r)δ(t′ − t), (30)

and

ηijkl = η(δikδjl + δilδjk) +

(
ηv −

2

3
η

)
δijδkl. (31)

Brownian motion of the dispersed particles is induced by the random stresses acting on

the fluid. Thermal fluctuations can be introduced using the Langevin approach, wherein

random forces are exerted on the particles9, 11–13. However, this approach does not accu-

rately represent the short-time dynamics of the system because the autocorrelation time

of the hydrodynamic force acting on the particles is neglected. Therefore, the fluctuating

hydrodynamics approach is more appropriate for investigating dynamics at a time scale of

sound propagation.
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3.2 Simulation Procedure for Compressible Fluids

In this section, the time-discretized evolution of the equations is derived for colloidal dis-

persions in compressible fluids. The time evolution of the fluid is determined using the

following steps:

i) The mass and momentum density changes associated with sound propagation are cal-

culated using the following equations:

ρn+1 = ρn −
∫ tn+h

tn

ds∇ ·m, (32)

m∗ = mn − c2
∫ tn+h

tn

ds∇ρ. (33)

When we assume a periodic boundary condition and use the Fourier spectral method,

a semi-implicit scheme becomes feasible27. This situation eliminates restrictions on

time increments with a small compressibility factor ε.

ii) The time evolution of the advection and viscous diffusion terms are calculated using

the following equations:

m∗∗ = m∗ +
∫ tn+h

tn

ds∇ · (σ′ −mu), (34)

where σ′ is the dissipative stress defined in Eq. 3.

iii) In concert with the advection of the particle domain, the position (orientation) of each

dispersed particle evolves according to the following equations:

Rn+1
i = Rn

i +

∫ tn+h

tn

dsVi (35)

Qn+1
i = Qn

i +

∫ tn+h

tn

dsQiskew (Ωi) . (36)

iv) The hydrodynamic force and torque are derived by considering the conservation of

momentum. The time-integrated hydrodynamic force and torque are computed using

the following equations:
∫ tn+h

tn

dsFH
i =

∫
dxφn+1

i (m∗∗ − ρn+1un
p ), (37)

∫ tn+h

tn

dsNH
i =

∫
dx [(r −Rn+1

i )× φn+1
i (m∗∗ − ρn+1snp )]. (38)

With these and other forces acting on the particles, the translational and rotational

velocities of each dispersed particle evolve according to the following equations:

V n+1
i = V n

i +M−1
p

∫ tn+h

tn

ds (FH
i + FC

i ), (39)

Ωn+1
i = Ωn

i + I−1
p ·

∫ tn+h

tn

dsNH
i . (40)
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v) The updated velocity of the particle region is imposed on the velocity field as the

volume force ρφfp.

mn+1 = m∗∗ +
∫ tn+h

tn

ds ρφfp, (41)

∫ tn+h

tn

ds ρφfp = φn+1(ρn+1un+1
p −m∗∗). (42)

In the case of an incompressible fluid, the pressure is spontaneously determined by

the solenoid condition of the velocity field. In contrast, in this case, the pressure and

mass density variations are independent of the velocity field.

The above procedure defines the consistent time-propagation, {ρn,mn;Rn
i ,Q

n
i ,Ω

n
i } →

{ρn+1,mn+1;Rn+1
i ,Qn+1

i ,Ωn+1
i }, to simulate colloidal particles in compressible fluids.

4 Self-Propelled Particles

4.1 Squirmer Model

We consider a simple model of self-propelled spherical swimmers, originally introduced

by Lighthill29 and later extended by Blake30, which move due to a self-generated surface-

tangential velocity us. This specific mechanism was proposed as a model for an ideal

ciliate particle, in which the synchronized beating of the cilia at the surface gives rise to

net motion in the absence of any external fields. If one assumes that the displacements of

this cilia envelope are purely tangential, then the effective (time-averaged) slip velocity for

these squirmers is described by the following equation30:

us(r̂) =
∞∑

n=1

2

n (n+ 1)
Bn (ê · r̂r̂ − ê)P ′

n (ê · r̂) (43)

where ê is the squirmer’s fixed swimming axis (i.e., we consider that each squirmer carries

with it a fixed coordinate system that determines its preferred swimming direction at each

instant), r̂ is a unit vector from the particle centre to a point on the surface, P ′
n is the deriva-

tive of the n-th order Legendre polynomial, and Bn is the amplitude of the corresponding

mode.

When all squirming modes higher than three are neglected, Bn = 0 (n ≥ 3), the

following simple expression for the surface tangential velocity as a function of polar angle

θ = cos−1 (r̂ · ê), is obtained:

us(θ) = B1

(
sin θ +

α

2
sin 2θ

)
(44)

where α = B2/B1 determines whether the swimmer is a pusher (α < 0) or a puller

(α > 0). A schematic representation of the flow profile generated by these two types

of swimmers is provided in Fig. 1. An example of the former include spermatozoa and

most bacteria, whereas the latter includes unicellular algae Chlamydomonas. Although the

squirmer model we adopt does not include a detailed propulsion mechanism, it is capable

of distinguishing between pushers/pullers and provides an adequate approximation for the

far-field flow profile generated by these swimmers.
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Figure 1. Schematic representation of the flow profiles generated by a pusher (left) and a puller (right). In both

cases, the particle’s swimming direction is towards the top of the page.

For Newtonian fluids, which is the only case considered here, the swimming speed U
of the squirmer is determined uniquely by the first mode B1, irrespective of the size of

the particle, as U = 2/3B1, while the second mode gives the strength of the stresslet31, 32.

In the Stokes regime, the velocity field generated by a single such squirmer was solved

analytically by Ishikawa et al.31, providing the following expression in the laboratory frame

(fluid at rest far away from the particle):

u(r) = B1
a2

r2

[
a

r

(
2

3
ê+ sin θ θ̂

)
+
α

2

{(
a2

r2
− 1

)(
3 cos2 θ − 1

)
r̂ +

a2

r2
sin 2θ θ̂

}]

(45)

where a is the radius of the particle. Notice that for neutral swimmers (α = 0), the velocity

field decays as r−3, whereas for pushers/pullers (α 6= 0), the velocity field decays as r−2.

In contrast, the velocity field for a sedimenting particle (or a particle experiencing a net

body force) decays as r−1 33. This observation will have important consequences on the

hydrodynamic interactions describing suspensions of swimmers.

4.2 Simulation Procedure for Squirmers

We now present the computational algorithm used to simulate the motion of spherical

particles, with a given surface tangential slip velocity us using the SPM. The evolution

equation for u is then derived by assuming momentum-conservation between the fluid and

particles6, 10

ρ (∂t + u · ∇)u = ∇ · σ + ρφfp + ρfsq (46)

where φfp represents the force density field needed to maintain the rigidity constraint

on the particle velocity field and fsq is the force density field generated by the squirming

motion of the particles. The motion of the dispersed particles is governed by Newton-Euler

equations of motion Eq. 5.

We use the fractional step approach to update the total velocity field.
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i) We first solve for the advection and hydrodynamic viscous stress terms, and we then

propagate the particle positions (orientations) using the current particle velocities.

This operation yields the following results:

u∗ = un +

∫ tn+h

tn

ds∇ ·
[
1

ρ
(−p∗I + σ′)− uu

]
(47)

Rn+1
i = Rn

i +

∫ tn+h

tn

dsVi (48)

Qn+1
i = Qn

i +

∫ tn+h

tn

dsQiskew (Ωi) (49)

where the pressure term p∗ in Eq. 47 is determined by the incompressibility condition

∇ · u∗ = 0. The remaining updating procedure applies to the slip condition at the

particle boundary as well as the rigidity constraint on the velocity field.

ii) We now consider the momentum change needed to maintain the slip velocity at the

surface of each of the squirmers, where the slip profile us is imposed with respect to

the particle velocities {V ′
i ;Ω

′
i}, using the previously updated positions and orienta-

tions orientations {Rn+1
i ;Qn+1

i }. We note that at this point we do not yet know the

correct updated particle velocities {V n+1
i ;Ωn+1

i }, which are the values that should

be used when enforcing the surface slip profile V ′
i = V n+1

i (Ω′
i = Ωn+1

i ). Therefore,

we adopt an iterative solution, and as an initial guess, we use the particle velocities at

the previous time step, i.e., V ′
i = V n

i (Ω′
i = Ωn

i ). The updated total velocity field is

now obtained using the following:

u∗∗ = u∗ +

[∫ tn+h

tn

dsfsq

]
(50)

[∫ tn+h

tn

dsfsq

]
= u∗ +

N∑

i=1

ϕi (V
′
i +Ω′

i × ri + us
i − u∗)

+
N∑

i=1

φi (δVi + δΩi × ri)−
h

ρ
∇psq (51)

The second term on the right hand side of Eq. 51 imposes a slip velocity profile us at

the surface of each of the squirmers where ϕi ∝ (1 − φi) |∇φi| is a smooth surface

profile function that is non-zero only within the interface domain of the squirmer (nor-

malized to have a maximum value of one), and zero everywhere else (the red arrows

in Fig. 2). The third term adds a counter-flow entirely within the particle domain, such

that local momentum conservation is preserved (the blue arrows in Fig. 2). Assuming

rigid-body motion, with velocities δVi and δΩi, this requires
∫

dxφi (δVi + δΩi × ri) = −
∫

dxϕi (V
′
i +Ω′

i × ri + us
i − u∗) (52)

∫
dxri × φi (δVi + δΩi × ri) = −

∫
dxri × ϕi (V

′
i +Ω′

i × ri + us
i − u∗)

(53)
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tangential slip

2

aa

propulsion

Figure 2. Schematic representation of the updating scheme used to enforce the slip boundary condition at the

surface of the squirmers. Each particle is considered to exert a force on the fluid at the surface, in order to maintain

the specified flow profile u
s (red arrows) for the squirming motion. To ensure local momentum conservation, a

counter-flow is added within the particle domain (blue arrows).

from which we can easily obtain the counter-flow terms δVi (δΩi) from the particle

velocities V ′
i (Ω′

i). A schematic representation of the procedure used to enforce the

specific slip-boundary conditions for our model squirmers is shown in Fig. 2. Finally,

the pressure term due to the squirming motion psq is obtained from the incompress-

ibility condition ∇ · u∗∗ = 0. At this point, the momentum conservation relation is

solved for the total velocity field.

iii) The hydrodynamic force and torque exerted by the fluid on the colloids (which in-

cludes all contributions to the squirming motion) is again derived by assuming mo-

mentum conservation. The time integrated hydrodynamic force and torque for a pe-

riod h are equal to the momentum exchange over the particle domain:

[∫ tn+h

tn

ds
(
F H
i + F sq

i

)
]
=

∫
dx ρφn+1

i

(
u∗∗ − un

p

)
(54)

[∫ tn+h

tn

ds
(
NH

i +N sq
i

)
]
=

∫
dx
[
rn+1
i × ρφn+1

i

(
u∗∗ − un

p

)]
(55)

From this and any other forces on the colloids, the particles velocities are updated

according to the following equations:

V n+1
i = V n

i +M−1
p

[∫ tn+h

tn

ds
(
F H
i + F sq

i

)
]
+M−1

p

[∫ tn+h

tn

ds
(
F C
i + F ext

i

)
]

(56)

Ωn+1
i = Ωn

i + I−1
p ·

[∫ tn+h

tn

ds
(
NH

i +N sq
i

)
]
+ I−1

p ·
[∫ tn+h

tn

dsN ext
i

]
(57)

We recall that we have imposed the slip profile us with respect to the primed velocities

{V ′
i ;Ω

′
i}, which need not be equal to the final velocities of the particle at step n+ 1.

To maintain consistency, we iterate over Eqs. 50-57 until a convergence of velocities

is achieved.
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iv) Finally, the resulting particle velocity field φn+1un+1
p is enforced over the total ve-

locity field using the following relations:

un+1 = u∗∗ +

[∫ tn+h

tn

ds φfp

]
(58)

[∫ tn+h

tn

ds φfp

]
= φn+1

(
un+1
p − u∗∗)− h

ρ
∇pp (59)

wherein the pressure due to the rigidity constraint obtained from the incompressibility

condition ∇ · un+1 = 0. The total pressure field is then given by p = p∗ + pp + psq.

The above procedure defines the consistent time-propagation, {un;Rn
i ,Q

n
i ,Ω

n
i } →

{un+1;Rn+1
i ,Qn+1

i ,Ωn+1
i }, to simulate self-propelled squirmers in incompressible flu-

ids.

We are aware of two alternative simulation methods that aim to describe these squirmer

suspensions at the same level of description, the first was developed by Ramachandran et

al.35 using a Lattice Boltzmann model, and the second was originally introduced by Down-

ton and Stark36 within a multi-particle collision dynamics framework, and later extended

by Götze and Gompper37 to recover the correct rotational dynamics. For the moment

though, these DNS approaches have not been extensively used to study these types of

swimming systems; the most popular methods, which still account for the hydrodynamic

interactions, have usually been based on Stokesian Dynamics31, 34, and are thus limited to

Newtonian fluids in the Stokes regime.

5 Concluding Remarks

A new computational method named the SPM has been developed to simulate particle

dispersion in fluids4–21. Utilizing a smoothed profile for particle-fluid boundaries, hydro-

dynamic interactions in many particle dispersions can be fully taken into account, yielding

both accurate and efficient results. In principle, the SPM can be easily applied to systems

consisting of many particles with different shapes. The reliability and the performance of

the method was confirmed to be satisfactory by several critical tests4–22.

Recently, we extended the SPM to particle dispersions in compressible fluids18. The

validity of the method was confirmed by calculating the velocity relaxation function of

a single spherical particle in a compressible fluid21. The effect of compressibility on the

velocity relaxation was also observed, revealing a two-stage relaxation process for low-

compressibility fluids and a backtracking motion for high-compressibility fluids. A simu-

lation of the motion of a single spherical particle in a fluctuating fluid was also performed.

The calculated velocity autocorrelation function of the particle showed good agreement

with the analytical solution of the relaxation function, thereby confirming the validity of

the fluctuation-dissipation theorem without any fitting parameters.

We have also shown that SPM can be extended to systems with self-propelled swim-

ming particles, making it possible to describe the actions of squirmers (active swimmers

that move due to self-generated surface tangential velocities)21. The validity of the method

was confirmed by comparing the simulation data with the exact results for the case of a
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single swimmer, wherein the correct swimming speed is recovered and it is possible to ac-

curately reproduce the fluid flow generated by the squirming motion. The advantage of the

SPM for swimming particles in comparison with Stokesian Dynamics (which have been

successfully and extensively used to study these systems)31, 34 is its applicability to particle

dispersions in complex fluids. This is relevant in the case of swimming micro-organisms

as the role of nutrients and the presence of a non-Newtonian host fluid must be considered

when making comparisons with experimental data.
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This work presents the design and implementation of a parallel simulation code for the Brown-

ian motion of particles in a fluid. Three different parallelization approaches have been followed:

(1) traditional distributed memory message-passing programming with MPI, (2) a directive-

based approach on shared memory with OpenMP, and (3) the Partitioned Global Address Space

(PGAS) programming model, oriented towards hybrid shared/distributed memory systems, with

the Unified Parallel C (UPC) language. According to the selected environment, different do-

main decompositions and work distributions are studied in terms of efficiency and programma-

bility in order to select the most suitable strategy. Performance results on different testbeds and

using a large number of threads are presented in order to assess the performance and scalability

of the parallel solutions.

1 Introduction

Particle simulation methods aim at exploring the configuration- or phase-space of a system

in order to gather statistics for approximating expectation values of structural and dynam-

ical quantities. Simulation methods thereby strongly depend on the level of resolution of

the underlying system and the physical mechanisms under study, including ab initio meth-

ods1, 2, force field3–5 or effective medium6 descriptions. In principle, these methods allow

for molecular dynamics approaches, where the equations of motion are solved via finite

difference schemes and provide information about coordinates and momenta of particles,

i.e. generating trajectories in phase space.

For large systems, e.g. diluted or semi-diluted systems of particles in a solvent, the

number of degrees of freedom gets very large, if all system components are described on

an atomistic level. This imposes limits due to both the available memory on a computer

architecture and the complexity of the underlying algorithm. For particle systems, the time

for computing interactions and integrating system trajectories is most often the main bottle-

neck, compared to memory constraints. Therefore, coarse grain and stochastic approaches

are often used to describe the surrounding or environment effects in the system, thereby

neglecting the explicit description of a solvent. This benefits two aspects of the simulation:

(i) the number of degrees of freedom and therefore the CPU-time/step is dramatically re-

duced and as a consequence (ii) the accessible time scale is strongly increased. The latter

one is the result from both the increase in performance of the simulation method and of the

coarse grain or stochastic description of the environment effects, including averaging of
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effects on the smallest time scales and therefore allowing for larger time steps in the sim-

ulation. Care has to be taken, when considering coarse grain potentials between particles,

without including environment effects. Since coarse graining tends to flatten potential en-

ergy surfaces, larger time steps might be applied, but in that way also transport coefficients

are modified due to faster dynamics, i.e. less friction, on larger time scales7. This effect is

avoided when considering an environment which imposes correct transport properties, e.g.

diffusion coefficient or conductivity, for the solutes.

In recent years the simulation of the dynamics of particles coupled to an environment

has strongly profited from advances in mesoscopic solvent methods, which include lat-

tice Boltzmann calculations8 as a grid based method or dissipative particle dynamics9 or

multi-particle collision dynamics10 as particle simulation methods. These models take into

account the collective properties of the solvent and provide hydrodynamic interactions be-

tween solutes. The models conserve energy, momentum and (in most cases) angular mo-

mentum. As a limiting case the models have the Navier-Stokes equations and can therefore

be considered as a discretization of Navier-Stokes within an Euler- or Lagrange descrip-

tion. These methods provide a strong reduction of degrees of freedom of the solvent, but

still a large number of degrees-of-freedom is necessary to properly account for momentum

and energy transport in the system.

In coarse grain simulations of solvated particles the mobility of particles is often taken

into account via the solvent viscosity or more generally the mobility- or diffusivity-tensor

of the solvent. As a zero order approximation, viscosity is taken into account as a constant,

averaging out all non-local effects and not considering collective effects like hydrodynamic

interactions. Hydrodynamic effects play an important effect for the transport properties of

particles on a mesoscopic scale. A proper description of the hydrodynamic interactions

have to take into account their collective nature, i.e. considering multi-particle contribu-

tions up to high order. A full account of high order multi-particle contributions puts not

only limitations to the computability but also to the modelling. In Ref. 11 multi-particle

contributions were taken into account up to order 4, which already strongly increases the

complexity of the analytical expressions and the computational load. For diluted systems,

many-body effects are reduced and therefore the approximation of pair-wise interactions is

often made on the basis of the Oseen-tensor12, which is the Green’s function of linearized

Stokes equation, or on the basis of the Rotne-Prager-tensor13 (sometimes also called Rotne-

Prager-Yamakawa tensor14), which takes into account the finite size of particles in solu-

tion. By definition, the Oseen-tensor is the response function of the solvent due to point

like force-sources. From a physical point of view, point-like sources do not have a sur-

face and therefore do not reflect a velocity field, which leads to the linear superposition

of velocity fields in such a description. For finite sized particles the Oseen-tensor is not

positive definite, which would lead to the unphysical picture of negative diffusivities of

particles. Therefore, the use of the Rotne-Prager tensor is more save for stability consider-

ations of the simulation. Nevertheless, if particles approach too close, i.e. rij < 2a, where

rij = ‖ri−rj‖ is the mutual distance between particles i and j and a the radius of the par-

ticles, also the Rotne-Prager-tensor looses positive definiteness which makes it necessary

to regularize the tensor for small distances13. The Rotne-Prager-tensor can be considered

as a second order approximation of an expansion of the velocity field at a distance a from

the expansion point. Formally, this expansion can be carried out to arbitrary order15. As

a demonstration, the expansion was carried out explicitly up to order 20 in Ref. 15. For
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larger distances the expansion converges very well and for dilute systems the results will

be improved. However, for small distances of the order of r ≈ 2a, convergence is not yet

reached and there will be a truncation error left.

For more dense systems, the second order (or higher order) approximation of the mobil-

ity tensor might not be sufficient for reproducing correct physical behaviour, like collective

behaviour in sedimentation processes. An alternative scheme was proposed by consider-

ing not the mobility tensor, but the friction tensor, which relates the forces on a particle

to the velocity field. Inverting the friction tensor gives formally a mobility tensor. Taking

into account only pair contributions between particles to the friction tensor will lead to

a collective contribution in the mobility tensor due to the inversion procedure and which

seems to provide more consistent results16. However, for applications in Brownian dynam-

ics simulations which need the mobility tensor, this implies the necessity of inverting a

3N × 3N -dimensional matrix which i.g. implies an O(N3) operation in the simulation.

As will be more detailed in the next section, the computationally most intensive parts

in the Brownian dynamics simulation are the construction of the mobility tensor, compu-

tation of forces and the calculation of correlated random variates. To construct sequences

of correlated random numbers a Cholesky decomposition of the mobility matrix is often

applied. This technique also requires an O(N3) operation. Alternatives to this approach

make use of approximations. In the approach of Fixman17 a truncated series of Chebyshev

polynomials is used, where the accuracy of correlation coefficients depend on the number

of terms in the series. Another approach was proposed in Ref. 18 which reduces the prob-

lem of correlated random forces to a complexity of O(N2). In this approach, called the

truncated expansion ansatz, the contribution to the displacements due to stochastic forces

is formally written in the same way as the one of systematic forces. This contribution can

then be expressed as a weighted sum of partial force contributions, which multiply uncon-

ditional random variates to each term in the sum. The weight factors are determined in

such a way that the moments of random displacement vectors are correctly reproduced.

The approximation which enters into this approach is the fact that off-diagonal terms in the

mobility-tensor are considered small with respect to diagonal terms, i.e. that hydrodynamic

coupling is weak and that the square root is linearly expanded. Although the field of ap-

plication might be restricted due to these approximations, it is a very interesting approach,

which brings the whole method of Brownian dynamics simulations to higher efficiency.

Although there are several algorithmic improvements to speed up the simulation proce-

dure of Brownian dynamics, the size of particle systems is still rather limited. The reason

for this is (i) the numerical complexity of (at least) O(N2) which implies a quadratic in-

crease in CPU time when enlarging the number of degrees of freedom and (ii) the memory

needs also increase quadratically due to the necessity of constructing the mobility-matrix

of size 3N × 3N . For N = 104, the memory needs for 8 Byte number representation

would be about 7 GBytes, being close to or even beyond of sizes of current workstations or

desktop systems. Therefore there is a strong need to work on efficient parallel implemen-

tations, which cope with these limitations. The present article gives an overview on recent

work devoted to scalable implementations of Brownian dynamics of solvated particles,

including hydrodynamic interactions. Different parallelization strategies and implementa-

tions are presented and discussed which pave the way for large scale Brownian dynamics

simulations on massively parallel architectures.
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2 Brownian Dynamics Simulation

In Brownian dynamics a time scale separation between configurational and momentum

relaxation is considered, i.e. an assumption is that the average velocity between two suc-

cessive moves corresponds to the thermal velocity 〈vα,i〉 = kBT/mi, α = x, y, z. Based

on a Chapman-Enskog type method, the corresponding Fokker-Planck equation, which

describes the change of the configuration-space distribution function P (r) is given by19

∂

∂t
P (r) =

∑

i,j

∂

∂rj
Dij(r)

(
∂

∂rj
P (r)− 1

kBT
FjP (r)

)
(1)

where D ∈ R
3N×3N is the diffusion tensor of the system and Dij ∈ R

3×3 a sub-matrix,

corresponding to the pair-contribution of particles i and j to the diffusion tensor and kBT
the thermal energy of the system, where T is the temperature and kB the Boltzmann con-

stant.

The solution of Eq. 1 is obtained in first order in ∆t as a multi-variate Gaussian distri-

bution, which is uniquely defined by its first two moments

〈∆ri〉 =
∑

j

(
∂Dij

∂rj
+

1

kBT
DijFj

)
∆t (2)

〈∆ri∆rTj 〉 = 2Dij ∆t (3)

It should be noted that although the inclusion of hydrodynamics will have an effect on

cross-correlations between particles in the system, i.e. an influence on mutual diffusion, it

has no effect on self-diffusion, i.e. it does not change the mean square displacement 〈∆r2i 〉
of a particle20.

A procedure which provides a description for particle displacements in a Brownian

dynamics simulation is based on the Langevin dynamics, which describes the momentum

change of a particle i in a system of N interacting particles, solvated in a fluid which is

characterized by its friction. The momentum change of such a particle is described by three

contributions, i.e. (i) friction, (ii) a systematic interaction between the particles and (iii) a

random contribution, containing thermal effects

mi
∂2ri
∂t2

=

N∑

j=1

ζζζij
∂rj
∂t

+

N∑

j=1

cijF
r
j (4)

where ζζζij is the friction tensor, cij correlation coefficients and Fr
j a random force contri-

bution. The friction tensor is thereby related to the diffusion tensor via
∑

k ζζζikDkj = Iδij ,

where δij is the Kronecker-δ and I is the identity-matrix. The correlation coefficients are

related to the friction coefficient via ζζζij =
∑

k cikckj . The random forces are Gaussian

distributed and defined by their moments

〈Fr
i 〉 = 0 , 〈Fr

i (t)(F
r
j(t

′))T 〉 = 2Iδijδ(t− t′) (5)

Note that this is a special choice for the random correlations, which are δ-correlated in

time and space. In fact, a spatial correlation is obtained via the correlation coefficients cij .
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Also a temporal correlation is possible, which then leads to the generalized Langevin equa-

tion, which then takes into account the history of the trajectory via the so called memory

function21, 22.

The formal derivation of the equation for the displacement of the particle proceeds

then by multiplying Eq. 4 with Dij and summing over j, Taylor expanding Dij and Fj

and performing a double integral over time, which finally leads to

ri(t+∆t) = ri(t) +
N∑

j=1

∂Dij(t)

∂rj
∆t+

N∑

j=1

1

kBT
Dij(t)Fj(t)∆t+Ri(t+∆t) (6)

Details of the derivation of Eq. 6 can be found in Ref. 23.

This one-step propagation scheme takes into account the coupling of the particles to the

flow field via the diffusion tensor D and the systematic forces F, acting onto the particles

with the global property
∑

j Fj = 0. The vector R ∈ R
3N contains correlated Gaus-

sian random numbers with zero mean, which are constructed according to the fluctuation-

dissipation theorem, with Ri ∈ R
3 being a sub-vector corresponding to particle i.

In the present work we restrict ourselves to the application of the Rotne-Prager-tensor,

which is given in its regularized form as

Dii =
kBT

6πηa
I (7a)

Dij =





kBT

8πηrij

[
(
I+ r̂ij r̂

T
ij

)
+

(
2

3

a2

r2ij
I− 3r̂ij r̂

T
ij

)]
: rij > 2a

kBT

6πηa

[(
1− 9

32

rij
a

)
I+

3

32

rij
a
r̂ij r̂

T
ij

]
: rij ≤ 2a

(7b)

where η is the viscosity of the fluid and r̂ij = (ri − rj)/rij . Note that the D has a leading

term of 1/r, which implies a long-range contribution to the diffusion tensor. Algorithmi-

cally, this is the same problem as it appears in electrostatic calculations, when considering

the total energy in the system, subject to periodic boundary conditions. Therefore, for a

simulation protocol the expression has to be extended in order to take into account proper

boundary conditions in the system. In the so-called minimum image convention, contribu-

tions to D between nearest particles i and j are considered, where particle i is located in

the central box and particle j might be located in the central or one of its periodic image

boxes. A more consistent picture is obtained by an analog to electrostatics, where a lattice

sum (e.g. Ewald sum) over all periodic images in the system is performed. An expression

for the Ewald sum of the regularized version of the Rotne-Prager tensor is given in the Ap-

pendix A. This formulation is also followed in the code which is considered in this report.

Note, however, that other forms of the diffusion tensor might be applied within the same

formalism of Eq. 6. The Rotne-Prager-tensor has the nice property that the partial deriva-

tive on the right-hand side of Eq. 6 drops out and therefore the equation the displacement

vector of the Brownian particles, ∆r = r(t+∆t)− r(t), can be rewritten as

∆r =
1

kT
DF∆t+

√
2∆tZξξξ (8)

29



where ξξξ is a vector of independent Gaussian random numbers. According to the previous

simplifications, Z may be calculated via a Cholesky decomposition or via the square root

of D. Both approaches are very CPU-time consuming with a computational complexity

of O(N3) and impose a large computational load. Therefore the development of faster

and more efficient and scalable methods with smaller complexity is an important task, and

here Fixman17 applied an expansion of the random displacement vector R in terms of

Chebyshev polynomials, approximating its values without constructing Z explicitly.

The systematic interactions between particles are modelled by a Lennard-Jones-type

potential, from which the forces are obtained via the negative gradient:

V (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(9a)

Fij = −∇rijV (rij) = 24ε

[
2

(
σ

rij

)12

−
(
σ

rij

)6
]

r̂ij
r2ij

(9b)

where σ is the diameter of the particles and ǫ is the depth of the potential minimum. This

potential has a short range character and practically interactions between particles are ne-

glected for mutual distances rij > Rc, where Rc is the radius of a so called cutoff sphere,

which is chosen as Rc = 2.5σ. The distance rij is chosen according to the minimum

image convention, i.e. the shortest distance between particle i (located in the central sim-

ulation box) and particle j or one of its periodic images is taken into account. Several

software tools focus on the simulation of these systems, such as BrownDye24. There is

some relevant work parallelizations of these simulations25, including a simulation suite

called BD BOX26, but little information is given about the actual implementation and the

performance and scalability on large supercomputers. Therefore, the next sections provide

a description of the parallelization of a Brownian dynamics simulation, presenting different

workload distributions and a performance analysis of the most relevant cases.

3 Analysis of the Sequential Simulation Code

The parallel implementations are based on an existing optimized sequential code, which

defines the system as a cubic box for which periodic boundary conditions are applied. The

time integration of trajectories of Brownian particles is performed according to Eq. 8. The

main component of the code is the for loop that includes the function calls, necessary to

propagate the particles in configuration space. The most time consuming functions include

calc force() and covar(), which are the main targets for parallelization. Function

calc force() includes: (1) the computation of systematic forces (Eq. 9), for which a

linked-cell technique27 is used (O(N)), and (2) the setup of the diffusion tensor (O(N2)),
which needs the explicit calculation of N(N −1)/2 particle pair-contributions. The corre-

lated random displacements are calculated in function covar() using the approximation

method according to Fixman, with complexity O(N2.25) 17. Tab. 1 presents the breakdown

of the execution time of the sequential program in the testbed used in the performance eval-

uation (see Sec. 5) in terms of the previously discussed functions, using 256 and 1024 input
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particles for 50 time steps of simulation. The diffusion tensor, which is defined in the code

as a matrix called D, has (3×N)
2

elements (i.e. the information between all pairs of N
particles on 3 dimensions), thus its construction takes at least a complexity of O(N2). This

is true for the real space contributions of the Ewald sum as the cutoff radius is of the order

of half the system size (or even larger), in order to keep the reciprocal space contribution,

i.e. the number of k-values, small for a given error tolerance. Since the mutual distances

between particles are calculated in the real space contribution, it is natural to integrate the

construction of matrix D in the calculation of short range direct interactions between par-

ticles (whose complexity is O(N)), thus giving out the O(N2) complexity stated in row

“short range contributions” of Tab. 1. The long range contribution to the diffusion tensor

also has to be calculated for every matrix element, i.e. for each particle pair, which also im-

poses a computational complexity of O(N2). However, there is an additional contribution

to the long range part, giving rise to a larger complexity, since a set of reciprocal vectors

has to be considered to fulfill a prescribed error tolerance in the Ewald sum, increasing the

complexity to approximately O(N2.5).

Code Part Complexity N = 256 N = 1024

calc force() - D & short range contributions O(N2) 4.733 s 75.966 s

calc force() - Ewald long range contributions O(N2.5) 7.095 s 181.103 s

covar() - Fixman O(N2.25) 0.762 s 17.735 s

move() O(N2) 0.019 s 0.341 s

Total time O(N2.5) 12.609 s 275.145 s

Table 1. Breakdown of the execution time of the sequential code.

4 Development of the Parallel Implementation

The iterations of the main simulation loop define a sequence of time steps, where the

information for time step (n+1) is dependent on positions and mutual interactions between

particles in time step n and therefore these iterations cannot be executed concurrently,

and a work distribution is only possible within each iteration. At this point, the main

parallelization efforts are focused on the workload decomposition of calc force(),

according to Tab. 1, but considering the performance bottlenecks that might arise when

performing communications, especially at the covar() function.

In order to allow for parallel computations needed to update the diffusion tensor values

and random displacements, all processes (for clarity purposes, the term “processes” will be

used when considering processes in MPI and threads in OpenMP or UPC) require to have

access to the coordinates for every particle in the system. Thus, all processes store all the

initial coordinates of the particles to avoid continuous remote calls to obtain the necessary

coordinate values when using MPI and UPC. After each iteration, all coordinates are up-

dated for every process by means of function move(), thus minimizing communications.

The calculation of each random displacement in covar() depends on the diffusion ten-

sor matrix D, whose computation has been previously performed by different processes in

calc force(), and consequently communications are unavoidable here. Therefore, it

is necessary to find a suitable workload distribution of diffusion tensor values in matrix D
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to favour the scalability of the code by minimizing the amount of communications required

by covar().

4.1 Shared Memory Parallelization (UPC & OpenMP)

The use of the shared memory space in UPC to store matrix D allows a straightforward

shared memory parallelization: all threads are able to access all the data stored in the

shared memory region, so this parallelization only requires changes in the matrix indexing

to support the access in parallel by UPC threads. However, there are two drawbacks in

this parallelization. The first one is its poor load balancing: thread 0 performs much more

work than the last thread (THREADS-1) because of the distribution in rows of the triangular

matrix D, either with a block or a cyclic distribution. The second issue is the inefficiency

of single-valued remote memory copies in UPC28, which is due to the use of virtual mem-

ory addresses to map the shared variables in UPC. As a result, the computational cost of

handling these shared address translations is not acceptable when simulating large systems

for a long period of time.

Regarding the OpenMP code, the parallelization of calc force() and covar()

can be performed by introducing for directives in the code, which are all fully paralleliz-

able, in order to compute concurrently the interaction values and displacements associated

to each particle. For the two iterative methods required for Fixman’s algorithm (the cal-

culation of the minimum and maximum eigenvalues of matrix D, which uses a variant of

the power method; and the computation of coefficients using the Chebyshev polynomial

expansion), the for loops use a critical directive and a reduction clause, respec-

tively, to compute the total error value for the final approximated coefficients.

The efficiency of the OpenMP code is significantly better than the most simple ap-

proach presented for UPC, even though the differences in programmability are small. How-

ever, in both cases the implemented codes cannot obtain reasonable performance when

distributed memory communications are involved. The shared address translations and im-

plicit remote data movements are not able to provide scalability for more than 2 nodes in

any of these cases, because of the data dependencies in the random displacement calcula-

tion. Therefore, a different approach is required for executions on more than one node.

4.2 Distributed Memory Parallelization (UPC & MPI)

An initial approach to the distribution of the diffusion tensor matrix D and its associated

computations is the force-stripped row decomposition scheme proposed by Murty and

Okunbor29, which has the goal of achieving a more balanced number of computations

and remote copies. This workload/domain decomposition consists in distributing the num-

ber of elements in the upper triangular part of matrix D between the number of processes

in the program by assigning consecutive blocks of 3 rows (associated to a particle) to pro-

cess i until the total number of assigned diffusion tensor values is equal to or higher than

nlocal*(i+1), where nlocal is 3 ∗ N divided by the number of processes. Despite

the relatively good balancing of this distribution, Fixman’s algorithm requires to fill the

lower triangular part of matrix D in order to avoid element-by-element data movements in

covar(), and the communication time becomes too high.
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Figure 1. Balanced distribution of matrix D for Fixman’s algorithm (detailed data structures for process 0).

Fig. 1 presents a more suitable domain decomposition for Fixman’s algorithm, where

each square in matrix D represents the diffusion tensor values associated to a pair of parti-

cles in every combination of their dimensions, i.e. a 3 × 3 submatrix. These squares are

defined as diagonal and non-diagonal elements, and this distribution assigns to each pro-
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cess a balanced number of consecutive elements of each type, regardless of the particles to

which they are associated. In this example, the 16 diagonal elements are distributed among

the 4 processes (each one receives 4 diagonal elements), and the 120 remaining elements

are scattered (30 elements per process). Finally, every chunk is linearized in arrayDiag

(diagonal chunks) and arrayD (non-diagonal chunks) following the flattening process

shown at the bottom of the figure for every 3×3 submatrix. This distribution favours local

processing for diagonal values, as well as the balanced distribution of data and communi-

cations for non-diagonal values.

According to this, the approximation methods for Fixman’s algorithm are parallelized

by having each process to calculate locally a partial result for an approximated value using

its assigned elements in D. Then, an all-to-all collective communication is invoked by every

process to get all the partial results of its assigned rows (defined by non-diagonal elements)

and compute its associated displacements. Additional collective communications are used

in order to start a new iteration of the method.

However, this method presents a limit to its scalability because of the overhead de-

rived from the communications required at each iteration. Therefore, a new approach is

proposed considering matrix D as being non-triangular: the particles in the system are all

evenly distributed by rows between processes and all elements of D are computed by the

corresponding process. This distribution uses a minimum number of communications, be-

cause the approximations in covar() are always computed locally by the corresponding

process, and only an allgather collective operation is necessary to prepare a new iteration.

The main drawback of this implementation is its higher computational cost, because it

computes double the number of elements in D. However, the scalability of this approach is

significantly higher than that of the previous algorithms because of the reduced number of

communications required, which allows to outperform previous approaches as the number

of processes increases.

5 Performance Evaluation

The evaluation of the developed parallel Brownian dynamics codes has been accomplished

mainly on the JuRoPa supercomputer (JRP) at Jülich Supercomputing Centre. Addition-

ally, a second system has been used for shared memory executions: an HP ProLiant SL165z

G7 node with 2 dodeca-core AMD Opteron processors 6174 (Magny-Cours) at 2.2 GHz

with 32 GB of memory, and from now on is referred as “MGC”. The Intel C Compiler

(icc) v12.1 and the Open64 Compiler Suite (opencc) v4.2.5.2 have been used as OpenMP

compilers in JRP and MGC, respectively. The UPC compiler used in both systems was

Berkeley UPC v2.14.2 (released in May 2012) with the Intel C Compiler v12.1 as back-

end C compiler. ParaStation MPI 5.0.27.1 has been used by the MPI code in JRP. All the

executions in this evaluation were compiled with the optimization flag -O3. In order to

perform a fair comparison, all speedup results have been calculated taking the execution

times of the original sequential C code as baseline, as it represents the fastest approach.

Fig. 2 shows the simulation on shared memory for 4096 particles and 50 time steps.

The algorithmic complexity of calculating the diffusion tensor D is O(N2), whereas Fix-

man’s algorithm is O(N2.25); thus, when the problem size increases, the generation of

random displacements represents a larger percentage of the total simulation time. As a

result of this, and also given the parallelization issues mentioned in Sec. 4, the speedup
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is slightly limited for 16 or more threads, mainly for OpenMP (also because of the use

of Simultaneous Multithreading in JRP). However, considering the distance to the ideal

speedup, both systems present reasonably good speedups for this code.
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Figure 2. Performance results with 4096 particles (shared memory on MGC and JRP).

Fig. 3 presents the performance results on distributed memory using 4096 particles and

50 time steps. Here bal-comms and min-comms refers to the mentioned distribution with

balanced and minimum communications, respectively. The bal-comms version obtains an

almost linear speedup up to 64 cores, and also the best results up to the number of cores for

which the computation time is still higher than the communication time (i.e., up to 64 cores

with MPI and 128 cores with UPC for 4096 particles), and UPC all-to-all communications

represent a better choice than MPI in the simulation. The min-comms code shows the high-

est scalability, both for MPI and UPC, achieving in general a speedup of about half of the

number of cores being used. Taking into account that this implementation requires almost

double the number of computations of the original sequential code (hence its speedup with

one core is around 0.6), this represents a significant scalability.
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6 Conclusions

Brownian dynamics simulations which take into account hydrodynamic interactions be-

tween particle pairs are computationally expensive with respect to other classical particle

simulation protocols, e.g. MD. The computational bottleneck lies in constructing the com-

plete diffusion matrix D in periodic boundary conditions and based on this the construction

of correlated random variates, which induces a computational complexity of O(N3) in the

case of Cholesky decomposition (exact representation) or O(N2.25) in the case of the Fix-

man method (approximation). For N > 1000 the computational effort is significant and

limits long time simulations if the simulation is not performed on a parallel architecture.

Therefore, several approaches were conducted to compare the performance of various par-

allel implementations. The main contributions of this parallelization are: (1) the analysis

of data dependencies in the simulation codes and the domain decompositions for different

environments, (2) the assessment of the alternatives in the work distributions to maxi-

mize performance and manage memory requirements efficiently, and (3) the performance

evaluation of different versions of the parallel code with a large number of cores. The

experimental results have shown there is no single optimal approach on distributed mem-

ory communications, but the parallel simulation can scale performance up to thousands of

cores with minimum communications (min-comms) while providing an alternative imple-

mentation with less memory requirements for a reduced number of cores with balanced

communications (bal-comms). Regarding the programming models considered, significant

differences have been found: the higher maturity of MPI routines has provided high per-

formance and stability at the cost of a higher programming effort, OpenMP has provided

the lowest time to solution with good performance only on intra-node communications,

and UPC exploits the PGAS model to obtain an efficient code for all testbed environments.
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Appendix

A Rotne-Prager Tensor in Periodic Boundary Conditions

In this Appendix the expression for the regularized version of the Rotne-Prager tensor in

periodic boundary conditions is given. The expression follows closely the one derived by

Beenaker32 with the extension of the regularization for distances r < 2a.

The tensor D is split into four parts:

D(rij) =
∑

ℓℓℓ

θ(rij(0) − 2a) [D(1)(rij(ℓ)) +D(2)(rij(ℓ)) +D(3)(rij(ℓ))]

+(1− θ(rij(0) − 2a))D(4)(rij(ℓ)) ,

(10)
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where

θ(x) =

{
0 : x < 0
1 : x ≥ 0

(11)

is the step function and rij(ℓ) = ri − rj + ℓℓℓL, with L the simulation box length and

ℓℓℓ = (ℓx, ℓy, ℓz)
T ∈ Z

3, i.e. the resulting tensor contains all contributions between particle

i and j plus all periodic images of particle j. The individual terms of the tensor are given

by:

D(1)(rij) =
kBT

6πηa

(
1− 6√

π
κa

(
1 +

20

9
κ2a2

))
I δijδαβ (12a)

D(2)(rij) =
kBT

6πηa
θ(rij −Rc,D)

{
I

(
3

4

a

rij
+

1

2

a3

r3ij

)
erfc(κrij) (12b)

+I
1√
π

(
4κ7a3r4ij + 3κ3ar2ij − 20κ5a3r2ij −

9

2
κa+ 14κ3a3 + κ

a3

r2ij

)

× exp(−κ2r2ij) + r̂r̂

(
3

4

a

rij
− 3

2

a3

r3ij

)
erfc(κrij)

− r̂r̂

(
4κ7a3r4ij + 3κ3ar2ij − 16κ5a3r2ij −

3

2
κa+ 2κ3a3 + 3κ

a3

r2ij

)

×
exp (−κ2r2ij)√

π

}

D(3)(rij) =
kBT

6πηa

1

V

∑

|k|<kmax

(I− k̂k̂)

(
a− 1

3
a3k2

)(
1 +

1

4

k2

κ2
+

1

8

k4

κ4
6π

k2

)

× exp

(
−1

4

k2

κ2

)
cos(krij(ℓ))

(12c)

D(4)(rij) =
kBT

6πηa

(
1− 9

32

rij
a

)
I+

∑

ℓ
rij(ℓ)>2a

D(2)(rij(ℓ)) +D(3)(rij(ℓ)) (12d)

with

δij =

{
0 : i 6= j
1 : i = j

(13)

the Kronecker-δ and α, β = x, y, z being cartesian indices of the position vectors. Since

these expressions are approximations to the evaluation of an infinite sum, parameters which

control the limits in the sums are introduced, i.e. Eq. 12b is evaluated only for particle

pairs within a cutoff radius Rc,D and Eq. 12c is limited to wavenumbers |k| < kmax,

where k = 2π/Ln, n ∈ Z
3. The parameters Rc,D, kmax, κ of the periodic version of the

Rotne-Prager tensor have to be determined according to an error threshold ǫ. There is no

unique set of parameters fulfilling this requirement, but one may obtain an optimal set of

parameters which, for a given ǫ, minimizes the runtime.
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1 Introduction

During the last few decades, soft matter has developed into an interdisciplinary research

field combining physics, chemistry, chemical engineering, biology, and materials science1.

This is driven by the specificities of soft matter, which consists of large structural units

in the nano- to micrometer range and is sensitive to thermal fluctuations and weak exter-

nal perturbations2–4. Soft matter comprises traditional complex fluids such as amphiphilic

mixtures, colloidal suspensions, and polymer solutions, as well as a wide range of phenom-

ena including self-organization, transport in microfluidic devices and biological capillaries,

chemically reactive flows, the fluid dynamics of self-propelled objects, and the viscoelastic

behaviour of networks in cells3.

The presence of disparate time, length, and energy scales poses particular challenges

for conventional simulation techniques1. Biological systems present additional problems,

because they are often far from equilibrium and are driven by strong spatially and tem-

porally varying forces. The modelling of these systems often requires the use of coarse-

grained or mesoscopic approaches that mimic the behaviour of atomistic systems on the

length scales of interest. The goal is to incorporate the essential features of the microscopic

physics in models which are computationally efficient and are easily implemented in com-

plex geometries and on parallel computers, and can be used to predict emergent properties,

test physical theories, and provide feedback for the design and analysis of experiments and

industrial applications3. In many situations, a simple continuum description, e.g., based

on the Navier-Stokes equation is not sufficient, since molecular-level details play a central

role in determining the dynamic behaviour. A key issue is to resolve the interplay between

thermal fluctuations, hydrodynamic interactions (HI), and spatiotemporally varying forces.

The desire to bridge the length- and time-scale gap has stimulated the development of

mesoscale simulation methods such as Dissipative Particle Dynamics (DPD)5–7, Lattice-

Boltzmann (LB)8–10, Direct Simulation Monte Carlo (DSMC)11–13, and Multiparticle Col-

lision dynamics (MPC)14, 15. Common to these approaches is a simplified, coarse-grained

description of the solvent degrees of freedom. Embedded solute particles, such as poly-

mers or colloids, are often treated by conventional molecular dynamics simulations. All

these approaches are essentially alternative ways of solving the Navier-Stokes equation for

the fluid dynamics.

In this contribution, the basic properties of the MPC approach are presented and its

emergent hydrodynamic behaviour is discussed. Thereby, we focus on the stochastic ro-
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tation dynamics (SRD) version of MPC3, 14–18. In MPC, the fluid is represented by point

particles and their dynamics proceeds in two steps: A streaming and a collision step. Col-

lisions occur at fixed discrete time intervals, and although space is discretized into cells to

define the multiparticle collision environment, both the spatial coordinates and the veloc-

ities of the particles are continuous variables. To illuminate the effects of hydrodynamic

correlations on the dynamics of embedded particles, we consider centre-of-mass veloc-

ity correlation functions of polymers in dilute solution. The fluctuating hydrodynamics

approach based on the linearized Landau-Lifshitz Navier-Stokes equation is adopted to de-

rive corresponding theoretical expressions19. This approach has been shown to describe

the emergent fluctuating hydrodynamics of the MPC fluid very well18.

2 Multiparticle Collision Dynamics

In MPC, the solvent is represented by N pointlike particles of mass m. The algorithm

consists of individual streaming and collision steps. In the streaming step, the particles

move independent of each other and experience only possibly present external forces1.

Without such forces, they move ballistically and their positions ri are updated according

to

ri(t+ h) = ri(t) + hvi(t), (1)

i = 1, . . . , N , vi is the velocity of particle i, and h is the time interval between collisions,

which will be denoted as collision time. In the collision step, a coarse-grained interaction

between the fluid particles is imposed by a stochastic process. For this purpose, the system

is divided in cubic collision cells of side length a. An elementary requirement is that

the stochastic process conserves momentum on the collision-cell level, only then HI are

present in the system. There are various possibilities for such a process. Originally, the

rotation of the relative velocities, with respect to the centre-of-mass velocity of the cell,

around a randomly orientated axis by a fixed angle α has been suggested14, 15, i.e,

vi(t+ h) = vi(t) + (D(α)− E) (vi(t)− vcm(t)) , (2)

where D(α) is the rotation matrix, E is the unit matrix, and

vcm =
1

Nc

Nc∑

i=1

vi (3)

is the centre-of-mass velocity of the Nc particles contained in the cell of particle i. The

orientation of the rotation axis is chosen randomly for every collision cell and time step. As

is easily shown, the algorithm conserves mass, momentum, and energy in every collision

cell, which leads to long-range correlations between particles.

The rotations can be realized in different ways. On the one hand, the rotation matrix

D(α) =




R2
x + (1−R2

x)c RxRy(1− c)−Rzs RxRz(1− c) +Rys
RxRy(1− c) +Rzs R2

y + (1−R2
y)c RyRz(1− c)−Rxs

RxRz(1− c)−Rys RyRz(1− c) +Rxs R2
z + (1−R2

z)c


 (4)
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can be used, with the unit vector R = (Rx,Ry,Rz)
T , c = cosα, and s = sinα. The

Cartesian components of R are defined as

Rx =
√
1− θ2 cosϕ , Ry

√
1− θ2 sinϕ , Rz = θ, (5)

where ϕ and θ are uncorrelated random numbers, which are taken from uniform distribu-

tions in the intervals [0, 2π] and [−1, 1], respectively. On the other hand, a vector rotation

can be performed20. The vector ∆vi = vi − vcm = ∆vi,‖ +∆vi,⊥ is given by the com-

ponent ∆vi,‖ = (∆viR)R parallel to R and ∆vi,⊥ = ∆vi − ∆vi,‖ perpendicular to

R. Rotation by an angle α transforms ∆vi into ∆v′
i = ∆vi,‖ + ∆v′

i,⊥. ∆v′
i,⊥ can be

expressed by the vector ∆vi,⊥ and the vector R×∆vi,⊥, which yields

vi(t+ h) = vcm(t) + cosα∆vi,⊥ + sinα (R×∆vi,⊥) + ∆vi,‖ (6)

= vcm(t) + cosα [∆vi − (∆viR)R]

+ sinαR× [∆vi − (∆viR)R] + (∆viR)R ,

since the vector R×∆vi,⊥ is perpendicular to R and ∆vi,⊥.

In its original form3, 14, 15, 17, the MPC algorithm violates Galilean invariance. This

is most pronounced at low temperatures or small time steps, where the mean free path

λ = h
√
kBT/m of a particle is smaller than the cell size a. Then, the same particles

repeatedly interact with each other in the same cell and thereby build up correlations. In

a collision lattice moving with a constant velocity, other particles interact with each other,

creating less correlations, which implies breakdown of Galilean invariance. In Refs. 16,21,

a random shift of the entire computational grid is introduced to restore Galilean invariance.

In practice, all particles are shifted by the same random vector with components uniformly

distributed in the interval [−a/2, a/2] before the collision step. After the collision, parti-

cles are shifted back to their original positions. As a consequence, no reference frame is

preferred.

The velocity distribution is given by the Maxwell-Boltzmann distribution in the limit

N → ∞, and the probability to find Nc particles in a cell is given by the Poisson distribu-

tion

P (Nc) = e−〈Nc〉〈Nc〉Nc/Nc! , (7)

where 〈Nc〉 is the average number of the particles in a cell.

As an alternative collision rule, Maxwell-Boltzmann, i.e., Gaussian distributed relative

velocities vran
i of variance

√
kBT/m can be used to create new velocities according to

Refs. 20, 22, 23.

vi(t+ h) = vcm(t) + vran
i − 1

Nc

Nc∑

j=1

vran
i . (8)

Here, a canonical ensemble is simulated and no further thermalization is needed in non-

equilibrium simulations, where there is viscose heating. From a numerical point of view,

however, the calculation of the Gaussian random numbers is somewhat more time con-

suming, hence the performance is slower compared to SRD3. In Refs. 22–24 algorithms

are presented, which additionally preserve angular momentum.
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3 Embedded Objects and Boundary Conditions

A very simple procedure for coupling embedded objects such as colloids or polymers to a

MPC solvent has been proposed in Refs. 25–28. In this approach, every colloidal particle

or monomer in a polymer is taken to be a point particle which participates in the MPC

collision. If monomer µ has mass M and velocity vµ the centre-of-mass velocity of all

particles (MPC and monomers) in a collision cell is

vcm =

Nc∑

i=1

mvi +

Nc
m∑

µ=1

Mvµ

mNc +MN c
m

, (9)

where N c
m is the number of monomers in the collision cell. A stochastic collision of the

relative velocities of both the solvent particles and embedded monomers is then performed

in the collision step, which leads to an exchange of momentum between them. The dy-

namics of the monomers is typically treated by molecular dynamics simulations (MD),

applying the velocity Verlet integration scheme29, 30. Hence, the new monomer momenta

(velocities) are used as initial conditions for the subsequent streaming step (MD) of du-

ration h. In this approach, the average mass of solvent particles per cell m 〈Nc〉, should

be of the order of the monomer or colloid mass M (assuming one embedded particle per

cell). This corresponds to a neutrally buoyant object. It is also important to note that the

average number of monomers per cell 〈N c
m〉 should be on the order of unity or smaller in

order to properly resolve HI between them. On the other hand, the average bond length in

a semiflexible polymer or rodlike colloid should not far exceed the cell size a, in order to

capture the anisotropic friction of rodlike molecules due to HI (which leads to a twice as

large perpendicular than parallel friction coefficient for long stiff rods31, 32), and to avoid

an unnecessarily large ratio of the number of solvent to solute particles. Hence, the average

bond length should be of order a.

To accurately resolve the local flow field around a colloid, methods have been pro-

posed which exclude fluid-particles from the interior of the colloid and mimic slip15, 33 or

no-slip3, 34, 35, 24 boundary conditions. No-slip boundary conditions are modelled by the

bounce-back rule. Here, the velocity of a particle is inverted from vi to −vi when it in-

tersects the surface of an impenetrable particle, e.g., colloid or blood cell, or wall. Since

walls or surfaces will generally not coincide with the collision cell boundaries, in particu-

lar due to random shifts, the simple bounce-back rule fails to guarantee no-slip boundary

conditions. The following generalization of the bounce-back rule has therefore been sug-

gested34: For all cells that are intersected by walls, fill the wall part of the cell with a

sufficient number of virtual particles in order to make the total number of particles equal

to 〈Nc〉. The velocities of the wall particles are taken from a Maxwell-Boltzmann distri-

bution with zero mean and variance kBT/m. Since the sum of Gaussian random numbers

is also Gaussian distributed, the velocities of the individual virtual particles need not be

determined explicitly, it suffices to determine a momentum p from a Maxwell-Boltzmann

distribution with zero mean and variancemNpkBT , whereNp = 〈Nc〉−Nc is the number

of virtual particles corresponding to the partially filled cell of Nc particles. The centre-of-
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mass velocity of the cell is then

vcm =
1

m 〈Nc〉

(
Nc∑

i=1

mvi + p

)
. (10)

Results for a Poiseuille flow obtained by this procedure, both with and without cell shifting,

are in good agreement with the correct parabolic flow profile34.

However, this does not completely prevent slip, because the average centre-of-mass

position of all particles in a collision cell – including the virtual particle – does not coincide

with the wall. In order to further reduce slip, the following modification of the original

approach has been proposed36. To treat a surface cell on the same basis as a cell in the

bulk, i.e., the number of particles satisfies the Poisson distribution with the average 〈Nc〉,
we take fluctuations in the particle number into account by adding Np virtual particles to

every cell intersected by a wall such that 〈Np +Nc〉 = 〈Nc〉. There are various ways to

determine the number Np. For a system with parallel walls, we suggest to use the number

of fluid particles in the opposite surface cell, i.e., the surface cell cut by the opposing wall.

The average of the two numbers is equal to 〈Nc〉. Alternatively, Np can be taken from a

Poisson distribution with average 〈Nc〉 accounting for the fact that there are already Nc

particles in the cell. Now, the centre-of-mass velocity of the particles in a boundary cell is

vcm =
1

m(Nc +Np)

(
Nc∑

i=1

mvi + p

)
. (11)

The momentum p of the effective virtual particle is obtained as described above.

4 Simulation Parameters

The linear size of the cubic simulation box is typically chosen in the range

L/a = 20− 120, where a is length of the cubic collision cell. The transport properties

of the solvent depend on h, α, and Nc
3, 17, 37. Tuning these parameters allows us to attain

solvents with a high Schmidt number Sc and a low Reynolds number Re. The choice

〈Nc〉 = 10, α = 130◦, and h/
√
ma2/(kBT ) = 0.1, where T is the temperature and kB

is the Boltzmann constant, yields the solvent viscosity η = m 〈Nc〉 ν = 8.7
√
mkBT/a4,

where ν is the kinematic viscosity, and the Schmidt number Sc = 17, which ensures that

momentum transport dominates over mass transport38.

5 Cell-Level Canonical Thermostat

In any nonequilibrium situation, the presence of external fields destroys energy conser-

vation and a control mechanism has to be implemented to maintain temperature (a brief

review on existing thermostats is presented in Ref. 39). A basic requirement of any ther-

mostat is that it does not violate local momentum conservation, smear out local flow

profiles, or distort the velocity distribution significantly. A simple and efficient way to

maintain a constant temperature is velocity scaling. For a homogeneous system, a sin-

gle global scaling factor is sufficient. For an inhomogeneous system, such as shear flow or

Poiseuille flow, a local, profile-unbiased thermostat is required. Here, the relative velocities

45



∆vi = vi−vcm (Eq. 2) are scaled, before or after the rotation (velocity scaling exchanges

with the rotation), i.e., new velocities ∆v′
i are obtained according to ∆v′

i = κ∆vi, where

κ is the scale factor.

In its simplest form, velocity scaling keeps the kinetic energy at the desired value. For

a profile-unbiased global scaling scheme, the scale factor is give by

κ =

(
3(N −Ncl)kBT

2Ek

)1/2

(12)

in three-dimensional space, where Ncl is the number of collision cells and Ek =∑N
i=1m∆v2

i /2 the kinetic energy of all particles with respect to their cells’ centre-of-

mass velocities. The corresponding expression for cell-level scaling is

κ =

(
3(Nc − 1)kBT

2Ek

)1/2

, (13)

where nowEk =
∑Nc

i=1m∆v2
i /2 is the kinetic energy of the particles within the particular

cell. Note that the scale factor is different for every cell.

This kind of temperature control corresponds to an isokinetic rather than isothermal,

i.e., canonical ensemble, and may have sever consequences on certain properties such as

local temperature or particle number39. Such artifacts are avoided by a cell-level canonical

thermostat. Instead of using the thermal energy as reference, an kinetic energy is deter-

mined from its distribution function in a canonical ensemble39

P (Ek) =
1

EkΓ(f/2)

(
Ek

kBT

)f/2

exp

(
− Ek

kBT

)
. (14)

Here, f = 3(Nc − 1) denotes the degrees of freedom of the considered system and Γ(x) is

the gamma function. The distribution function P (Ek) itself is denoted as gamma distribu-

tion. In the limit f → ∞, the gamma distribution turns into a Gaussian function with the

mean 〈Ek〉 = fkBT/2 and variance f(kBT )
2/2.

To thermalize the velocities of the MPC fluid on the cell level, a different energy Ek is

taken from the distribution function (Eq. 14) for every cell and time step and the velocities

are scaled by the factor

κ =

(
2Ek∑Nc

i=1m∆v2
i

)1/2

. (15)

For a fixed Nc, we then obtain the following distribution function for the relative velocity

of a particle in a cell in the limit of a large number of MPC steps

P (∆v, Nc) =

(
m

2πkBT (1− 1/Nc)

)3/2

exp

(
− m

2kBT (1− 1/Nc)
∆v2

)
. (16)

However, the number of fluid particles in a cell is fluctuating in time. Thus, the actual

distribution function is obtained by averaging Eq. 16 over the Poisson distribution Eq. 7

P (∆v) =

∞∑

Nc=2

e−〈Nc〉 〈Nc〉Nc

Nc!
P (∆v, Nc)/

(
1− (〈Nc〉+ 1)e−〈Nc〉

)
. (17)

Results for various examples are provided in Ref. 39.
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6 Transport Coefficients

A major advantage of the MPC dynamics is that the transport properties may be computed

and analytical expressions be derived17. In the following, the self-diffusion coefficient

and the viscosity of the MPC solvent will be discussed. Other aspects are presented in

Refs. 3, 17, 40.

6.1 Diffusion Coefficient

The diffusion coefficient D of a particle i can be obtained from the Green-Kubo rela-

tion3, 17, 21, 41

D =
h

6

〈
vi(0)

2
〉
+
h

3

∞∑

n=1

〈vi(nh)vi(0)〉 (18)

for a discrete-time random system in three-dimensional space. tn = nh denotes the dis-

crete time of the nth collision. The average 〈. . .〉 comprises both, averaging over the orien-

tation of the rotation axis (R) and the distribution of velocities. The two are independent.

To evaluate the expression, the velocity auto-correlation function is required. An exact

evaluation of the correlation function is difficult or even impossible, because it would imply

that the full correlated dynamics of the particles can analytically be calculated. However,

an approximate expression can be derived.

In a first step, the average over the random orientation of the rotation axis is performed.

Since the orientation is isotropic in space, all odd moments of the Cartesian components

of R vanish and the second moments are given by 〈RβRβ′〉 = δββ′/3. Thus,

〈vi(t+ h)vi(t)〉 = 〈vcm(t)vi(t)〉+
1

3
(1 + 2 cosα) 〈∆vi(t)vi(t)〉 . (19)

To evaluate the correlation function with the centre-of-mass velocity, we apply the

molecular chaos assumption, which assumes that different particles are independent, i.e.,

〈vj(t)vi(t
′)〉 = δij 〈vi(t)vi(t

′)〉. Hence,

〈vi(t+ h)vi(t)〉 = (1− γ)
〈
vi(t)

2
〉
, with γ =

2

3
(1− cosα)

(
1− 1

〈Nc〉

)
. (20)

Since we typically consider 〈Nc〉 ≥ 10, number fluctuations in a collision cell can be

neglected1. More generally, iteration yields

〈vi(nh)vi(0)〉 = (1− γ)n
〈
vi(0)

2
〉
. (21)

With Eq. 21, the diffusion coefficient follows as40, 41

D =
h
〈
vi(0)

2
〉

3

(
1

γ
− 1

2

)
=
hkBT

m

(
1

γ
− 1

2

)
(22)

within the molecular chaos assumption42, 27.
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6.2 Viscosity

The shear viscosity is one of the most important properties of complex fluids. In particular,

it characterizes their non-equilibrium behaviour, e.g., in rheology. Various ways have been

suggested to obtain an analytical expression for the viscosity of a MPC fluid. In Refs. 3,

21, 41, 43, 44, linear hydrodynamic equations (Navier-Stokes equation) and Green-Kubo

relations are exploited. Alternatively, non-equilibrium simulations can be performed and

transport coefficients are obtained from the linear response to an imposed gradient. The

two approaches are related by the fluctuation-dissipation theorem.

In simple shear flow, with the velocity field vx = γ̇y, where vx is the fluid flow field

along the x-direction (flow direction), y the gradient direction, and γ̇ the shear rate, the

viscosity η is related to the stress tensor σxy via

σxy = ηγ̇. (23)

Hence, an expression is required for the stress tensor to either derive η analytically and/or

to determine it in simulations. In Refs. 45,46, the kinetic theory moment method has been

applied to derive an analytical expression.

6.2.1 Stress Tensor

An expression for the stress tensor can be determined by the virial theorem36, 47, 1. Starting

from the equation of motion of a particle, the following expressions are obtained

σe
xy =

1

V h

N∑

i=1

∆pixRiy −
γ̇

2V

N∑

i=1

m(viy + v̂iy)Riy, (24)

σi
xy = − 1

V

N∑

i=1

mv̂′ixv̂iy −
γ̇h

2V

N∑

i=1

mv2iy −
1

V h

N∑

i=1

∆pixr
′
iy (25)

for the internal σi
xy and external σe

xy stress tensor in the presence of shear flow.

6.2.2 Viscosity of MPC Fluid: Analytical Expressions

The derived expressions for the stress tensors are independent of any particular collision

rule. The viscosity of a system, however, depends on the applied collision procedure.

Analytical expressions for the viscosity of an MPC fluid have been derived by various

approaches3, 15, 17, 16, 23, 45, 36, 44, 46.

In simple shear flow, the viscosity η is given by Eq. 23, where the (macroscopic) stress

tensor follows from σxy = 〈σi
xy〉 = 〈σe

xy〉 1, 36. For a MPC fluid, the stress tensor is

composed of a kinetic and collisional contribution3, 15, 17, 16, 23, 45, 36, i.e, σxy = σkin
xy + σcol

xy ,

which implies that the viscosity η = ηkin + ηcol consists of a kinetic ηkin and collisional

ηcol part too. For a system with periodic boundary conditions, the two contributions are

conveniently obtained from the internal stress tensor (Eq. 25). The kinetic contribution

ηkin is determined by streaming, i.e., the velocity dependent terms in Eq. 25. Evaluation

of the expressions, employing the molecular chaos assumption, yields

ηkin =
NkBTh

V

[
5 〈Nc〉

(〈Nc〉 − 1)(4− 2 cosα− 2 cos(2α))
− 1

2

]
, (26)
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with the equipartition of energy
〈
v2iy
〉
Ns

= kBT/m.

The collisional viscosity ηcol is determine by the momentum change of the particles

during the collision step. Since the collisions in the various cells are independent, it is

sufficient to consider one cell only. Evaluation of the averages then yields

ηcol =
Nma2

18V h
(1− cosα)

(
1− 1

〈Nc〉

)
. (27)

7 Fluctuating Hydrodynamics

The hydrodynamic properties of the MPC fluid are described by the linearized Navier-

Stokes on sufficiently large length and long time scales14, 17, 3, 46, 40, 18. A recent detailed

study of the emergent fluctuating hydrodynamics of the SRD-MPC fluid even demonstrated

that the linearized Landau-Lifshitz Navier-Stokes equation provides a excellent description

on length scales above a collision cells18.

For a compressible isothermal SRD fluid, the corresponding linearized continuity and

Landau-Lifshitz Navier-Stokes equations are

∂

∂t
ρ+ ρ∇ · v = 0, (28)

ρ
∂

∂t
v = −∇p+ η∆v +

1

3
ηkin∇(∇ · v) + f + fR (29)

in three dimensions18, 19. Here, ρ = ρ(r, t) denotes the mass density of the fluid,

v = v(r, t) the fluid velocity field at the position r in space at the time t, f(r, t) is a

volume force density, and fR(r, t) = ∇ · σR the random force density due to the thermal

fluctuations of the fluid, with σR the corresponding stress tensor. η = ηkin + ηcol is the

MPC fluid viscosity40, 18, 36.

The stochastic process for σR is assumed to be Gaussian and Markovian with the

moments
〈
σR
〉
= 0 (30)

〈
σR
αβ(r, t)σ

R
α′β′(r, t)

〉
= 2kBTηαβα′β′δ(r − r′)δ(t− t′),

α, α′, β, β′ ∈ {x, y, x}, and

ηαβα′β′ =ηδαβ′δβα′ +
1

2

[
η + ηkin

]
δαα′δββ′ − 1

2

[
η +

1

3
ηkin

]
δαβδα′β′ . (31)

Since SRD is not conserving angular momentum in the MPC collision step, the fluid stress

tensor is non-symmetric, which is also accounted for in the correlations (Eq. 30).

The linear Eqs. 28 and 29 are solved by Fourier transformation. Since we want to

compare the analytical results with computer simulation results, we adopt a discrete Fourier

transformation for a spatial periodic system, i.e., we use18

v(r, t) =
1

2π

∑

k

∫
v(k, ω)e−ik·reiωtdω, (32)

v(k, ω) =
1

V

∫
v(r, t)eik·re−iωtd3rdt, (33)
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with kα = 2πnα/L and nα ∈ Z\{0}. This yields the flow field

v(k, ω) = Q(k, ω)
[
fR(k, ω) + f(k, ω)

]
, (34)

with the tensor Q(k, ω) = QL(k, ω) +QT (k, ω) and

QL =

(
η̃k2 +

iρ

ω
[ω2 − c2k2]

)−1

P = QLP, (35)

QT =
(
ηk2 + iρω

)−1
(E−P) = QT (E−P) , (36)

and η̃ = η + ηkin/3. Note that for angular-momentum conserving fluids η̃ = 4η/3.

Otherwise the same expressions 35 and 36 are obtained. P is a projection operator with

the components Pαβ = kαkβ/k
2, and projects a vector along the direction of k; k = |k|.

Hence, v(k, ω) = vL(k, ω) + vT (k, ω) consists of a longitudinal part vL and transverse

part vT with respect to k, i.e., v · k = vLk and vT · k = 0. Fourier transformation with

respect to ω yields

QT (k, t) =
1

ρ
e−νk2tΘ(t) (37)

for the transverse part, where Θ(t) is Heaviside’s function and ν = η/ρ the kinematic

viscosity. For the longitudinal contribution, we obtain the expression18

QL(k, t) =
1

ρ
e−k2ν̃t/2

[
cos(Ωt)−

√
k2ν̃2

4c2 − k2ν̃2
sin(Ωt)

]
Θ(t) (38)

for 4c2/(k2ν̃2) > 1, where Ω = k2ν̃
√
4c2/(k2ν̃2)− 1/2, and

QL(k, t) =
1

ρ
e−k2ν̃t/2

[
cosh(Λt)−

√
k2ν̃2

k2ν̃2 − 4c2
sinh(Λt)

]
Θ(t) (39)

for 4c2/(k2ν̃2) < 1, with Λ = k2ν̃
√

1− 4c2/(k2ν̃2)/2.

7.1 Velocity Correlation Functions

Insight into the fluid dynamics is obtained by the velocity correlation functions

〈v(k, t) · v(k′, 0)〉 and 〈v(t) · v(0)〉 in Fourier and real space, respectively. By convo-

lution, we obtain the expression18

〈v(k, t) · v(k′, 0)〉 = 2kBTk
2

V
δk,−k′

∫ [
2ηQT (k, t− t′)QT (k′,−t′) (40)

+η̃QL(k, t− t′)QL(k′,−t′)
]
dt′.

7.1.1 Transverse Velocity Correlation Function

With Eq. 37, the transverse velocity correlation becomes

〈
vT (k, t) · vT (−k, 0)

〉
=

2kBT

ρV
e−νk2|t| (41)

50



in the stationary state18. Hence, the correlation function decays exponentially

for all k values. The time integral of the normalized correlation function〈
vT (k, t) · vT (−k, 0)

〉
/
〈
vT (k, 0) · vT (−k, 0)

〉
yields

T (k, t) =

∫ t

0

e−νk2t′dt′ =
1

νk2

(
1− e−νk2t

)
. (42)

Thus, in the limit t→ ∞, T (k) is proportional to the Oseen tensor31, 32

O =
1

ηk2
(E−P) (43)

in k-space.

Fig. 1 depicts simulation results for the k dependence of T (k) = limt→∞ T (k, t) for

various collision time steps h. For sufficiently small k values, T (k) follows the prediction

of the Stokes equation and hence shows the same dependence as the Oseen tensor. Above

a certain value, which depends on the collision time step, T (k) itself approaches a plateau.

Hence, below a certain length scale no hydrodynamic interactions are present anymore.

The asymptotic behaviour can be calculated by applying the molecular chaos assumption.

As shown in Fig. 1, the theoretical expression captures the small scale behaviour18.

An characteristic length scale λc, which separates the hydrodynamic from the

non-hydrodynamic regime, is obtained by the intercept of the Oseen-type dependence

T (k) = 1/(νk2) with the asymptotic dependence T (k) = Tmc(k) = h/2, which yields

λc = π
√
2νh. As shown by the inset of Fig. 1, the theoretical expression describes the

experimental data very well18.
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Figure 1. Dependence of T (k) = limt→∞ T (k, t) (Eq. 42) on the wave number for the collision times

h/
√

ma2/(kBT ) = 0.01 (N), 0.1 (�), 0.5 (�), and 1.0 (•). The thick solid line indicates the dependence

1/k2, corresponding to the Oseen tensor. The horizontal lines are the theoretical predictions for the plateau val-

ues18 of νT (k). The inset shows the theoretical prediction for the characteristic length scale λc (solid line) and

the values extracted from the simulations (squares).
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7.1.2 Longitudinal Velocity Correlation Function

The longitudinal velocity correlation function reads as

〈
vL(k, t)vL(−k, 0)

〉
=
kBT

ρV
e−ν̃k2|t|/2

[
cos(Ω|t|)−

√
k2ν̃2

4c2 − k2ν̃2
sin(Ω|t|)

]
, (44)

with Eq. 38. For 4c2/(k2ν̃) < 1, the hyperbolic functions with the argument Λ has to be

used, as in Eq. 39. Thus, the correlation functions for the various k values decay exponen-

tially and oscillate for small k values. For large k values, the decay is more complex18.

7.1.3 Velocity Correlation Function in Real Space

The velocity correlation function 〈v(r, t) · v(r′, 0)〉 of the fluid at a point r at time t and

r′ at t′ = 0 follows by Fourier transformation

〈v(r, t) · v(r′, 0)〉 =
∑

k

〈v(k, t) · v(−k, 0)〉 e−ik·(r−r′), (45)

with 〈v(k, t) · v(−k, 0)〉 the sum of the transverse (Eq. 41) and longitudinal (Eq. 44) cor-

relation functions.

Adopting the Lagrangian description of the fluid, where a fluid element is followed as

it moves through space and time, we additionally average the correlation function over the

distribution of displacements r − r′. Hence, Eq. 45 turns into

〈v(t) · v(0)〉 =
∑

k

〈v(k, t) · v(−k, 0)〉
〈
e−ik·(r−r′)

〉
. (46)

Assuming a diffusive motion of the fluid element, with Gaussian distributed displacements,

we find

〈v(t) · v(0)〉 =
∑

k

〈v(k, t) · v(−k, 0)〉 exp
(
−k2

〈
(r(t)− r(0))2

〉
/6
)
. (47)

Here,
〈
(r(t)− r(0))2

〉
indicates the mean square displacement, which, in the simplest

case, reduces to
〈
(r(t)− r(0))2

〉
= 6Dt, with D the diffusion coefficient of a MPC

particle.

In general, the sum over k in Eq. 47 cannot be evaluated analytically. For the transverse

velocity correlation function, however, we obtain the expression

〈
vT (t) · vT (0)

〉
=

2kBT

ρ(2π)3

∫
e−νk2te−Dk2td3k =

kBT

4ρ

1

[π(ν +D)t]3/2
(48)

in the limit of an infinitely large system (L → ∞). Hence, we find the well-known long-

time tail of the transverse velocity correlation function48–54.

Velocity correlation functions of a MPC fluid in real space are presented in Fig. 2.

The simulation data are well described by the theoretical expression Eq. 47, with Eqs. 41

and 44, over several decades in time. We like to emphasize that we include the full mean

square displacement of a MPC particle (Eq. 47) and not simply the linear dependence on

time. The latter yields a slightly different theoretical curve, in particular in the vicinity

of the minimum at t/
√
ma2/(kBT ) ≈ 2. The theoretical approach even reproduces the
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Figure 2. Magnitude of the normalized velocity autocorrelation function (Eq. 47) of a MPC fluid (symbols) for

the collision times h/
√

ma2/(kBT ) = 0.1. The theoretical results (solid lines) are obtained from Eq. 47 with

Eqs. 41 and 4418.

oscillations at large time. They are caused by sound and the finite system size. More

details are discussed in Ref. 18. However, we have to introduce an upper cut-off for the k
values. As discussed, the hydrodynamic description of the MPC fluid breaks down below

a certain length scale. To achieve a good fit over a large time range, the maximum k value

is kn = 2πn/60 with n = 16. This corresponds to the lower length scales ≈ 3.8a. This

value is somewhat above the theoretically estimated critical length scale λc ≈ a.

The deviation between the theoretical expression and the simulation results at short

times is also related to the cut-off in k values. The correlation function is determined

by large k values at short times. Here, however, the theoretical and simulation results

deviate, because the MPC solvent does not exhibit hydrodynamic behaviour anymore for

2π/λc < k <∞.

8 Dynamics of Polymers in Dilute Solution

As an example for the effect of hydrodynamic correlations on the dynamics of objects

embedded in a MPC solvent, we will briefly discuss the (short) time dynamics of polymers

in dilute solution.

8.1 Model

We consider a single flexible Gaussian polymer embedded in the MPC fluid31, 56. The

polymer is composed of mass points of Mass M , which are linear connected by harmonic
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Figure 3. Polymer centre-of-mass velocity correlation function Ccm(t) = 〈vcm(t) · vcm(0)〉 /(kBT/m) for

a polymer of length Nm = 160 (red)55. For comparison, the fluid velocity correlation function is presented as

well (black line). The green line indicates the long-time tail according to Eq. 4818.

springs with the potential

UG =
3kBT

2l2

Nm−1∑

µ=1

(rµ+1 − rµ)
2, (49)

where rµ(t) is the position of the bead µ (µ = 1, . . . , Nm), l is the root-mean-square

bond length, and Nm is the number of beads. In the following we will use l = a. The

dynamics of the beats is described by Newton’s equations of motion, which are solved by

the Velocity Verlet algorithm30, 29.

8.2 Velocity Correlation Function

Fig. 3 shows the polymer centre-of-mass velocity correlation function for a polymer of

length Nm = 160. Evidently, its correlation function is significantly different from that

of the fluid itself at short times. At longer times, however, the polymer aspects vanish and

the correlation function is solely determined by the fluid correlations. In that regime, the

correlation function exhibits the fluid-velocity long-time tail. The oscillations at longer

times are caused by finite-size effects, as discussed already for the bare fluid.

There is a polymer-length dependent time regime, where the correlation function is

governed by polymer properties. For the transverse part of the correlation function, ana-

lytical calculations yield57

〈
vT
cm(t) · vT

cm(0)
〉
=

kBT

ρ
√
π3R2

g

[
1√
νt

+
2

R2
g

(√
νt−

√
νt+R2

g

)]
, (50)
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Figure 4. Polymer centre-of-mass velocity correlation functions for polymers of lengths Nm = 40 (green), 160
(red), and 640 (blue)55. The black line indicates the long-time tail. The magenta line shows the dependence

Ccm(t) ∼ t−3/4.

where R2
g = l2Nm/6 is radius of gyration, in the limit of an infinitely large system55, 57.

This expression yields the fluid long-time tail t−3/2 for νt ≫ R2
g . In the opposite limit

νt≪ R2
g , the expression predicts the dependence

〈
vT
cm(t) · vT

cm(0)
〉
∼
(
R2

g

)−1
(νt)−1/2 (51)

on the radius of gyration and time. For sufficiently long times, the theoretical expression

describes the simulation results very well, as shown in Fig. 4. As predicted, the crossover

to the fluid-dominated correlation function shifts to longer times with increasing polymer

length. However, the considered polymers are too short to exhibit the t−1/2 dependence.

We rather find a dependence closer to t−3/4. The t−1/2 dependence should follow for much

longer polymers. At short times, sound plays a certain role – an aspect more pronounced

for short polymers. This is reflected by the non-monotonous behaviour of the correlation

functions in the vicinity of t/
√
ma2/(kBT ) ≈ 10.

The correlation functions clearly reveal the strong impact of fluid hydrodynamic cor-

relations on the dynamics of polymers, at least for short times. For the centre-of-mass

diffusion coefficient, sound does not play any role, as pointed out for colloids already58.

The calculation of the diffusion coefficient, however, requires inclusion of the long-time

tail. As is well known, for any finite system, the diffusion coefficient underestimates the

asymptotic infinite-system value. This simply reflects the fact that the long-time tail is not

fully accounted for.
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9 Conclusions

In the short time since Malevanets and Kapral14, 15 introduced the MPC dynamics approach

as a particle-based mesoscale simulation technique, the method developed into a versatile

tool to study hydrodynamic properties of complex fluids1. By now, several collision algo-

rithms have been proposed and employed, and the method has been generalized to describe

multi-phase flows and viscoelastic fluids3. A major advantage of the algorithm is the sim-

plicity by which the fluid can be coupled to the dynamics of embedded particles using a

hybrid MPC-MD simulations approach. Results of such studies are in excellent quantita-

tive agreement with both theoretical predictions and results obtained using other simulation

techniques. Here, we have demonstrated that the emergent hydrodynamic correlations of

the MPC fluid can well be described by fluctuating hydrodynamic Landau-Lifshitz Navier-

Stokes equation, or, vice versa, the MPC approach provides a solution of this equation,

at least at low Reynolds numbers18. Naturally, fluid correlations also influence the dy-

namical behaviour of embedded objects, as we demonstrated for polymer centre-of-mass

velocity-correlation functions. In the future, we will see more applications of the method

in non-equilibrium and driven soft-matter systems. Specifically, systems where thermal

fluctuations play a major role. Here, the full advantage of the method can be exploited,

because the interactions of colloids, polymers, and membranes with the mesoscale solvent

can be treated on the same basis.
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We present an overview of a novel method for hydrodynamics of small particles in a fluid

solvent. The method consistently solves the fluid and particle inertia and accounts for thermal

fluctuations in the fluid momentum equation. The coupling between the fluid and the blob

is based on a no-slip constraint equating the particle velocity with the local average of the

fluid velocity, and conserves momentum and energy. Owing to the non-dissipative nature of

the no-slip coupling, the fluctuation-dissipation balance is possible without addition of extra

particle noise. The local averaging and spreading operations are accomplished using compact

kernels commonly used in immersed boundary methods. These kernels make the discrete blob

a particle with surprisingly physically-consistent volume, mass, and hydrodynamic properties.

The present inertial coupling method can model particulate flows in a wide range of time-scales

ranging from Brownian to convection-driven motion, using a minimal cost. It can be naturally

extended to polymeric fluids and other types of physico/chemical phenomena.

1 Introduction

Many natural phenomena and industrial process involve small particles immersed in a sol-

vent fluid moving over disparate length and time scales1: from dust (10−3m) in turbulent

flow to colloidal molecules (10−[5−8]) in quiescent, laminar2, 3 or turbulent regimes4. Quite

often disparate dynamic regimes coexists within different subdomains of the same reaction

chamber5 thus posing a serious challenge for any computational approach. This type of

scenario is paradigmatic of what one might call the multi-regime condition. At present,

these type of processes demand efficient ways to resolve the motion of many colloidal

particles O(105) driven by either diffusion, friction or inertial forces.

Particle-particle methods (such as smoothed particle hydrodynamics (SPH)6 and

stochastic rotation dynamics (SRD)3) resolve both the particle and fluid phase using sim-

ilar discrete Lagrangian descriptions. They all have important drawbacks when compared

with standard solvers for discretized continuum fluid dynamics (CFD). They offer limited

control over the fluid properties and/or require relatively small time steps compared with

advanced time-stepping CFD techniques (e.g. semi-implicit schemes). More importantly,

they cannot be adapted to efficiently treat the natural dynamical time scales, such as those

governing the Brownian motion or the incompressible flow limit. These drawbacks also

apply to the lattice Boltzmann (LB) method.
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In the realm of CFD one can still distinguish methods in which the computational

mesh self-adapts to follow the particle7 from those using a fixed (Eulerian) grid which

translate the particle boundary conditions into body forces (which also drive the particle)8.

These second group of methods, sometimes called “mixed Eulerian-Lagrangian schemes”2

are particularly suited to attack the “multiregime” problem because they are faster, more

flexible and can work with minimal resolution models (pointwise particle descriptions).

Precisely, for a minimal resolution methodology, we present here briefly a consistent de-

scription of inertial forces.

In their seminal work, Maxey and Riley9 decomposed the fluid velocity as

v(r, t) = v0(r, t) + v1(r, t), where v0 is the undisturbed flow (which would result if the

boundary conditions at the particle surface were not applied), and v1 is the perturbative

component created by the fluid-particle interaction. In the bulk flow, convection (advec-

tion) becomes relevant for ReF = v0Lρ/η > 1; where the fluid Reynolds number ReF
is defined in terms of the typical flow speed v0, the fluid density ρ, the dynamic viscosity

η = ρν, and a characteristic length L for velocity variation in the flow. Maxey and Riley

decompose the fluid force on the particle in the local fluid inertial force (proportional to

the local material derivative of v0) and in a frictional contribution arising from the pres-

sure created by the particle disturbance. From this analysis one can first distinguish a

relaxational particle inertia (consequence of its mass resistance to follow the fluid) which

manifests in a fluid drag (linear in velocity) which damps the particle velocity to the local

fluid velocity. This relaxation process occurs in an inertial lag-time τP ∼ (ρP − ρ)R2/η
which increases with the density contrast ρP − ρ and with the particle radius R.

By contrast, convective inertia arises from non-linear interactions between the parti-

cle dynamics and perturbative flow10. The particle Reynolds number ReP = 2wR/ν,

defined with the particle-fluid relative speed w, determines the strength of perturbative

flow advection relative to viscous dissipation. The importance of convective inertia is in-

dicated by the ratio ReF (R/L)
2 between the characteristic times associated with Stokes

drag and convection9, 10. At finite values of the non-dimensional groups ReP = 2wR/ν
and ReF (R/L)

2 inertia effects due to particle mass and particle size are not interchange-

able anymore, leading to a relevant open problem in turbulence4. Interestingly, at small

ReP non-linear interaction between particle advection and thermal fluctuations are also

possible. Some examples are the change in mobility of colloidal particles with respect the

Stokes limit at low Schmidt numbers (typical of aerosol)11 and inertial effects in directional

locking (a process to to separate nanoparticles at very small ReP )12.

Computational approaches can be naturally classified according to the dynamical

regime they can be safely applied to. In order to highlight the relevance of the present

approach, we present an overview of the different methodologies designed to the dynami-

cal regimes characterized by ReF , ReP and R/L.

1.1 Creeping Flow Limit, ReF → 0 and ReP → 0

In this case the perturbative flow v1 has a negligible effect on the unperturbed field, which

is a priori fixed. The perturbative field created by a collection of particles is the linear su-

perposition of the Stokes fields and it determines the multi-body hydrodynamic forces on

the particle ensemble. Analytically expressions for these forces are embedded in the mo-

bility matrix of Brownian hydrodynamics (BD)13, 14 and Stokesian dynamics (SD)15 which
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in addition to the stokeslet (monopole) term might include higher terms of the multipole

expansion of the perturbative stress. The zero-Reynolds regime resolves the long-time

diffusive limit of colloidal motion where fluctuations are important. A direct implemen-

tation of the fluctuation dissipation (FD) relation between the friction and noise matrices

requires O(N3) operations (where N is the number of particles) although sophisticated

and technically-complex techniques15, 14, reduce the cost to O(N lnN) operations, albeit

with large multiplicative prefactors.

1.2 Finite ReF and ReP < 1

As an alternative to BD and SD methods, two-way coupling algorithms using a Stokes

frictional force were developed for mixed Eulerian-Lagrangian dynamics2, 16, 17. The idea

is to deploy a relative simple and efficient fluid solver to explicitly resolve the perturba-

tive flow responsible for the hydrodynamic coupling between particles. The total particle

computational cost scales almost linearly as O(N logN) while the added fluid solver cost

scales like the system volume. These schemes are based on the Stokes (i.e. frictional) cou-

pling assumption so they are limited to ReP < 1 and far-field hydrodynamics (R/L < 1).

Convective inertia is neglected and some form of particle relaxational inertia is introduced

a la Langevin, via a phenomenological friction coefficient which provides a finite particle

response time τP . Frictional coupling is obviously dissipative and requires introducing an

additional noise term in the particle equation, different from that of the fluctuating fluid2, 17.

1.3 Finite ReF and ReP = 0: Neutrally Buoyant Particles

For ReP = 0, particle inertia is absent, the relative fluid-particle acceleration is zero and

the particle velocity just follows the local fluid velocity. The hydrodynamic force due

to the particle-fluid interaction is then equal to the total force exerted on the particle by

sources other than the fluid. This permits a fluid-only formulation whereby the net non-

hydrodynamic particle force is spread from the particle to the surrounding fluid using some

compact kernel. Two relevant methods working in this limit are the stochastic Immersed

Boundary method (IBM)17 commonly used for fluid-structure interaction R/L = O(1),
and the Force Coupling method (FCM)18, 10, where each particle is represented by a low-

order expansion of force multipole (R/L < 1) and thermal fluctuations are not included.

1.4 Large ReF and ReP ≪ 1 for R/L ≪ 1: Point-Particle Models

In the point-particle limit R/L ≪ 1 at small particle Reynolds, the advection of the per-

turbative flow can be neglected and the perturbative field can be analytically solvable (un-

steady Stokes equation)9. The fluid-particle force is expressed as a rather complicated

function of the relative velocity field u − v0 interpolated at the particle site. This forms

the basis of one-way-coupling schemes for point-particle dynamics frequently used in tur-

bulent research10 ReF ≫ 1. Although the point-particle approach can probably describe

the relaxational inertia of very small (R/L ≪ 1) heavy particles in a light fluid (e.g.

aerosol), it has the serious limitation of neglecting the convective inertia arising from the

particle finite size4 where energy dissipation and vorticity production in the particles wake

become relevant19.
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1.5 Arbitrary ReF and ReP for R/L ∼ O(1): Fully Resolved Particles

Several Eulerian-Lagrangian methods have appeared in recent years to allow for a fully

consistent treatment of the coupled particle and fluid inertia. A key issue is the spatial

resolution of the particle. In the “direct forcing” method20, and related extensions to fluc-

tuating hydrodynamics21, 22, the fluid force on the particle is obtained by imposing the

no-slip constraint on a well-resolved particle surface (and perhaps also the interior of the

particle). High spatial resolution requires a substantial computational effort; the largest

simulations so far reached O(103) particles20. The smoothed particle method (SPM)23, 8

works with a mixed (particle-fluid) velocity field constructed with a smooth characteristic

function which discriminates particle and fluid cells. This permits an intermediate resolu-

tion with a typical particle radius R ≃ 5h (here h is the mesh size) requiring O(103) fluid

cells per particle.

1.6 Arbitrary ReF and ReP for R/L < 1: Pointwise Resolution

Fully or partially resolved methods are still far from a point-particle approach which can

require as few as 13 cells to perform a fourth-order orthogonal Lagrangian interpolation.

The present Inertial Coupling method (ICM) is a minimal resolution model which recovers

finite particle effects at moderate computational cost (as an advantage, it just requires 27

fluid cells per particle24). The ICM is hereby applied to pointwise particle resolution or

“blob” particle models, and it aims to to become a flexible coarse-grained model, which

can capture hydrodynamics and other physico/chemical effects over a broad range of time

scales and ReP : from Brownian motion to convection-driven regimes. To that end, the

“inertial coupling” between the particle and the fluid is not assumed to have any functional

form (e.g. Stokes drag) but naturally arises from the no-slip constraint averaged over the

particle (or “blob”) domain. Results presented hereafter indicate that this type of (non-

linear) coupling permits to take into account both fluid and particle inertia beyond the

Stokes limit, where advective interactions take place.

The present proceeding is an excerpt from our recent works29, 24, 25. In particular, in

Ref. 24 we present a compressible finite-volume fluctuating hydrodynamic solver26 which

includes the effect of the particle and fluid inertia in the dynamics, while still consistently

including thermal fluctuations even in non-trivial geometries. It was numerically demon-

strated that the inertial coupling method can reproduce ultrasound forces on colloidal parti-

cles, taking place at much faster rates than viscous friction27. In a sequel we considered the

isothermal incompressible fluctuating Navier-Stokes equations to allow for a significantly

larger time step size in the fluid solver25. This second work also presents second-order

accurate (both compressible and incompressible) solvers, which fully include particle and

fluid inertia.

2 The blob Particle Model

Let us consider a particle of physical mass m and size (e.g., radius) a immersed in a

fluid with density ρ. In real problems there will be many particles i = 1, . . . , Np that

interact with each other (an extension to bead-spring polymer models is indeed possible)

but for simplicity of notation, we now focus on a single particle and omit the particle
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index. The position of the particle is denoted with q(t) and its velocity with u = q̇.

The shape of the particle and its effective interaction with the fluid is captured through

a smooth kernel function δa (∆r) that integrates to unity and whose support is localized

in a region of size a. We use the immersed-boundary kernels28 whose properties were

designed to “hide” the underlying grid to the particle Lagrangian motion. Interestingly,

these properties also provide a coherent physical dimension to the particle and are essential

to ensure momentum, energy conservation and fluctuation-dissipation balance, as we have

recently proved25.

2.1 Average and Spreading Operations

The interaction between the fluid and particle is mediated via the kernel function through

two crucial local operations. The local averaging linear operator J(q) averages the fluid

velocity inside the particle to estimate a local fluid velocity

vq (t) = Jv(r, t) =

∫
δa (q − r)v (r, t) dr.

The reverse of local averaging is accomplished using the local spreading linear operator

S(q) which takes a force F applied to the particle and spreads it over the extent of the

kernel function to return a smooth force density field,

f (r, t) = SF (t) = F (t) δa (q − r) .

2.1.1 Essential Properties

Note that the local spreading operator S has dimensions of inverse volume. Averaging

and spreading operators are adjoint S = J⋆, i.e., the natural dot products in the particle

(Lagrangian) and fluid (Eulerian) domains are related via17

(Jv) · u =

∫
v · (Su) dr =

∫
δa (q − r) (v · u) dr (1)

for any u and v. This adjoint property is crucial in maintaining energy conservation and

fluctuation-dissipation balance.

The physical volume of the particle ∆V is related to the shape and width of the kernel

function via

∆V = (JS)
−1

=

[∫
δ2a (r) dr

]−1

. (2)

Therefore, even though the particle is represented only by the position of its centroid, it is

not appropriate to consider it a “point” particle9. Rather, it might be thought of as a diffuse

spherical particle which interacts with the fluid in the kernel interior. We have called this

a “blob”. Also, note that in fluctuating hydrodynamics the fluid velocity is a distribution

and cannot be evaluated pointwise, therefore, to obtain well-defined fluctuating equations

spatial averaging must be used and a physical volume associated to each blob.

In the present model, the fluid velocity field v(r, t) extends over the whole domain

including the particle interior. Therefore the effective inertia of the particle is enlarged by

ρ∆V and the particle physical mass is

m = me + ρ∆V = me +mf
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whereme is the excess mass of the particle over the mass of the entrained fluidmf = ρ∆V .

Indeed, a crucial property that should be preserved in the discrete mesh is that ∆V is a

constant that only depends on the shape of the kernel function and not on the position of

the particle. This ensures a well-defined (fixed) particle mass m and size.

2.1.2 Average and Spreading in a Regular Grid

We use a regular Eulerian grid with mesh size h = ∆x = ∆y = ∆z to solve the fluctuating

Navier-Stokes equations using finite volumes26. In this discrete space, the local averaging

operator J (a convolution operator in the continuum setting) becomes a discrete summation

over the grid points that are near the particle,

Jv ≡
∑

k∈grid

φa (q − rk)vk,

where rk denotes the centre of the control volume with which vk is associated, and φa is a

function that takes the role of the kernel function δa. We follow the traditional choice and

do the local averaging independently along each direction α,

φa (q − rk) =
d∏

α=1

φa [qα − (rk)α] ,

The discrete local spreading operator is

(SF )k = (∆Vf )
−1
φa (q − rk)F ,

where ∆Vf = ∆x∆y∆z is the volume of the hydrodynamic cell. The discrete kernel func-

tion φa was constructed by Peskin28 to yield translationally-invariant zeroth, first moment

and L2-norm,

∑

k∈grid

φa (q − rk) = 1

∑

k∈grid

(q − rk)φa (q − rk) = 0

∑

k∈grid

φ2a (q − rk) = ∆V −1 = const., (3)

independent of the position of the particle q relative to the underlying (fixed) fluid grid.

These properties require making a ∼ ∆x meaning that the size and shape of the particles

is directly tied to the discretization of the fluid equations, and the two cannot be varied

independently. This is a shortcoming of the immersed boundary method, but, at the same

time, it is physically unrealistic to resolve the fluid flow and, in particular, the fluctuations

in fluid velocity, with different levels of resolution for different particles or dimensions. In

the present work we have used the 3-point IBM kernel which yields24, ∆V = 2d h3 and in

3D space (d = 3) contains 27 fluid cells.
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3 Inertial Coupling Method

3.1 No-Slip Condition

Coupling of a continuum (fluctuating) fluid with point-like (blob) particles has been con-

sidered by other researchers2, who described the motion of the particle by a Langevin

equation in which a phenomenological Stokes frictional force between the particle and the

fluid is postulated, proportional to the difference u − Jv between the particle and the

locally-averaged fluid velocity.

An important downside of the inertial Stokes coupling is the imposition of an artificial

friction parameter and an associated delay with the response of the particle to changes

in the flow. Such a delay is often not physically acceptable unless a very large friction

constant is imposed, leading to numerical stiffness. Instead we impose an instantaneous

coupling24 between the fluid and the particle in the form of a no-slip constraint,

u = q̇ = Jv, (4)

The no-slip condition simply states that the velocity of the particle is equal to a local

average of the fluid velocity. The imposition of Eq. 4 leads to a physically-consistent and

sensible coarse-grained model of the coupled fluid-particle system. Notably, our coupling

conserves momentum, energy, and obeys a fluctuation-dissipation principle.

The particle acceleration is

u̇ =
d

dt
[J (q)v] = J (∂tv) +

(
u · ∂

∂q
J

)
v, (5)

where for our choice of interpolation operator we have the explicit form:
(
u · ∂

∂q
J

)
v =

∫ [
u · ∂

∂q
δa (q − r)

]
v (r, t) dr.

Observe that in the limit of a “point particle”, a → 0, the kernel function approaches a

Dirac delta function and one can identify Eq. 5 with the advective derivative, which is

expected since in this limit the particle becomes a Lagrangian marker. For a blob particle,

however, the relative fluid-particle acceleration is non-zero,

aJ =
d

dt
(Jv)− J (Dtv) =

(
u · ∂

∂q
J

)
v − Jv ·∇v 6= 0. (6)

3.2 Equations of Motion

Following the discussion in the Introduction and the derivation in Sec. 2 of Ref. 24 we take

the equations of motion for a single particle coupled to a fluctuating fluid to be

ρ (∂tv + v ·∇v) = ρDtv = −∇π −∇ · σ − S (q)λ (7)

meu̇ = F (q) + λ (8)

s.t. u = J (q)v, (9)

where the fluid-particle force λ is a Lagrange multiplier that enforces the constraint (Eq. 9)

and F (q) is the external force applied to the particle. Observe that the total particle-

fluid momentum P = meu +
∫
ρv (r, t) dr is conserved because Newton’s third law is

67



enforced. Similar equations apply for both compressible and incompressible fluids. In the

compressible case24, a density equation is added to the system (Eqs. 7,8,9) and the pressure

π (ρ) obtained from the equation of state. In the incompressible case25 the divergence-free

condition ∇ · v = 0 is used instead to determine the (non-thermodynamic) pressure as a

Lagrange multiplier.

3.2.1 Fluid-Only Formulation and Particle Effective Equations

Using Eq. 8 to eliminate λ = meu̇− F and Eq. 6 to eliminate u̇, the fluid equation Eq. 7

becomes,

ρDtv = ρ (∂tv + v ·∇v) = −meSJ (Dtv)−∇π −∇ · σ −meSaJ + SF . (10)

This gives the effective fluid equation

(ρ+meSJ) ∂tv = −
[
ρ (v ·∇) +meS

(
u · ∂

∂q
J

)]
v −∇π −∇ · σ + SF , (11)

in which the effective fluid inertia is given by the operator ρ + meSJ , and the kinetic

stress term ρv · ∇v includes an additional term due to the excess inertia of the particle.

When there are many interacting particles one simply adds a summation over all particles

in front of all terms involving particle quantities in Eq. 11. Note that for a neutrally-buoyant

particleme = 0 and one obtains the constant-density Navier-Stokes equation with external

forcing SF .

The effective particle equation of motion can be obtained upon elimination of λ, from

Eq. 8,

mu̇ = −∆V J (∇π +∇ · σ) + F +mfaJ , (12)

where the first term in the right hand side is the “blob” equivalent of the total fluid pressure

force over a real particle’s surface −
∮
(πI+σ) ·ndr2 = −

∫
∆V

∇ ·(πI+σ) dr3. The last

term mfaJ arises, because, in the present model, the fluid is allowed to permeate into the

particle domain with a different local acceleration. At small Reynolds (Re) numbers the

velocity field will be smooth at the scale of the particle size and thus aJ ≈ 029. However,

we have not observed any significant effect of aJ in simulations at large ReP
25.

3.2.2 Momentum Conservation

A total momentum field can be obtained as the sum of the fluid momentum and the spread-

ing of the particle momentum p (r, t) = ρv + meSu = (ρ+meSJ)v The total mo-

mentum is P (t) =
∫
p (r, t) dr and therefore a local conservation law for p (r, t) implies

conservation of the total momentum. The dynamics of the momentum field is obtained by

adding the fluid and particle equations 7,8 together. This leads to25

∂tp = −∇ ·
[
πI + σ + ρvvT +meS

(
uuT

)]
+ SF . (13)

Thus, in the absence of applied external forces F = 0, the total momentum field has

a local conservation equation, where the kinetic-stress tensor includes a contribution from

the inertia of the particle meS
(
uuT

)
.
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3.2.3 Energy Conservation

In the absence of viscous dissipation, the equations of motion Eqs. 7,8,9 conserve a coarse-

grained Hamiltonian30 given by the sum of potential energy and the kinetic energy of the

particle and the fluid,

H (v,u, q) = ρ

∫
v2

2
dr +me

u2

2
+ U (q) , (14)

where U (q) is the interaction potential of the particle with external sources and other

particles, with an associated conservative force F (q) = −∂U/∂q = −∂H/∂q. For

compressible flow one needs to include the (density-dependent) internal energy of the fluid

in the Hamiltonian as well31.

It can be easily demonstrated25 that in the absence of viscous dissipation,

dH

dt
= −F · u+meu · u̇+

∫
ρv · (∂tv) dr = 0,

that is, the non-dissipative terms in the equation strictly conserve the coarse-grained free

energy. For this derivation to hold the adjoint property (Eq. 1) and second the no-slip

constraint u = Jv are essential.

3.2.4 Fluctuation-Dissipation Balance

The no-slip constraint ensures that the fluid-particle interaction is non-dissipative and con-

serves energy. As a consequence, the only dissipation comes from the fluid viscous terms.

and it can be demonstrated25 that in order to account for thermal fluctuations in a man-

ner that preserves fluctuation-dissipation balance it is sufficient to add the usual Landau-

Lifshitz stochastic stress (kBTη)
1/2
(
W +W

T
)

to the viscous stress tensor in σ, with-

out adding any extra stochastic forces to the particle.

The fluctuation-dissipation balance ensures that at thermodynamic equilibrium the

particle-fluid system is ergodic and time-reversible with respect to the Gibbs-Boltzmann

distribution Z−1 exp (−H/kBT ), where the “Hamiltonian” H given in Eq. 14 is to be in-

terpreted as a coarse-grained free energy. It is not necessary here to include an entropic

contribution to the coarse-grained free energy because our formulation is isothermal, and

we assume that the particles do not have internal structure.

3.2.5 Equipartition of Energy

The fact that the Gibbs-Boltzmann distribution is separable in v and q and that the Hamil-

tonian Eq. 14 is quadratic in v means that the fluctuations of velocity are Gaussian with

covariance 〈vv⋆〉 = (kBT )ρ
−1
eff . It can be shown (see Ref. 25) that for a single particle

immersed in a periodic incompressible fluid in d dimensions,

〈
u2
〉
= d

kBT

m̃
, (15)

where m̃ = me + dmf/ (d− 1). This result should be compared to the corresponding re-

sult for a compressible fluid24,
〈
u2
〉
= d (kBT ) /m following from the usual equipartition

principle of statistical mechanics. When incompressibility is accounted for, a fraction of
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the equilibrium kinetic energy is carried in the unresolved sound waves, and therefore the

apparent mass of the particle is m̃ and not m = me + mf . This difference leads to the

added mass effect a well-known but surprising difference between the short-time motion

of a particle immersed in a compressible versus an incompressible fluid32. It is reassuring

that the incompressible formulation of the inertial coupling correctly captures the added

mass effect, as discussed in detailed in Ref. 25.

4 Temporal Discretization

In Ref. 24 a first-order splitting algorithm was developed for the case of a compressible

fluid. This type of algorithm is similar to the original projection algorithm of Chorin33

for incompressible flow and can be summarized as follows. Update the fluid first without

accounting for the force λ exerted by the particle. Then, solve for the value of λ that, when

applied as a correction to the fluid update, exactly imposes the no-slip condition. Extend-

ing this type of approach to be higher than first order accurate is known to be difficult from

the literature on incompressible flow34, due to the fact that the splitting introduces a com-

mutator error. In a recent work we have extended the previous compressible formulation

to incompressible flow and developed a second order scheme. Details of the algorithm are

given in Ref. 25; its general idea is based on the following considerations:

1. Estimate the position of the particle at the midpoint to leading order,

qn+ 1
2 = qn +

∆t

2
Jnvn. (16)

2. Update the fluid velocity based on Eq. 11 using a second-order algorithm, while keep-

ing the particle positions fixed at the midpoint estimates,

(
ρI +meS

n+ 1
2Jn+ 1

2

) vn+1 − vn

∆t
+∇πn+ 1

2 =

−∇ ·
(
ρvvT + σ

)n+ 1
2 + Sn+ 1

2F n+ 1
2 −

[
meSJ

(
v · ∂

∂q
J

)
v

]n+ 1
2

(17)

subject to ∇ · vn+1 = 0. Here any higher order (e.g., a Runge-Kutta or Adams-

Bashforth) scheme can be used to evaluate the fluid momentum fluxes to at least

second-order accuracy, denoted generically here by superscript n+ 1
2 .

3. Update the particle position using a second-order midpoint estimate of the velocity,

qn+1 = qn +
∆t

2
Jn+ 1

2

(
vn+1 + vn

)
. (18)

Observe that the above scheme never actually uses the particle velocity u, although one

can and should keep track of the particle excess momentum meu and update it whenever

the fluid momentum is updated, to ensure strict conservation of momentum. Also observe

that during the fluid update we fix the particle at its midpoint position qn+ 1
2 .
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5 Results

The present implementation of the ICM is designed to work with periodic boundary condi-

tions where the velocity and the pressure linear systems in the incompressible formulation

decouple and Fast Fourier Transforms can be used to solve them efficiently28. At least for

the case of neutrally buoyant particles, me = 0, the algorithm can be easily generalized

to non-periodic systems by using the fluid solver employed in Ref. 26. Our algorithm has

been parallelized to run efficiently on Graphics Processing Units (GPUs)24. The code is

written in the CUDA programming environment and it is public domain.

The stability and accuracy of our spatio-temporal discretization is controlled by the

dimensionless advective and viscous CFL numbers α = (V∆t)/h and β = (ν∆t)/h2

where V is a typical advection speed, which may be dominated by the thermal velocity

fluctuations or by a deterministic background flow. Here we always use the same grid

spacing along all dimensions, h = ∆x = ∆y = ∆z. The strength of advection relative to

dissipation is measured by the cell Reynolds number r = α/β = V∆x/ν. Note that for

compressible flow (see Refs. 26, 25) there is a sonic CFL number αs = c∆t/∆x, where

c is the speed of sound. The temporal integrator can be considered to be “good” as it

produces reasonably-accurate results with a time step for which at least one of α or β is

close to 1/2. We now present some of the tests we have applied the present model against,

either in compressible flow24 or in the incompressible limit25.

(a) ( b )

Figure 1. Radial velocity profile around one particle in a plug flow at low Reynolds number, Re≪ 1. Results

corresponds to θ = 0 (angle between the radial vector and far field flow-velocity) in a periodic box of size

L = 100h. Comparison is made between the outcome of the ICM and the analytical Stokes flow (for infinite

system) along with results from the frictional coupling method, using the same effective hydrodynamic radius.

See Ref. 24 for further details. (b) Hydrodynamic forces between two slowly approaching particles (p and q)

versus their distance d = Rpq . For d > 3h simulation results (black line) agree with the theoretical Rotne-

Prager force35. As particles come closer the ICM provides an increase in friction force up to d > 1.9h. For the

sake of comparison, a lubrication force diverging d = 2Rl = 1.84RH = 1.66h is added to the RP (dashed

line).

71



5.1 Deterministic Settings and Hydrodynamic Interactions

The first illustrative feature of the no-slip constraint is observed in the fluid velocity profile

around one fixed particle in a Stokes flow (Re ≃ 0). Fig. 1a compares the radial component

of the fluid velocity ur(r) along θ = 0 (direction of motion of the incoming flow) and with

the analytical Stokes flow for a solid sphere with no-slip surface in a infinite system, as

a function of the distance from the particle r. Results for the ICM are compared with

the Stokes (frictional) coupling. The frictional coupling induces a significant slip over the

particle and only recovers the Stokes flow for r > 5RH . By contrast, the ICM strictly

imposes no-slip at the particle centre and recovers the Stokes flow for r > 2RH . This

difference is essential to recover near-flow effects. As an example in Fig. 1b we have

computed the hydrodynamic forces between two slowly approaching particles as a function

of their distance, d, at creeping flow, Re≪ 1. At large enough distances d > 3RH the IC

force converges to the force derived from the Rotne-Prager expression for a hard sphere

with stick surfaces and radius RH(L). As the two particles further approach and their

separation becomes comparable to their hydrodynamic radius, the mutual force increases

substantially above the Rotne-Prager prediction, indicating that the model grasp at least the

essence of lubrication forces.

As the Reynolds number is increased, the drag force on one particle increases over the

Stokes (ReP = 0) limit, 6πηRHu. As shown in Fig. 2, the no-slip constraint used in the

ICM correctly captures the increase in drag over a wide range of particle Reynolds (we

have studied ReP ≤ 324). Moreover, the blob particle produces wakes which are con-

sistent with those observed for rigid spheres with no-slip surface, including the transition

to oscillatory flow and vortex shedding25. This agreement is certainly remarkable, notably

because in a real rigid sphere of radiusR the viscous boundary layer formed around its sur-

face (Oseen layer) decreases like R/ReP
10 so for ReP > 1, it is unresolved by the ICM

blob model. The “local” no-slip constraint grasps however the non-linear velocity-pressure

coupling and produce physically sound wakes behind the blob.

5.2 Ultrasound Forces

To check the ability of the ICM to grasp acoustic forces, we have analyzed the effect of

a stationary sound plane wave of frequency ω and wavelength λ = 2πcF /ω on a sus-

pended array of particles. The diffusive layer around the particle is characterized by an

acoustic boundary layer of width δ =
√
ν/ω. Typical experiments38 performed in ambient

temperature, manipulate colloids of size R ∼ 10µm, with pressure waves of amplitude

∆p = c2F∆ρ ∼MPa and frequencies ω ∼MHz which require resonant cavities of mil-

limeter size in water ρ ∼ 103kg/m3 and cF ∼ 103m/s. This corresponds to the so-called

non-viscous regime, studied by Gor’kov39, where the acoustic boundary layer is small

δ/R ∼ 10−1 and the sonic time is much shorter than the friction time τν/τs ∼ 104. These

average colloids are much smaller than the wavelength λ/R ∼ 102. They are quite in-

sensitive to thermal forces (inducing dispersion), as the sound energy U ∼ Fsλ is much

larger than the thermal energy U/kT ∼ 108. Finally for a typical pressure input, the fluid

is hardly compressed with ∆ρ/ρ ∼ 10−2. The numerical simulations can be mapped to

this experimental regime38 (thermal fluctuations are switched off and the sound wavelength

chosen to be λ ≃ 20RH ). We impose a relatively fast forcing, providing a small acoustic

layer of δ/RH ≃ 0.21. The friction time τν = R2
H/ν is about 100 times larger than the
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Figure 2. The drag force on the blob particle scaled with the Stokes (Re= 0) limit, plotted against the Reynolds

number. Results were obtained with either the compressible24 and/or incompressible25 formulations. The solid

line is the empirical law for the drag on a rigid sphere with no-slip surface36. (Bottom) Snapshots of the in-plane-

vorticity isocontours at three different regimes (Stokes flow ReP ≃ 0, Oseen flow ReP = 1.5 and stationary

bifid vortex trail37 ReP = 137.)

sonic time τs = RH/cF (the frictional coupling method cannot obviously capture such

fast forcing). Finally, we choose sound amplitudes such that density variations are kept

small ∆ρ/ρ ≃ 10−2. Again, although the sound viscous boundary layer around the blob

is unresolved (δ < h), simulations of ultrasound-matter interaction by the ICM24 found to

be in quantitative agreement with the inviscid theory, as illustrated in Fig. 3.

5.3 Velocity Autocorrelation and Diffusive Behaviour

The velocity autocorrelation function (VACF)

C(t) = 〈vx(0)vx(t)〉 =
1

d
〈v (0) · v (t)〉 , (19)

of a single free Brownian particle diffusing through a periodic fluid is a non-trivial quantity

that contains crucial information at both short and long times. The integral of the VACF

determines the diffusion coefficient and gets contributions from three distinct stages. At

molecular times, an important signature of fluctuation-dissipation balance is expressed in

the equipartition which dictates C(0) = kBT/m. Here, the effective particle mass of the
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Figure 3. The acoustic force exerted to blob particles by a standing pressure wave along the z-axis. The pressure

wave (twice wavelength) is indicated in the thick solid line. The force is measured at different phase locations

and for different particle/fluid ratios α = m/mf . The average sound force can be related to the derivative of

a potential energy Fs(z) = −dU(z)/dz, so particle stable locations correspond to Fs = 0 and dFs/dz < 0.

For heavy particles, α > 1 stable sites are located at pressure nodes (solid red squares), while light particles are

driven to the pressure valleys (solid orange circle). Dashed lines corresponds to the theoretical result39.

blob particlem = me+mf includes the mass of the fluid dragged with the particlemf , as

well as its excess massme. The compressible inertial coupling method is able to reproduce

the intercept kBT/m very accurately even for relatively large sound CFL numbers24.

On the time scale of sound waves, t < tc = 2RH/c, the major effect of compress-

ibility is that sound waves carry away a fraction of the particle momentum with the sound

speed c. The VACF quickly decays from its initial value to C(tc) ≈ kBT/m̃, where

m̃ = me + dmf/ (d− 1) includes an “added mass” mf/(d − 1) that comes from the

fluid around the particle that has to move with the particle32. In the incompressible limit

(i.e. infinitely large speed of sound) the initial decay of the VACF due to sound waves

thus appear to be instantaneous. The incompressible ICM correctly produces the intercept

C(0+) = kBT/m̃ but without suffering from the severe time step limitation of compress-

ible flow solvers. The asymptotic long time tail (t/tν)
−3/2 beyond the viscous time scale,

is also correctly captured. Further details in Refs. 24, 25.

5.4 Concluding Remarks

We have briefly presented a novel method for particle hydrodynamics based on an Eulerian-

Lagrangian mixed approach. The particle resolution is based on a minimal (pointwise)

model while the particle mass and hydrodynamic size are robustly introduced via the ef-

ficient IB kernels28. The present inertial coupling method (ICM)24, 25 does not assume

any explicit form of particle-fluid force, but rather directly couples both dynamics using a

non-linear constraint, which ensures no-slip of fluid over the particle domain. By construc-

tion, the no-slip coupling does not dissipate energy and leads to an instantaneous particle

response to unsteady fluid forces of whatever type (from thermal fluctuations, transient,
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frictional or convective ones). As a result, inertial forces coming from the particle or the

fluid (and their interactions) are taken into account. This method, we have called “Inertial

Coupling Method”24, is able to solve dynamics ranging from Brownian motion to con-

vective inertia to ultrasound forces in compressible flows. Quite importantly, a relevant

part of the physics arising from the finite particle size is properly tackled with a mini-

mal cost. The computational cost has been significantly reduced and its scope enlarged

upon its promotion to second-order accurate versions to the incompressible limit25. The

proposed model includes inertial and stochastic effects in a consistent manner, ensuring

fluctuation-dissipation balance and independence of equilibrium thermodynamic proper-

ties on dynamical parameters. As such we believe that the method presented here can be

applied to model the dynamics of dilute and semi-dilute colloidal suspensions and poly-

meric fluids over a broader range of conditions than existing methods13–15, 2, 17. We are now

working on further generalizations of the ICM which we expect to present soon. To cite two

relevant examples, it is not difficult to include the anti-symmetric component of the dipole

(rotlet) stress18 to describe the particle rotation. An additional (and more complicated)

rigidity constraint would be required to also constrain the locally-averaged strain rate, and

thus consistently include the symmetric components of the dipole (stresslet) force terms18.

The scope of the method runs from colloidal to polymeric fluids. However, at molecular

scales, the simple coupling used by the ICM can also be used to isolate hydrodynamic from

non-hydrodynamic effects and study basic physics questions about the importance of in-

ertia and fluctuations on Brownian motion, going beyond the uncontrolled approximations

required by existing theoretical approaches. Notably, we have showed25 that nonlinear ef-

fects becomes important at small Schmidt numbers leading to a non-trivial contribution of

the thermal fluctuations to the mean fluid-particle force.
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In the last few decades computer simulations have become a fundamental tool in the field of

soft matter science, allowing researchers to investigate the properties of a large variety of sys-

tems. Nonetheless, even the most powerful computational resources presently available are, in

general, insufficient to simulate complex biomolecules over a few nanoseconds. An important

limitation, hampering the achievement of larger length and time scales, is represented by the

need to simulate with fine-grained detail a consistent fraction of the system, such as the solvent

far from the solute’s surface, which is eventually removed from the subsequent analysis. In

order to overcome this problem, adaptive resolution simulation schemes have been developed,

where a subregion of the system is described with a higher resolution -typically at the atomistic

level- with respect to a surrounding thermal bath containing solvent molecules in a coarser rep-

resentation; open boundaries between these regions and a position-dependent resolution switch

guarantee that the correct thermodynamics is preserved in the high-resolution region of inter-

est. This lecture provides an introduction to the Adaptive Resolution Simulation (AdResS)

and the Hamiltonian AdResS (H-AdResS) schemes, focusing on their theoretical background.

Applications of these methods will also be discussed.

1 Introduction

Since the pioneering work by Berni Alder1 in the 50ies of 20th century, “in silico” ex-

periments, such as Molecular Dynamics (MD) or Monte Carlo (MC) simulations, allowed

researchers to obtain major advancements in the understanding of soft matter systems.

Particularly during the last few decades the increasing accuracy of the force-fields, the

improvement of the algorithms, and the steady boost of computer power, made it possi-

ble to perform insightful simulations of a broad variety of systems of increasing size and

complexities, ranging from simple liquids -composed by idealized, point-like molecules

interacting via simple potentials- to complex biomolecular machineries, such as protein

assemblies. Nonetheless, the amount of available computational resources can be insuf-

ficient to simulate, for a physically meaningful time, even the simplest of the nontrivial

macromolecules. It is often the case, in fact, that “interesting” phenomena in these sys-

tems occur on very long time-scales: a simple example of this is provided by the diffusion

of a polymer in a melt16, 25, but the same behaviour is observed in conformational changes

of proteins28, 23, 34. At the same time, in many cases the massive amount of data that are

produced in a simulation is composed in large part by non-useful information. A proto-

typical example is given by the solvent: the water molecules that solvate a protein or a

membrane are typically discarded from the analysis that follows the simulation, with the

possible exception of a few solvation shells around the molecule itself. In this case a large

fraction of the computational power is employed to the integration of the equations of mo-

tion of degrees of freedom which are extremely relevant during the simulations, but are

completely neglected afterwards.

In order to overcome this limitation, coarse-grained models24, 55, 19, 30 have been devel-

oped, where the structure and interactions of the original system are replaced by simpler
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ones, which are easier to describe, model, simulate and understand. The assumption un-

derlying the coarse-graining of a system is that above a given length scale the atomistic,

chemically-specific detail is not relevant to reproduce the behaviour of some large-scale

properties. Two examples of systems for which this approach proved to be extremely suc-

cessful are polymers16, 25, and elastic network models of proteins52, 2, 29, 37.

The smaller amount of degrees of freedom that are retained in coarse-grained models

and the simpler force-fields employed allow to characterize relevant properties of a system

at a cheaper computational cost compared to the high-resolution atomistic models; on the

other hand, there are cases in which the chemical detail in a small region of the system

plays a crucial role, such that no simplification of the description is possible: an example

is given by the active site of a large enzyme, where fine-grained chemical processes take

place. A high-resolution modelling of each part of the system is not necessary, but at the

same time a coarse-graining approach would delete important information.

This last observation naturally leads us to identify a particular class of soft matter

systems among those that are studied with the help of computer simulations. Specifically,

we can consider those systems where the focus is on a small, well-defined subregion of

the simulation box. To this class belong, for example, certain solvated (macro)molecules,

active sites of enzymes, the interaction of specific polymer ends at a surface, or simply a

small spherical region in a homogeneous fluid whose radius is of the length scale of the

property we’re interested in. For such systems the remaining, “non-interesting” region is

composed by the volume containing all those degrees of freedom which will be eventually

neglected and/or discarded once the simulation is done, such as the solvent or large parts

of a macromolecule which do not take active role in the process of interest (e.g. all atoms

sufficiently far from the active site of an enzyme). Usually, the detailed knowledge about

structural, energetic and thermodynamical properties of these large sections of the system is

not required; nonetheless these “non-interesting” degrees of freedom have to be explicitly

present and integrated, inasmuch they “scaffold” the target object of the simulation and

represent a reservoir of energy and molecules.

A method is thus desirable, that allows to perform a simulation where the largest part

of the computational resources is concentrated on that region of the system that will be

subsequently analyzed. Adaptive resolution simulations methods38–41, 12, 32, 35, 9, 42, 36 were

developed to solve the contradiction between the necessity of simulating all parts of the

system and the fact that, eventually, the detailed information referred to a large subgroup

of them will be neglected. The underlying idea is to replace these “non-interesting” de-

grees of freedom of the system with a simpler, coarse-grained representation, such that a

sensibly smaller number of computations (e.g. force calculations) is required, while the

“interesting” region is treated at a higher resolution.

This approach bears at least two important conceptual problems that have to be solved:

1. what is the smallest number of properties of the original system that have to be re-

tained in the coarser model, and what are they

2. how to interface the low-resolution, “non-interesting” region and the high-resolution

region to preserve the correct physics at least in the latter

These two problems are obviously interconnected, since the way the high- and low-

resolution regions interact at the interface naturally depends on the specific properties of

the models used in each of them.
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In this lecture note we will discuss the strategy adopted in the Adaptive Resolution

Simulation (AdResS)38–41, 12, 32, 35, 9, 42 and Hamiltonian AdResS36 (H-AdResS) methods,

that were developed to perform simulations of molecular fluids where molecules are free

to diffuse across the whole simulation box, still preserving the correct thermodynamical

properties in the high-resolution region.

This note is organized as follows: in Sec. 2 the basics of coarse-graining are given;

in Sec. 3 adaptive resolution simulations are described; in Sec. 4 the AdResS and the H-

AdResS methods are discussed in detail; finally, conclusions and perspectives are given in

Sec. 5.

2 Coarse-Graining

As it was mentioned in the Introduction, there are many interesting physical problems for

which a detailed description of the system at the all-atom (AA) level is not necessary to

obtain the relevant information. In these cases a simpler model might be used, where a

given high-resolution, computationally expensive model is replaced with a simpler one.

These Coarse-Grained (CG) models possess a number of features that make them par-

ticularly appealing. For example, a smaller amount of computational resources is required

to perform a simulation: this is due to both the reduced number of degrees of freedom

and the simpler form of the interactions. Another important characteristic is that since

many interaction centres are replaced with a single one, the fluctuations of the force ex-

perienced by a molecule are generally much smaller; this results in smoother free en-

ergy profiles and, as a consequence, in faster diffusive processes, allowing to reach larger

time-scales with less computations. Finally, coarse-grained models are designed to entail

large length-scale properties of the system, such as the global, collective conformational

changes of a protein28, 23, 34 or the diffusive process of a polymer in a melt16, 25, that can be

strongly insensitive to the fine-grained, chemistry-specific details; as a consequence, also

the parametrization of the coarse-grained interactions is advantageously simpler.

To coarse-grain a high-resolution, atomistic system composed by M atoms into a low-

resolution model made by N “super atoms” or CG sites, the first step is to provide a

map that relates the coordinates of a group of n atoms ri from the original system to

those of the CG centre of interaction, Rα. This procedure can be formalized in terms of

a mapping function M(r), that is commonly -but not necessarily- chosen to be a linear

relation between atomistic degrees of freedom and their coarse-grained centre; in many

situations, for example, the CG site is provided by the centre of mass (CoM) of the group

of atoms, but different definitions of the coarse-grained centre are possible, that depend on

the specific system: a water molecule, for example, can be aptly described in terms of the

position of the oxygen atom, since it covers the largest fraction of the molecule’s mass56.

The second step, that is, to provide the coarse-grained sites with a meaningful potential

energy V CG, is the major issue in the business of coarse-graining24, 55, 19, 30. The form of

V CG is dictated by specific problem under exam, i.e., it is determined by the properties

of the AA system and by those that the CG model is asked to reproduce. A very general,

physically meaningful requirement is that a statistical observable Q, which depends on

the CG degrees of freedom (e.g. the radial distribution function of the molecules’ CoMs),

has the same value when computed from the AA and the CG system. This requirement

is automatically verified if the coarse-grained potential V CG is given by the potential of
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mean force (PMF) of the AA system, that is defined by:

e−βV CG[R] =

∫
D[r]δ[R−M(r)]e−βV AA

. (1)

In Eq. 1, the integral is performed over all configurations of the atomistic degrees of free-

dom, but the delta function constrains the CG coordinates M(r) to have the values R.

This definition of the coarse-grained potential can be shown54 to provide the same parti-

tion function for the AA and CG systems, as well as the same ensemble averages.

Clearly, the PMF is not a honest potential energy, since it is temperature-dependent and

contains the entropic contribution of the degrees of freedom that have been integrated out.

Therefore, the dynamics of simulations performed making use of V CG[R] cannot be seam-

lessly compared to the reference, atomistic one; on the other hand, if the PMF is available,

the CG configurations sampled with the Boltzmann weight p[R] ∝ exp
[
−βV CG[R]

]
are

equivalent to those obtained from an atomistic simulation. To explicitly compute V CG[R]
would require a fully atomistic simulation, but since the PMF is a multi-dimensional func-

tion of all the CG coordinates R its practical use would be computationally expensive; also,

it would be impossible to use this (free) energy function to simulate a system with a dif-

ferent number of CG coordinates. It is then necessary to resort on approximated methods,

such as the force-matching or Iterative Boltzmann Inversion (IBI).

The first approach was pioneered by Ercolessi and Adams in 199410 and Tschop and

coworkers53 in 1998. Later on Izvekov and Voth20, 21 made use of the force-matching con-

cept in the development of the Multi-Scale Coarse-Graining (MS-CG) method. The central

idea is to project the true many-body PMF on the basis of functions that are used to define

the CG force-field, via the minimization of a quadratic function of the difference between

the two. Recent work by Scott Shell48 showed insightful relationships between the opti-

mization procedure defined by the MS-CG method and information theory, in particular

the relative entropy5 coarse-graining method.

Another very popular coarse-graining strategy is Iterative Boltzmann Inversion43, 53, 55,

in which the CG potential energy is initially taken to be the two-body PMF and iteratively

refined so that the radial distribution function54 of the CG system coincides with the one

of the underlying AA system.

These two coarse-graining methods (both implemented in the VOTCA (Versatile

Object-oriented Toolkit for Coarse-graining Applications)47 package) both present features

that make one preferable over the other in specific situations, as well as limitations and

drawbacks. The MS-CG, for example, responds to the need of having a CG force-field

of a given functional form as close as possible to the real many-body potential. The flex-

ibility given by the choice of the CG functions permits a systematic improvement of the

matching by including potential energy terms of arbitrary complexity; on the other hand,

this comes at the expenses of a dramatic increase of the computational cost required to

calculate forces. Moreover, the global character of the minimization procedure prevents

from accurately reproduce a single specific property of the system, e.g. the RDF46.

Iterative Boltzmann Inversion belongs to a class of coarse-graining methods that are, in

some respect, complementary to MS-CG: in this scheme the two-body potential of mean

force is iteratively refined in order to reproduce, as closely as possible, the atomistic ref-

erence RDF. If no other property of the system, such as higher-order correlations, total
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potential energy or pressure, is explicitly included in the optimization procedure, no match

with the reference values is to be expected. In particular, the pressure of the CG system

usually turns out to be remarkably off with respect to the reference: a typical example is

provided by the IBI-CG models of water, whose pressure is three-four orders of magnitude

higher than the corresponding atomistic system56. It is possible to perform the iterative

procedure introducing a “pressure correction”43, 56 term in the potential, in order to have

the CG pressure matching to the atomistic reference. Unfortunately, this cannot be done

without disrupting at least weakly the long-range behaviour of the RDF; in turn, the com-

pressibility of the CG system is affected by this change in the structure. This is indeed

no surprise, since the desired properties of the CG model coincide (in general) to the AA

model ones just at the specified state point, but follow different equations of state: a model

with very simple structure and forces, in fact, is not capable of reproducing more than a

few properties of the underlying high-resolution system, which relies on a larger number

of degrees of freedom and interaction parameters. It is here of great importance to stress

that a model at a given resolution and its coarse-grained “version” are not the same thing:

a CG model is a system on its own, specific properties of which behave in the same way

as the relative AA model in a limited and well defined range of parameters (temperature,

density...).

This short overview was intended to provide the reader with the most common con-

cepts, strategies and issues in the field of coarse-graining. It should be now clear that

no unique way exists to relate models with different resolutions and interaction types;

moreover, each coarse-graining strategy provides specific advantages as well as it bears

limitations and drawbacks with it: the choice of the appropriate method to coarse-grain a

system strongly depends on the system itself and on the properties that one is interested in

preserving.

3 Adaptive Resolution Simulations: Basic Concepts

In the introduction we considered that class of systems for which the focus of the re-

searcher’s interest concentrates on a (possibly small) subregion: this is the case, for exam-

ple, of the hydrogen bond network at the surface of a solvated molecule in water. The bulk

of water molecules has to be simulated in order to sustain the thermodynamical properties

of the subsystem of interest -the interfacial water- and to provide the correct exchange of

molecules. Nonetheless, the fine-grained detail of molecules far from the interface is not

relevant; it would therefore be desirable to replace the atomistic, expensive interactions of

hydrogen and oxygen atoms with a coarser model. We can then introduce a geometrical

separation between an “inside” and an “outside”, i.e. an all-atom (AA) and a coarse-

grained (CG) region, and assign different types of representations and interactions to the

molecules according to their position in the simulation domain.

This idea has a long and successful history: to investigate crack propagation in hard

matter, for example, several authors45, 44, 6, 22, 27 made use of a hybrid description of the

system, where a “high resolution” description is employed only the area in proximity of

the crack, and the material far from the latter is treated with a simpler model.

Another important example of hybrid resolution simulation is provided by Quantum

Mechanics / Molecular Mechanics (QM/MM) methods57, 15, 51, 4, 3. In this case the struc-

ture of the system is described at the same (atomistic) level everywhere; the interactions,
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though, are obtained from a classical force-field in the bulk of the system, but in a small re-

gion ab initio methods -such as Density Functional Theory, DFT- are employed to calculate

the forces. Many different “flavours” of this approach have been developed; in all of them,

though, one of the crucial aspects is how to interface the two domains where interactions

are different. In general, one has to answer the two following questions:

1. how do two atoms/molecules in different domains interact?

2. how do the properties of an atom/molecule change in crossing the interface?

The last question is of particular importance for all systems whose components can

diffuse on large length scales (at least of the order of the molecules’ effective size) in the

simulation time. It appears natural to introduce a transition region (often called hybrid

region, or healing region) that allows for a smooth interpolation from a given representa-

tion of the molecule’s structure/interaction to another. The choice of the specific way this

interpolation is implemented depends, as we mentioned earlier, on the properties that have

to be preserved in the CG region.

Irrespective of the chosen method to interface the two regions of the system, though, it

is natural to expect that the equilibrium between them is not preserved a priori; and still,

if the system reaches an equilibrium state, nothing guarantees that it is the desired one. A

further crucial point is then to find the simplest way to impose the desired thermodynamics.

The central, strong requirement that has to be satisfied is that molecules should be free

to diffuse from any region of the simulation box to any other. Additionally, in a hybrid

resolution model thermal equilibrium should be preserved, i.e., the temperature of the sys-

tem has to be constant during the simulation. Another possible constraint is to impose a

uniform density across the box, irrespective of the specific resolution; nonetheless, we’ll

see that there are cases where this is not strictly necessary nor desirable.

These are the fundamental constraints that can be imposed to the system as a whole.

Other, more specific ones can be introduced on the properties of the CG region as well

as the transition region, which will “drive” us towards a specific formulation of a double-

resolution simulation method.

4 AdResS and H-AdResS

4.1 AdResS: Theory

The Adaptive Resolution Scheme (AdResS) represents the first method to efficiently and

effectively simulate a system where models at different resolution are simultaneously em-

ployed in different subregions of the simulation domain without barriers to the diffusion.

A sketch of an AdResS setup is depicted in Fig. 1.

The basic constraint that was enforced in this scheme is that Newton’s 3rd law has to

be exactly satisfied everywhere in the simulation domain. This requirement rules out any

form of potential energy interpolation: it can in fact be formally demonstrated7 that there is

no way to smoothly “blend” the interaction between two molecules from a given potential

energy to another without generating forces that cannot be recast in a form that satisfies

Newton’s Third Law. In order to preserve the latter, then, a force-interpolation scheme is

required, such that the force that a given molecule receives due to the interaction with a

second one is antisymmetric under exchange of the molecules’ labels:

84



Figure 1. Typical scheme of an adaptive resolution simulation: a high-resolution region, where molecules are

described at the atomistic level, is coupled to a low-resolution region where a simpler, coarse-grained model

is employed. There two sub-parts of the system are interfaced via a hybrid region, in which the molecule’s

representation smoothly changes from one to the other, depending of their positions. It is on this last region

and its properties (i.e. the way molecules change resolution) that the complexity of adaptive resolution schemes

concentrates.

Fα|β = −Fβ|α (2)

A second, less strict requirement is that CG molecules possess CG degrees of freedom

only; this determines the specific way the force mixing is performed: a molecule in the CG

region loses completely its atomistic detail (thus retaining, for example, the center of mass

coordinates only), and interacts with a molecule in the AA or even the transition region

only via its CG degrees of freedom. Formally, this constraint imposes that the atomistic

forces vanishes when at least one of the two interacting molecules is in the CG domain.

These two constraints are sufficient to define the force-field interpolation; the force that

affects atom i in molecule α is given by:

Fαi = Fint
αi +

∑

β,β 6=α

{
λ(Xα)λ(Xβ)F

AA
αi|β + (1− λ(Xα)λ(Xβ))FCG

αi|β

}
(3)

In Eq. 3 λ(x) is any smooth function that goes from 1 in the AA region to 0 in the CG

region. Xα (resp. Xβ) is the CoM coordinate of molecule α (resp. β). Fint
αi is the force

due to the interactions internal to the molecule (e.g. bonds with other atoms). FAA
αi|β and

FCG
αi|β are the atomistic and the coarse-grained forces acting on atom i of molecule α due

to the interaction with molecule β, respectively. These forces are given by:

FAA
αi|β ≡

nβ∑

j=1

− ∂

∂rαi
V (|rαi − rβj |) (4)

FCG
αi|β ≡ −mαi

Mα

∂

∂Rα
V CG(|Rα −Rβ |).

The CG force is redistributed to atom i weighted by the ratio of the atom’s mass to the

mass of molecule13 α. In the transition region this operation is required by the fact that
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molecules interact at both the AA and the CG level. AA degrees of freedom thus have

to be explicitly integrated. In the CG region, on the other hand, it is not necessary in

principle to conserve the atomistic detail of the molecules, so that the CG force could be

applied directly to the CoM coordinate; a molecule’s internal structure can thus be removed

when it enters the CG region, and reintroduced (e.g. taking it from a reservoir/repertoire of

equilibrated atomistic molecules) as soon as it approaches the hybrid region. In all AdResS

versions implemented so far, though, the atomistic DoF’s are retained for simplicity of

implementation38; the CoM of the molecule is nonetheless decoupled from the internal

atomistic structure, and it evolves only subject to the CG force.

Because of the requirement of preserving Newton’s 3rd law everywhere in the system,

a force-based interpolation approach had to be chosen. It is evident, then, that the AdResS

scheme cannot be formulated in terms of a Hamiltonian; this in turn makes it impossible to

perform microcanonical, i.e. energy-conserving simulations7. The force-field used in the

AdResS framework is not conservative in the transition region - that is, when molecules

interact with a non-conservative linear combination of two conservative force-fields; when

crossing this region, then, a molecule receives an unphysical surplus of energy that has

to be removed in order to prevent the system from heating up and become unstable. This

excess energy can be removed with a local thermostat, such as Langevin thermostat: in

this way, the temperature of the system is kept constant everywhere. The equilibrium

state of the system is then dynamical: the thermostat takes care of absorbing the extra

heat produced in the transition region by non-conservative forces, and the system samples

equilibrium configurations according to Boltzmann’s distribution38–41, 12, 32, 35, 9, 42.

The presence of the thermostat imposes a uniform temperature across the simulation

domain, an establishes an equilibrium state. However, the different pressure between an

AA system and its CG model at a given state point determines the onset of a non-uniform

density profile. It was already mentioned, for example, that a one-site CG model of water

obtained with IBI can have a pressure ∼ 6000 times the atomistic reference value56. There-

fore, the densities in the two subregions will change in order to equate the pressures. A

possible solution to this density imbalance is to parametrize the CG potential to the target

pressure43, but this would result in an unphysical compressibility (see Sec. 2).

Another option to preserve a uniform density across the simulation domain without

modifying the CG potential is to introduce a force which acts on single molecules and only

in the transition region, whose effect is to push molecules in the domain where the system,

at the reference temperature and density, has a lower pressure. This thermodynamic force

can be obtained with an iterative procedure via the following expression31, 13:

f i+1
th = f ith − 1

ρ⋆κT
∇ρi(r), (5)

where ρ⋆ is the reference molecular density, κT is the system’s isothermal compressibility

and ρi(r) is the molecular density profile as a function of the position in the direction

perpendicular to the CG-AA interface. The thermodynamic force is initialized to zero,

f0th = 0, while the initial pressure profile is the one calculated from an AdResS simulation

with fth = 0. As it can be easily seen, the iterative procedure converges once the density

profile is flat (∇ρ(r) = 0). This approach guarantees a flat density profile without having

to modify the CG potential: because of its very definition, the thermodynamic force only

acts to those molecule that cross the hybrid region, but it leaves the others unaffected. It
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can also be shown13, 38 that the integral of the thermodynamic force across the interface,

i.e. the work due to this force performed by a molecule while crossing the hybrid region, is

proportional to the pressure profile, the proportionality factor being the reference density

ρ⋆.

In summary, the thermodynamic force allows us to couple a system at atomistic res-

olution to a coarse-grained counterpart whose pressure, for given value of density and

temperature, is sensibly different. The global properties of the force, whose direct effect

is restricted to the hybrid region, only depend on the pressure difference between the two

coupled subsystems; the detailed profile of the force, on the other hand, can be obtained

via a system-specific iterative procedure. This method not only allows to preserve the

desired structure of the system in the CG region; in principle, in fact, an arbitrary CG

force-field, with pressure and structure completely off from the atomistic target ones, can

be used. Consequently, the AA region behaves as an open system13 that exchanges energy

and molecules with a reservoir: the molecule number fluctuations, the pressure and all

other thermodynamically relevant quantities are the same as if the AA region were simply

“cut” from a large all-atom simulations. It is relevant to stress here that because of the

thermodynamic force this condition can be established irrespective of the specific model

used in the CG region.

4.2 Classical-to-Quantum Coupling

The concept of coupling two different representations of the same systems can be extended

beyond the AA-to-CG case: it is in fact possible to consider a situation where a classical

and a quantum representation of a system are coupled. In order to do this, a quantum

model of the system is required, that might be actually used in a MD simulation code.

The appropriate language to this end is provided by Richard Feynman’s formulation of

quantum mechanics in terms of Path Integrals11. The partition function Z of a quantum

system at thermal equilibrium can be written as a trace of the Boltzmann operator e−βĤ

over all possible configurations of the system:

Z =

∫
dx 〈x|e−βĤ |x〉, (6)

with Ĥ ≡ p̂2/2m + V̂ . The kinetic energy term T̂ ≡ p̂2/2m and the potential energy

operator V̂ do not commute; this makes it impossible to explicitly calculate the matrix

element in the integral for all nontrivial cases of interest. Nonetheless, an approximation

to Eq. 6 is possible54, through which the patrician function can be written as:

Z = lim
P→∞

[
mP

2π~2β

]P/2 ∫
dx1 · · · dxP exp [−βVP (x̄)] (7)

VP (x1, x2, · · · xP ) =
P ′∑

l=1

mP

2(β~)2
(xl − xl+1)

2 +
V (xl)

P
.

The prime on the P in the sum indicates that cyclic conditions are enforced, such that:

xl+P = xl. The partition function of a quantum system can be expressed in terms of
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classical degrees of freedom: a quantum particle of our system is mapped onto a closed

necklace, or polymer ring, of beads coupled with first-neighbours via harmonic springs of

elastic constantmP/(β~)2; each bead also interacts with other polymer rings: specifically,

beads having the same label (Trotter index l in Eq. 7) interact via the rescaled intermolec-

ular potential V/P . It is worth emphasizing that V is the classical interaction potential.

This classical representation of the quantum system is suitable to be used in the framework

of the AdResS method: in fact, it can be employed as a high-resolution description of the

system, while an effective, purely classical interaction between the polymer rings’ centres

of mass would serve as a coarse-grained potential.

4.3 AdResS: Applications

The possibility of treating a system with a reduced number of degrees of freedom except

where it is strictly necessary was explored, making use of the AdResS method, in several

applications38–41, 8, 12, 32, 35, 14a. From the numerical/computational point of view it clearly

represents an advantage, since a much smaller number of force calculations are required

in the coarse-grained region: this is particularly true for parallel MD codes such as GRO-

MACS18, where a dynamical decomposition of the simulation box allows to subdivide the

latter with a finer grid in the AA and hybrid region, while a smaller number of processors

is assigned to the CG region. For example, for a water system with an AA region covering

1/6 of the total simulation box, simulated with GROMACS on a 16-cores processor, the

speed-up is about a factor three. This factor is nonetheless small compared to what can

be achieved with other simulation packages, such as ESPRESSO++17: in fact, water sim-

ulation in GROMACS is extremely optimized, and any hacking of the standard code can

introduce a bottleneck.

A major strength of the AdResS method is the fact that it introduces a decoupling

between a given region of the system and the rest while keeping the thermodynamic prop-

erties of both regions under control: as a consequence, it is possible to conceive numerical

experiments in which the spatial extension of correlations in the system is investigated.

More specifically, one can study the structural properties of the high-resolution region

as a function of its size, in order to determine their dependency on the interaction with

molecules in the bulk region. This kind of experiments differentiates from the study of

finite-size effects: in the latter, in fact, the system has the same resolution and interaction

type everywhere, and the change of a property with the box size depends on the asymptotic

approach to the thermodynamic limit. In the AdResS setup, on the other hand, finite-size

effect can be neglected for sufficiently large boxes, thus allowing to characterize the re-

sponse of the system’s properties in a small subregion when atomistic interactions with the

bulk are switched off, but the thermodynamics is the same as in a fully-atomistic simula-

tion13, 14. An example of this applications is provided by the work in of Lambeth et al.26:

here a molecule with both hydrophilic and hydrophobic interactions was solvated in water

and put at the centre of the high-resolution region, while the water molecules far from the

surface were treated at the coarse-grained level. The ordering degree of the hydrogen bond

network on the molecule’s surface was measured as a function of the size of the all-atom

aA detailed account of a specific application of the AdResS scheme, namely the simulation of a triglycine

molecule in aqueous urea, can be found in the book chapter of this NIC series by D. Mukherji and K. Kremer.
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Figure 2. Set-up of the AdResS para-hydrogen simulation performed in by Potestio and Delle Site35 (figure

adapted from therein). A small sphere in the centre of the box, having radius as small as 0.6 nm, is treated at the

path integral level (red rings), while the rest is described by point-like molecules (the white spheres); the hybrid

region (blue) interfaces these two representations.

region: the results showed a dependency of the ordering for water molecules close to the

surface of the repulsive solute, while no relevant effect was observed for the attractive case.

The same strategy has been applied to investigate the extent of spatial correlations in

a quantum fluid, namely low-temperature para-hydrogen33, 35. The latter is the spin-zero

singlet state of molecular hydrogen. Because of the spherical symmetry of the global wave

function, para-hydrogen in the solid and gas phase can be modelled as a classical, point-

like particle interacting via a simple radial potential, such as Lennard-Jones or the more

accurate Silvera-Goldman potential50, 49. The latter classical potential, in particular, has

been shown to correctly reproduce the experimental results both in the solid and the gas

phase49.

In the fluid phase, however, nuclear delocalization effects become important, and a

quantum mechanical treatment of the problem is necessary. This can be achieved through

the path integral formalism, that allows for the explicit inclusion of nuclear quantum effects

in a “classical” description; unfortunately, this also implies a significant increase in the

number of degrees of freedom that have to be simulated, since each molecules becomes a

collection of P beads connected by springs. The possibility to simulate a quantum system

in a classical framework, such as classical MD, makes it possible to couple quantum and

classical descriptions with the AdResS scheme. In particular, a low-temperature para-

hydrogen system was simulated35 making use of the explicit path integral representation

only in a small spherical subregion of the simulation domain, while the molecules in the

outer region were treated at the purely classical level, i.e. point-like particles interacting

through a coarse-grained potential; a snapshot of the simulation setup is shown in Fig. 2.

This study showed that a few molecules in a small (∼ 0.6 nm radius) region of the system

are sufficient to reproduce the quantum pair correlation function obtained from a fully

path integral simulation, but treating the molecules in the outer region at the CG level;
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this result opens the way to simulate large systems of low-temperature para-hydrogen, and

possibly other quantum fluids, taking advantage of a double resolution without disrupting

the thermodynamical and structural properties of the small, purely quantum region, thus

saving computational time in the CG region.

4.4 Hamiltonian Adaptive Resolution Simulation Scheme

As it was discussed in the previous section, the force-based AdResS method was devel-

oped on the basis of two central requirements: Newton’s 3rd law had to be exactly satisfied

everywhere, and CG molecules could possess CG degrees of freedom only; as a conse-

quence, no Hamiltonian formulation of this scheme is possible7. Recently the Hamilto-

nian Adaptive Resolution Simulation (H-AdResS) method36 was introduced, in which the

aforementioned constraints are relaxed. The particular choice of energy “mixing” gives

place to forces that do not comply with the first constraint; nevertheless, the physical in-

terpretation of these terms is immediate and naturally points towards the solution -though

approximate- of Newton’s Third Law breakdown. The core idea of the energy-based ap-

proach is to weight the total energy of each molecule with a position-dependent function:

H = K + V int +
∑

α

{
λαV

AA
α + (1− λα)V

CG
α

}
(8)

Fαi = Fint
αi +

∑

β,β 6=α

{
λα + λβ

2
FAA
αi|β +

(
1− λα + λβ

2

)
FCG
αi|β

}

−
[
V AA
α − V CG

α

]
∇αiλα

where K is the (all-atom) kinetic energy of the molecules The forces FAA
αi|β and FCG

αi|β and

the redistribution of the CG force on the atomistic degrees of freedom follow the same

rules given in the case of AdResS (see Eq. 4). The third term of the forces in Eq. 8 is

the part that leads to the breakdown of Newton’s Third Law: in fact, it cannot be written

as a sum of terms antisymmetric under molecule label exchange. Such term is nonzero

only in the hybrid region and depends on a single λ function, rather than the product of

two. Therefore, it can be cancelled, on average, by introducing a compensation term in the

Hamiltonian, as it was done in the AdResS scheme with the thermodynamic force:

H∆ = H −
N∑

α=1

∆H(λ(Rα)). (9)

Appropriately choosing the ∆H(λ) function we can reestablish equilibrium between

the AA and CG regions while preserving the Hamiltonian character of H . The H-AdResS

represents a major step forward in terms of understanding and practical advantages. In fact,

the existence of a Hamiltonian allows to formulate a statistical physics theory of double-

resolution systems, to perform microcanonical simulations, and to make use of Monte

Carlo simulations methods.
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5 Conclusions

Adaptive resolution methods were developed in order to reduce the amount of resources

dedicated to the simulation of large, non-interesting regions of a system by replacing the

high resolution molecules contained therein with a simpler, coarse-grained representation.

In the present work we discussed two methods to achieve this goal: the Adaptive Resolu-

tion Simulation (AdResS) scheme, based on the interpolation of two different force-fields,

and its Hamiltonian formulation, H-AdResS, where the all-atom and coarse-grained poten-

tial energies are interpolated. These methods have been successfully applied to interface

different molecular fluids, treated at the atomistic level, with their coarse-grained models;

the different properties of the AA and the CG potentials naturally induce thermodynamical

imbalances in the corresponding sub-regions, but simple and effective ways to overcome

this problem have been described. A particularly important advantage of these strategies

is that they provide a way to couple, to the AA region, a reservoir of molecules interact-

ing with an arbitrary force-field, thus allowing one to use coarse-grained models without

effectively performing a coarse-graining. One then has the possibility to replace vast re-

gions of the simulated system with a crude, inexpensive representation and concentrate

the computational resources on smaller parts while keeping the relative thermodynamics

under control makes it possible to sensibly reduce the amount of calculations required to

perform a simulation. Such methods open the way to a broad spectrum of applications, e.g.

large-scale simulations of complex biomolecules in solution and efficient open-boundary

simulations with varying number of particles.
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oration, and with Debashish Mukherji for critical and helpful reading of this manuscript.

References

1. B. J. Alder and T. E. Wainwright. Phase transition for a hard sphere system. J. Chem.

Phys., 5(27), 1957.

2. I. Bahar, A. R. Atilgan, and B. Erman. Direct evaluation of thermal fluctuations in

proteins using a single parameter harmonic potential. Folding and Design, 2:173–181,

1997.

3. R. E. Bulo, B. Ensing, J. Sikkema, and L. Visscher. Toward a practical method for

adaptive qm/mm simulations. J. Chem. Theor. Comp., 5(9):2212–2221, 2009.

4. P. Carloni, U. Rothlisberger, and M. Parrinello. The role and perspective of a ini-

tio molecular dynamics in the study of biological systems. Accounts Chem. Res.,

35(6):455–464, Jan 2002.

5. A. Chaimovich and M. S. Shell. Coarse-graining errors and optimization using a

relative entropy framework. J. Chem. Phys., 2011.

6. G. Csanyi, T. Albaret, M. C. Payne, and A. De Vita. “Learn on the fly”: A hybrid

classical and Quantum-Mechanical molecular dynamics simulation. Phys. Rev. Lett.,

93(17):175503, 2004.

91



7. L. Delle Site. Some fundamental problems for an energy-conserving adaptive-

resolution molecular dynamics scheme. Phys. Rev. E, 76(4), 2007.

8. L. Delle Site, S. Leon, and K. Kremer. BPA-PC on a ni(111) surface: The inter-

play between adsorption energy and conformational entropy for different Chain-End

modifications. J. Am. Chem. Soc., 126(9):2944–2955, March 2004.

9. B. Ensing, S. O. Nielsen, P. B. Moore, M. L. Klein, and M. Parrinello. Energy con-

servation in adaptive hybrid Atomistic/Coarse-Grain molecular dynamics. J. Chem.

Theor. Comp., 3(3):1100–1105, 2007.

10. F. Ercolessi and J. B. Adams. Interatomic potentials from first-principles calculations:

The force-matching method. Europhys. Lett., 26, 1994.

11. R. P. Feynman. Atomic theory of the two-fluid model of liquid helium. Phys. Rev.,

94:262–277, Apr 1954.

12. S. Fritsch, C. Junghans, and K. Kremer. Structure formation of toluene around c60:

Implementation of the adaptive resolution scheme (adress) into gromacs. J. Chem.

Theory Comput., 8(2):398–403, FEB 2012.

13. S. Fritsch, S. Poblete, C. Junghans, G. Ciccotti, L. Delle Site, and K. Kremer. Adap-

tive resolution molecular dynamics simulation through coupling to an internal particle

reservoir. Phys. Rev. Lett., 108(17), APR 27 2012.

14. P. Ganguly, D. Mukherji, C. Junghans, and N. F. A. van der Vegt. Preferential solva-

tion of triglycine in aqueous urea: An open boundary simulation approach. JCTC, 8,

2012.

15. J. Gao, K. B. Lipkowitz, and D. B. Boyd. Methods and applications of combined

quantum mechanical and molecular mechanical potentials. Wiley, 1995.

16. G. S. Grest and K. Kremer. Molecular dynamics simulation for polymers in the

presence of a heat bath. Phys. Rev. A, 33:3628–3631, May 1986.

17. J. D. Halverson, T. Brandes, O. Lenz, A. Arnold, S. Bevc, V. Starchenko, K. Kremer,

T. Stuehn, and D. Reith. Espresso++: A modern multiscale simulation package for

soft matter systems. Computer Physics Communications, (0):–, 2012.

18. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms for

highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor.

Comput., 4(3):435–447, 2008.

19. C. Hijón, E. Vanden-Eijnden, R. Delgado-Buscalioni, and P. Español. Mori-Zwanzig
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In this lecture, we discuss two different approaches to treat an adaptive hybrid atomistic/coarse-

grain simulation. Such a multiscale algorithm treats the most interesting part of the system in

accurate fine-grained (atomistic) detail, whereas the environment is modelled at a less detailed

and less computationally demanding resolution. Our interest is in open boundaries: molecules

are allowed to diffuse between the different resolution regions and adapt their resolution on

the fly. Here we compare our existing approach with a new approach based on a Lagrangian

formulation which includes both resolution-switching forces and a constraint on the number of

particles in each resolution region.

1 Introduction

Extending the time and length scales of molecular dynamics simulations of molecular pro-

cesses has been a challenge since the earliest computer calculations. Multiscale modelling

has become a powerful paradigm in simulations to meet this challenge by combining accu-

rate, but computationally demanding, models with less detailed ones. Multiscale modelling

can be done in a sequential manner or in a simultaneous fashion. In the sequential or hierar-

chical multiscale approach, information from an accurate and high-detail model is used in

a second stage by a reduced model that can deal with longer and larger simulations, or vice

versa. Instead, in the simultaneous multiscale approach, for example in adaptive multiscale

molecular dynamics, the system is partitioned into different regions that are modelled at

different resolutions in the same simulation. In this chapter, we focus on this second mul-

tiscale approach. In particular, we investigate whether it is possible to construct a Hamil-

tonian multiscale molecular dynamics with open boundaries. Open boundaries here mean

that molecules that diffuse between the different resolution regions can adapt their resolu-

tion on the fly. Such adaptivity is important when modelling extended soft matter systems

for long time scales, in which case matter is continuously exchanged between the different

resolution regions. In the last decade, a number of adaptive multiscale methods have been

developed1–4, however, none of these algorithms is without difficulties.

Previously we developed an adaptive multiscale molecular dynamics algorithm that

allows us to model part of the system in atomistic (AA) detail, while treating the rest of

the system with a coarse-grain (CG) model3, 5, 6. An intermediate “healing region” (HR)

couples the atomistic region (AR) to the coarse-grain region (CGR) and allows particles
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to transform in a smooth manner from one representation to the other when they diffuse

across the region boundaries. Although this “healing region” approach allows in principle

for simulations of large soft matter systems for extensive times scales, the details of the

coupling in the HR may affect the structural and dynamical behaviour of the system, which

should be investigated carefully.

In the AA/CG method, particles adapt continuously from one potential energy surface

to the other, which generates heat due to the equilibration of particles to their new, more

(or less) detailed environment. The algorithm requires thermostats to remove this heat,

and is therefore by definition a non-equilibrium method. By bookkeeping the energy that

particles gain or loose when they switch representation and by adding these bookkeeping

terms to the potential and kinetic energy terms, we recover an auxiliary total energy that

behaves as a conserved quantity. Although this conserved quantity is an important handle

in our method to control the integration of the equations of motions, in particular to choose

the time step and the size of the HR, this energy is not a physical observable. It is therefore

not useful for the comparison of total energies or enthalpies of different configurations and

furthermore the calculation of, for example, the heat capacity of the system is not trivial.

Also, the non-equilibrium nature of this approach makes it more difficult to apply standard

statistical mechanics concepts.

The equilibration and heat production that takes place in the HR is not just an effect

of the continuous fluctuation of the number of degrees of freedom that is inherent to the

hybrid AA/CG method. Indeed, introducing the atomistic positions and velocities into a

CG particle requires a much higher level of equilibration than the reverse process, in which

information is merely removed. However, also in a 1:1 mapping, in which the number of

degrees of freedom is conserved between regions, the system will nevertheless heat up,

unless thermostats are used that work as a heat sink. An example of a 1:1 mapping is

found in the adaptive QM/MM method that couples a quantum chemical description (QM)

to a molecular mechanics (MM) model using a classical forcefield7, 8.

Heyden et al. have developed an alternative hybrid AA/CG method starting from a

linear combination of Lagrangians4. Here all possible Lagrangians are included that can

be constructed by considering each particle in the HR to be either fully in one represen-

tation or fully in the other. The equations of motion that are derived from this approach

do not only smoothly switch the potential energy terms on and off as particles transform

their representation, but also control the kinetic energy terms by scaling the masses of the

particles. Although this scheme is more involved, as it requires for example a special in-

tegrator that can deal with variable masses, it has the advantage that it is Hamiltonian and

thus conserves the (physical) total energy of the system. But there is also a disadvantage.

The forces derived from the scalable potential energy terms contain terms that are likely to

create a gradient over the HR and effectively drive particles from one region to the other.

The spurious driving force in the HR may lead to artifacts in the dynamics and the

structure of the molecular system, as was shown by Bulo et al. who applied this scheme

to a hybrid simulation of liquid water7. In that work a spherical region (“AR”) with a ra-

dius of 4 Å was centred on the oxygen of a central water molecule that was described by

the flexible SPC forcefield. A 1 Å skin around this region was taken as the HR and the

water molecules in the environment (CGR) outside this region was described with the flex-

ible TIP3P forcefield. The radial distribution around the central water molecule showed

dramatic errors due to the gradient in the HR. Interestingly, the expected radial distribu-
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tion function, a mixture of the purely SPC and TIP3P ones, was recovered by adding the

bookkeeping terms to the potential energy.

The artifacts seen in the pair-correlation are due to the different chemical potentials

of the coarse-grained and the fine-grained representations of the system, which induces a

potential gradient over the HR that causes a flux of particles as well as spurious density

fluctuations. In an instantaneous configuration, a particle may feel a spurious HR gradient

for three different reasons: (1) the extra degrees of freedom of the fine-grain representation

can contribute to an “internal” chemical potential that is missing in the CG representation,

(2) there may be a mismatch in the chemical potential of the two representations because

they were not optimized to represent the same thermodynamic state point, or (3) the particle

is in a low-potential energy state in one representation, but has a high potential energy in

the other representation. Careful tuning of the fine-grain and coarse-grain models to match

their chemical potentials may minimize the occurrence of a potential gradient in the HR

in the first two cases. The third case however may be unavoidable in a scheme in which

atomistic degrees of freedom enter on one side of the HR with, on average, a high potential

energy, and leave on the other side with a much lower energy. Poblete et al. observed, in

simulations with their hybrid AdResS method, density fluctuations in the HR, which they

attributed to variations in the chemical potential as a function of the switching in the HR9.

In this chapter, we investigate an alternative scheme to circumvent the difficulties that

appear due to differences in the chemical potential of two coupled representations, starting

from a Lagrangian approach. Using Lagrange multipliers we can add holonomic con-

straints that fix the total number of particles in each region. By adding these extra terms

to the Lagrangian we can in principle counteract a potential gradient that may exist in the

HR while the undetermined Lagrange multipliers provide a direct measure of the chemical

potential difference. We compare this approach to our previous non-Hamiltonian AA/CG

algorithm.

The remainder of this chapter is organized as follows. We first describe the mathemat-

ical details of the methods, starting with the non-Hamiltonian AA/CG scheme followed

by the Lagrangian AA/CG scheme. We then apply the method to a number of illustrative

examples to explore the strengths and weaknesses of the two methods.

2 Theoretical Framework

We will compare two different approaches to construct a hybrid AA/CG molecular dy-

namics method: our previously developed non-conservative AA/CG scheme and a new

Lagrangian scheme. Prerequisite to either one is a mapping between the coarse-grained

and the fine-grained (atomistic) representations of the entire system and a partitioning of

the system into AA and CG regions. We can choose for example a spherical atomistic

region of a certain radius fixed in space, as illustrated in Fig. 1. But the AR can also be

centred on a particular molecule and have a different shape. All particles are attributed

a weight s(r) ∈ [0, 1] that sets their resolution. In the CGR s(r) equals zero, in the AR

s(r) is one, and in the HR this weight function switches smoothly from zero to one. The

weights are used to scale the pair-interactions between particles, as we will describe later.

In the following, we first describe the non-Hamiltonian AA/CG scheme, in which we

point out that this algorithm does not conserve the total energy, but that, through the use

of bookkeeping terms, we can recover a conserved quantity that we refer to as “auxiliary

97



Figure 1. Schematic hybrid AA/CG setup showing the atomistic region (AR), the coarse-grain region (CGR) and

the intermediate healing region (HR). All particles are attributed a scalar s that sets their AA/CG resolution.

total energy”. We also show that in this case the forces on the particles only contain the

scaled pair-wise interactions. A more detailed description is found in Refs. 3, 5, 6, 10. In

the second part, our Lagrangian scheme is presented. This second scheme conserves total

energy – at least in the case of a 1:1 mapping – and does not contain bookkeeping terms.

The forces on the particles acquire additional terms due to the gradient of the scaling s(r)
in the HR, which we counteract using a constraint.

2.1 Non-Conservative AA/CG Scheme with Bookkeeping

The non-conservative AA/CG couples an atomistic description of the system with a coarse-

grained one, by taking the interactions as a mixture of the atomistic and CG pair-potentials,

ΦA and ΦCG respectively, as follows:

V =
∑

αβ


(1− λαβ)Φ

CG
αβ + λαβ

∑

i∈α
j∈β

ΦA
ij


+

∑

α

∑

i,j∈α

ΦA
ij +∆UA/CG +∆U intraCG .

(1)

Here, i and j refer to the atoms that are grouped into CG particles α and β. The scaling

factors, λ ∈ [0, 1], depend on the CG particle positions and switch the interactions that

span different CG groups. Previously, we have taken λ to be equal to the minimum weight,

s, of the interacting particlesa (Eq. 2). An alternative choice is using Eq. 3, in which λ is

aActually, we used the maximum of s, but with s = 0 in the AR and s = 1 in the CGR.
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the product of the weights. The latter is used in the AdResS method of Praprotnik et al.2:

λαβ = min[s(rα), s(rα)] , (2)

λαβ = s(rα) · s(rβ) . (3)

The third term in Eq. 1 describes the atomistic structure inside the CG groups, which are

not scaled in the HR, but rather are frozen instantly when particles enter the CGR. The last

two terms are the bookkeeping terms that account for the instantaneous potential energy

differences that are manifested between the AA and CG descriptions of the particles that

transform in the HR. The first, ∆UA/CG, bookkeeps the gradual change in the potentials

of all CG groups α that are in the HR, by summing over all other groups β as follows,

∆UA/CG(t) =
∑

α∈HR

∫
dt
∑

β 6=α

∂λαβ
∂r


ΦCG

αβ −
∑

i∈α
j∈β

ΦA
ij


 . (4)

Here, we explicitly write the time-dependence as ∆UA/CG(t) to point out that the book-

keeping energy is a history-dependent term that is not only a function of the current con-

figuration. The second bookkeeping term, ∆U intraCG, accounts for the atomic potential

energy inside the CG groups, which is computed for all particles in the CGR a priori and

is subtracted when a particle enters the HR, or, when it enters the CGR, it is recomputed

and added:

∆U intraCG =
∑

α

Θ(sα)
∑

i,j∈α

Φ̃A
ij . (5)

Here, Θ(sα) is the Heaviside step function that is equal to one for particles in the CGR

and zero otherwise. The tilde indicates that the atomistic potential, Φ̃A
ij , is evaluated at the

moment that particle α crosses the HR/CGR boundary.

In the AR and HR, it is the atoms that are propagated, while their CG counterpart

positions are simply updated by taking the centres of mass of the atoms belonging to the

CG particle:

rα =

∑
i∈αmiri∑
i∈αmi

. (6)

Instead, in the CG region the CG particles are evolved, while the atomic positions are

frozen and stored relative to their centres of mass. The kinetic energy is computed as the

sum of the atomic and CG kinetic energies plus a third bookkeeping term that, analogously

to ∆U intraCG, stores or releases the kinetic energy difference between the two representa-

tions when the atoms are frozen or released when they cross the HR/CGR boundary:

T =
∑

i∈AR,HR

miṽ
2
i +

∑

α∈CGR

mαṽ
2
α +∆TA/CG , (7)

∆TA/CG =
∑

α

Θ(sα)
1

2

(
mαṽ

2
α −

∑

i∈α

miṽ
2
i

)
. (8)

To maintain a constant temperature and to remove heat that is produced when particles are

introduced and equilibrated in the HR, all particles are coupled to a thermostat. The sum

of the above potential and kinetic energy terms, including the bookkeeping terms and the
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energy terms of the thermostats adds up to an auxiliary total energy that is a conserved

quantity.

Previously, we showed that a hybrid AA/CG simulation of molecules that are described

by two or more bonded CG particles (e.g. hexane) requires that in the CGR the frozen

groups of atoms associated with each CG particle maintain reasonable orientations with

respect to the rest of the molecule5, 10. Without preconditioning their orientation, the atom

groups cannot be smoothly introduced when a CG particles leaves the CGR, even if the HR

is extremely wide. However in this article we will only consider a simple model system of

toy molecules that are each represented by a single CG particle, so that here we can omit

the preconditioning of the atomic orientation.

The forces on the particles are derived from the scaled potentials (see Eq. 1), including

the bookkeeping term:

fi =
∑

β

(
(1− λαβ)

∂ΦCG
αβ

∂rα

∂rα
∂ri

− ∂λαβ
∂rα

∂rα
∂ri

ΦCG
αβ

+
∑

j∈β

(
λαβ

∂ΦA
ij

∂ri
+
∂λαβ
∂rα

∂rα
∂ri

ΦA
ij

))

+
∑

j∈α

∂ΦA
ij

∂ri
+
∂∆UAA/CG

∂ri
+
∂∆U intraCG

∂ri
(9)

=
∑

β


(1− λαβ)

∂ΦCG
αβ

∂rα

∂rα
∂ri

+
∑

j∈β

λαβ
∂ΦA

ij

∂ri


+

∑

j∈α

∂ΦA
ij

∂ri
. (10)

On the first line, we explicitly write the four terms that arise when we apply the product

rule to take the derivative of the scaled CG pair-potentials and the atomistic pair-potentials

in Eq. 1. Note that the derivative of the CG potential, ΦCG is with respect to the position

of the CG particle α that contains atom i, so that the atoms belonging to the CG particle

feel the CG interaction working on their centre of mass, which is then multiplied with

∂rα/∂ri. The latter term is just weighting the CG force by the relative atom masses, as

follows from taking the derivative of Eq. 6. It should also be noted that the first and third

terms are the usual thermodynamic forces scaled by λ, whereas the second and fourth terms

arise from taking the derivative of λ and thus yield forces due to a change in the scaling

factor. Although these second and fourth terms have opposite sign, they will in practice

not cancel exactly and therefore may create a potential gradient in the HR. However, in

our scheme, taking the derivative of the first bookkeeping term, ∆UAA/CG, yields exactly

the same terms with the opposite signs, so that there is no potential gradient in the HR6, 10.

The derivative of the second bookkeeping term, ∆U intraCG, is zero. As a result, the forces

on the particles only contain the scaled forces due to the pair interactions and the atomistic

(non-scaled) interactions of atoms that belong to the same CG group.
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2.2 Lagrangian AA/CG Scheme Using a Number Constraint

To construct a conservative multiscale molecular modelling scheme, we start from a La-

grangian

L = T − V + Λ(f(rNα )− ÑAA), (11)

which is the usual difference of the kinetic energy, T , and the potential energy, V , but

with an added constraint on the number of particles in the system that find themselves in

the atomistic resolution region, ÑAA. Here, Λ is the undetermined Lagrange multiplier

and f(rNα ) is a function of all the particle positions that quantifies how many of them are

represented in atomistic resolution. We take for this function the sum of weights attributed

to all CG groups of atoms,

f =
∑

α

s(rα), (12)

where each individual weight s equals one in the AR, zero in the CGR, and smoothly

switches from one to zero in the HR, as was described above.

T is simply the sum of the kinetic energy of the atoms in the AR plus HR and the

kinetic energy of the CG particles in the CGR,

T =
∑

i∈AR,HR

miṽ
2
i +

∑

α∈CGR

mαṽ
2
α. (13)

The potential energy similarly to the non-conserving scheme above is taken as the mixed

pair-potentials between particles that belong to different CG groups and the atomistic in-

teractions within the CG groups,

V =
∑

αβ


(1− λαβ)Φ

CG
αβ + λαβ

∑

i∈α
j∈β

ΦA
ij


+

∑

α

∑

i,j∈α

ΦA
ij +

1

2
k(
∑

α

s(rα)− ÑAA)2,

(14)

but now without any bookkeeping terms, and instead with an extra term due to the particle

number constraint. For the latter, we have inserted Eq. 12, and we have replaced the

holonomic constraint, which requires an iterative procedure such as SHAKE by a harmonic

restraint on the number of AA particles in the system. For a large enough value of the force

constant, k, this restraint will also confine the number of particles in the AR plus HR to the

target value ÑAA. This automatically sets the number of particles in the CGR as the total

number of particles counted as CG groups that can be in either representation is constant:

Nα = NAA
α +NCG

α . (15)

The forces on the particles are again derived from the potential energy (Eq. 14). In this

case, not having the bookkeeping terms, the forces contain both the scaled thermodynamic

forces as well as the contributions from the changing scaling factor:
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fi =
∑

β

(
(1− λαβ)

∂ΦCG
αβ

∂rα

∂rα
∂ri

− ∂λαβ
∂rα

∂rα
∂ri

ΦCG
αβ

+
∑

j∈β

(
λαβ

∂ΦA
ij

∂ri
+
∂λαβ
∂rα

∂rα
∂ri

ΦA
ij

))

+
∑

j∈α

∂ΦA
ij

∂ri
+ k

∑

α

(s(rα)− ÑAA)
ds

drα

∂rα
∂ri

. (16)

3 Model Setup

To compare the properties of the non-conservative AA/CG method and the Lagrangian

scheme, we apply both methods to three illustrative model systems of toy molecules that

move in a two dimensional space. The molecules consist in the “atomistic representation”

of two atoms with a mass of 10 amu that are connected by a harmonic bond potential, in a

square box with a length of L = 10 Å and with periodic boundary conditions. Taking the

origin at the centre of the box, the AR is a rectangular strip defined as |x| < 3, flanked on

both sides by a HR at 3 < |x| < 4 and a CGR at 4 < |x|. The switching function of the

particle weight is taken as

s =





1 if x < |3|
3(4− |x|)2 − 2(4− |x|)3 if 3 ≤ |x| ≤ 4.

0 if x > |4|
(17)

We first consider a single diatomic molecule in a 1:1 mapping that moves through

the different regions. The diatomic molecule is initially placed at the centre of the

box in the AR, in a slightly tilted orientation with respect to the y-axis, with positions

r1 = (1.050, 0.0025) and r2 = (−1.050,−0.0025). Both atoms are assigned a velocity of

v1 = (0.0000, 0.0025) Å/fs, so that the molecule moves towards the HR without rotating.

The molecule vibrates due to a harmonic spring potential, which has an equilibrium bond

length of 2.0 Å and a force constant of kAA
bond = 200 kJ/mol/Å2. In the CG representation,

the molecule also contains two atoms with a spring, but the force constant is reduced by a

factor of five to kCG
bond = 40 kJ/mol/Å2.

Secondly, we model two such molecules in the simulation unit cell. We add a non-

bonded Lennard-Jones interaction, which acts between particles that are not bonded to

each other. The Lennard-Jones interaction is identical in all regions, with ǫ = 0.1 kJ/mol

and σ = 1.5 Å. We also performed additional simulations with a Langevin thermostat11

coupled to each particle, which has a target temperature of 30 K and a friction coefficient

of 1 fs−1.

The third case considers five molecules with a 2:1 mapping. Specifically, molecules in-

teract with each other as diatomics (two interaction sites) in the AR and point particles (one

interaction site) in the CGR. All such nonbonded interactions are Lennard-Jones in nature

with ǫ = 0.1 kJ/mol and σ = 2.5 Å. The harmonic bond force constant is 100 kJ/mol/Å2

and the equilibrium bond length is 0.25 Å (so that the two AR beads are almost on top

of one another). The CG (single) interaction site is taken as the centre of mass of the two
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atoms. For simplicity, we do not actually replace the atoms by a CG particle, but instead

propagate in all regions the atoms coupled by the harmonic bond potential, so that the

number of degrees of freedom remains constant (see also the remarks in Sec. 6). The AR

beads have a mass of 10 amu. The Langevin thermostat has a target temperature of 50 K

and a friction coefficient of 0.03 fs−1. When used, the harmonic restraint on the number

of AR particles in the system is chosen as either klow = 1 kJ/mol or khigh = 5 kJ/mol.

The constraint number is taken as 3.5, which is simply the total number of particles mul-

tiplied by the volume fraction of the AR (including half the HR volume fraction). The

minimum weight formula is used to compute λ. The square unit cell and region definitions

are unchanged from the 1:1 mapping systems.

4 One Diatomic Molecule in a 1:1 Mapping

We compare the Lagrangian AA/CG scheme with the non-conservative algorithm for a sin-

gle harmonic oscillator whose bond force constant changes value between regions. Also,

for both methods we compare the two different ways of computing the potential scaling

factor, either as the product of the particle weights (Eq. 3), or as the minimum of the par-

ticle weights (Eq. 2). The results of these four simulations are illustrated in Fig. 2 and

Fig. 3.

Fig. 2 shows the velocity in the x-direction of one of the particles, during the first

2 ps of simulation. As long as the molecule travels through the AR, all four simulations

show the same behaviour of the vibrating diatomic. In the non-conservative simulations

(red lines), the vibration slows down in the HR, maintains a lower frequency in the CGR

and then increases again the frequency in the next HR to its original frequency in the AR

Figure 2. x-component of the velocity of particle 1 shown for a diatomic molecule (see inset) that moves in

the x-direction, starting in the AR. Due to the tilt angle, particle 1 arrives first in the HR, which induces in the

Lagrangian case a rotation when the molecule transforms into the CG representation.
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Figure 3. Energy components as a function of time for the diatomic molecule using the Lagrangian method (left

panels) and the non-conservative method (right panels).

(of course, the amplitude is much larger in the y-component of the velocity). The two

simulations using the Lagrangian scheme show a markedly different behaviour. In both

cases, the molecule accelerates in the x-direction and it starts to rotate while it travels

through the HR. The acceleration is rather similar for both scaling factor formulas, shown

in Fig. 2 by an increase of the black line shortly after entering the HR. The rotation of the

molecule is seen by the increased fluctuations in the x-velocity of the particle, which is

more significant when using the minimum s-value.

Fig. 3 shows for the four simulations the potential energy (black line) and the kinetic

energy (red line). The green line shows the sum of V and T , which is perfectly constant in

the Lagrangian AA/CG simulations (left panels), but not in the non-conservative scheme

(right). However, in the latter the auxiliary total energy, which includes the bookkeeping

term (Eq. 4) is conserved, as shown by the blue line.

A remarkable difference between the Lagrangian and non-conservative schemes is

seen by comparing the kinetic energy (red line) in the top panels. Whereas in the non-

conservative scheme the average kinetic energy goes down with the potential energy in the

CGR, instead in the Lagrangian scheme the average kinetic energy goes up. In the latter

case, increased kinetic energy counterbalances the decreased potential energy, so that the

total energy remains constant. The kinetic energy increase is due to the added translational

and rotational motion that the molecule gains from the potential gradient in the HR. This

gradient is absent in the non-conservative scheme.
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The differences between the different formulas for computing the potential scaling

factor are small. Taking the product of the particle weights results in faster switching

so that in a sense the effect of the HR region is compressed to a shorter width. On the other

hand, in the Lagrangian scheme, in which the gradients of λ take part in the forces (Eq. 10),

using the minimum weight seems to strongly affect the dynamics in the HR, resulting in a

fast-rotating molecule compared to using the product of weights.

Summarizing, we have seen that the Lagrangian AA/CG scheme conserves the total

energy, whereas the non-conservative scheme only conserves an auxiliary total energy.

However, in the Lagrangian scheme there is a potential gradient in the HR, which affects

the dynamics of the molecule, by inducing rotational and translational acceleration.

5 Two Diatomic Molecules in a 1:1 Mapping

Adding one more molecule to the simulation unit cell, which also adds non-bonded forces

to the system, displays an energy behaviour as summarized in Fig. 4. As expected, the

Lagrangian treatment conserves energy and does not require a thermostat. Conversely,

the non-conservative treatment heats up without the use of a thermostat. Even though the

auxiliary total energy is conserved, the beads move faster and faster until the integration

time step is no longer appropriate to adequately describe the dynamics. Use of a thermostat

stabilizes the system and, once the energy provided by the thermostat is accounted for, the

bookkeeping energy contribution is seen to be very small – it is the difference between the

red and black curves in Fig. 4.

Figure 4. Energy behaviour of the two molecule 1:1 mapping system. In the non-conservative case, a thermostat

must be used, otherwise the system energy (not including the bookkeeping terms) grows as shown in blue. Use

of a thermostat stabilizes the system energy (shown in green) which is seen to have small fluctuations once

the energy from the thermostat is accounted for (shown in red). Finally, including the bookkeeping energy

contribution results in a conserved quantity (shown in black) which is identical to the energy of the Lagrangian

case.
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6 Mapping Several Atoms in a CG Particle

Sofar, we have mapped each atom to a single CG particle, in which case the Lagrangian

scheme is energy conserving, while the non-conservative scheme heats up unless a thermo-

stat is used. The above examples are illustrative for an adaptive hybrid quantum/classical

(QM/MM) method. To move to an actual mixed AA/CG method, we have to go beyond

the 1:1 mapping.

Let us consider for a moment the 2:1 mapping case of a single diatomic molecule that

is replaced in the CGR by a single interaction site. Clearly, in our scheme in which the

atomistic bond potential is instantaneously frozen and removed when it enters the CGR,

the energy cannot be conserved (without bookkeeping). This is why instead in the La-

grangian scheme of Heyden et al. the atomistic intra-CG particle interactions are scaled in

the HR analogous to the inter-CG particle interactions. However, to avoid that the atomistic

molecules disintegrate when their atomistic intra-CG particle interactions are smoothly

switched off, they also scale the atom masses, and thus the kinetic energy, smoothly to

zero4. To keep things simple in our examples, we therefore do not actually freeze and

replace the atoms by CG particles, but maintain the atoms throughout the entire system.

However, these atoms, in the CGR, do not participate in nonbonded interactions. The

nonbonded interactions are evaluated using the centre of mass of the atom group, in other

words from the CG bead location. Then, the resulting force experienced by the CG bead is

distributed over the atoms in a mass-weighted manner. In this way the number of particles

in the system never changes. We nonetheless use the term “2:1 mapping” to denote the

change in the inter-CG bead interactions.

Although this implementation of the Lagrangian scheme is thus significantly simpli-

fied, for the 2:1 mapping case the total energy is no longer conserved. In other words,

the “Lagrangian scheme” is not actually Lagrangian when going beyond the 1:1 mapping

example.

7 Five Molecules in a 2:1 Mapping

For the 2:1 mapping system a thermostat must be used in both the Lagrangian and the non-

conservative treatments in order to stabilize the system. Thus one of the appealing features

of the Lagrangian treatment in the 1:1 mapping case is lost – namely energy is no longer

conserved.

Surprisingly, the thermostat removes orders of magnitude more energy in the La-

grangian case compared to the non-conservative case (see Fig. 5). Although this obser-

vation needs to be explored more thoroughly, we can speculate, by going back to Fig. 2

of the 1:1 mapping case, that the λ-derivative terms increase the particle velocities. More-

over, the λ-derivative terms contain unscaled atomistic potential energies; when a particle

is near the CGR these energies may be very high.

8 Using a Harmonic Constraint on the Number of Particles

Another drawback of including the λ-derivative forces in the Lagrangian treatment is that

they can drive molecules to enter or leave the CGR for unphysical reasons. The term “un-

physical” is used here because the behaviour of the system should not depend on how it
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Figure 5. Energy removed by the thermostat in the 2-1 mapping system.

is represented. This behaviour is clearly seen in Fig. 6, where the Lagrangian descrip-

tion leads to an artificially high density of molecules in the CGR. This is not surprising

because we chose all beads (regardless of representation) to experience the same Lennard-

Jones pair interaction, yet there are twice as many beads present in the AA representation.

Thus the AA and CG force fields are clearly (and deliberately) mismatched. Nonetheless,

it would be appealing to have a methodology in which this mismatch does not deplete

Figure 6. Density of molecules as a function of their x-coordinate for the 2-1 mapping system. The density is

uniform throughout the unit cell in the non-conservative case. For the Lagrangian treatment without a restraint

on the number of AA particles in the system, the AR is depleted of molecules and the CGR has more molecules

in it as compared to the non-conservative case. Adding a stiff harmonic number constraint (k=5 kJ/mol) causes

the number of molecules in the HR to double. Using a weaker constraint (k=1 kJ/mol) yields a density closest to

the non-conservative case, although density artifacts are evident in the HR.
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one region of molecules. The non-conservative algorithm does this, and of course for the

Lagrangian case we have not yet considered the harmonic constraint on the number of

particles in the AR that is specifically designed to overcome the undesirable λ-derivative

density mismatch. The constraint number is taken as the total number of particles multi-

plied by the volume fraction of the AR to target a uniform system density. Unfortunately,

when used with a large harmonic force constant of khigh = 5 kJ/mol, the HR is found to

have a density about twice that of the AR and CGR (see Fig. 6). This could be an artifact of

having so few molecules in the system – on average there is less than one molecule in the

HR. A larger system in which there are significant numbers of molecules in the HR should

be explored. Using a small harmonic force constant of klow = 1 kJ/mol yields a density

closest to the non-conservative case, although the HR still displays density artifacts.

9 Conclusion

We have compared two approaches to construct an adaptive hybrid atomistic/coarse-grain

molecular dynamics method. The first approach was our previously developed multiscale

algorithm based on mixed atomistic and coarse-grain pair-potentials and an intermediate

healing region that allows particles to smoothly adapt their resolution when they diffuse

between the atomistic and CG regions. This algorithm is non-conservative, but by book-

keeping the energy change each time that a molecule adapts its resolution, we recover an

auxiliary total energy that is conserved. The bookkeeping terms also remove unphysical

forces that can drive particles from one region to the other in the HR. The second hybrid

AA/CG approach that we discussed was a new Lagrangian scheme that includes a restraint

on the number of particles that are fine-grained and coarse-grained. This restraint was

added to counteract the unphysical forces in the HR that are expected to be present, as here

no bookkeeping terms are included. An advantage of the Lagrangian approach could be

that the dynamics of the particles is Hamiltonian and that the total energy is conserved – at

least in the case of a 1:1 mapping. We applied both schemes to three illustrative model

systems to explore the features of the two different approaches.

The first application, a single diatomic molecule moving through the atomistic, heal-

ing and coarse-grained regions, showed that indeed in the Lagrangian scheme the total

energy is perfectly conserved in the case of 1:1 mapping (one atom is mapped onto one

CG particle), whereas in the non-conservative scheme only the auxiliary total energy (i.e.

total energy plus bookkeeping terms) is conserved. However, in the Lagrangian case the

unphysical forces induce a translational and rotational acceleration of the molecule in the

HR. In the non-conservative scheme, these unphysical forces are not present.

Secondly, we consider two 1:1 diatomics in the system. The non-conservative simula-

tion shows an increase of the temperature, unless thermostats are used to remove the heat.

Instead, the Lagrangian scheme shows no heating up.

In the third application, the diatomic molecule is represented by a single particle in the

CG resolution. In this 2:1 mapping, also the Lagrangian scheme does not conserve the

total energy and a heat-up of the system is observed. Interestingly, the energy flux from

the system to the thermostat is much larger in the Lagrangian scheme than in the non-

conservative scheme. With five molecules in the system, the non-conservative simulation

shows a rather flat density of molecules in the different regions of the system. Instead, in

the Lagrangian scheme, the (deliberate) mismatch between the atomistic and CG force-
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fields leads to strong unphysical forces in the HR that drive particles from the AR to the

CGR and results in rather different particle densities between the regions. When we employ

the restraint on the number of particles that find themselves in atomistic resolution, the

large density variation between the regions can be significantly reduced, although a too

stiff restraint leads to artifacts in the density in the intermediate healing region.

The comparison of the two adaptive AA/CG approaches is very insightful to under-

stand the complexity involved when coupling a fine-grained and a coarse-grained model

with open boundaries. The Lagrangian scheme with the particle restraint appears a promis-

ing route to address chemical potential differences between representations, although more

work is needed to extend the method beyond the 1:1 mapping. The non-conservative

AA/CG scheme couples the different resolutions in a robust manner, while avoiding un-

physical forces and maintaining a conserved auxiliary total energy. Further elaboration

of the strengths and weaknesses of these two approaches will allow us to address these

difficult issues in a simplified and insightful manner.
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Coupling different level of resolutions within a unified molecular dynamics scheme seeks to

attain large time and length scale while retaining the full chemical details only in the region of

interest. One such multiscale technique is the adaptive resolution molecular dynamic scheme

(AdResS). In AdResS, a high resolution all-atom region is coupled to a coarse-grained parti-

cle reservoir. Implementing the AdResS scheme for the (bio)macromolecular simulations is of

particular importance where the full chemical details are only important within a few nanome-

ters from the solvated protein. The remaining solvent molecules, that are present to maintain

equilibrium with the bulk solution, can be represented by single site coarse-grained beads. The

coupling leads to correct concentration fluctuations within the small all-atom region, making

the all-atom region an “effective” open boundary system. We treat this small all-atom region

within the framework of fluctuation theory of Kirkwood and Buff, derived for open systems.

We will present examples where this open boundary approach is successfully used to calculate

solvation free energies of aqueous mixtures.

1 Introduction

(Bio)macromolecular solvation in water is dictated by the presence of the small cosolvents

within the hydration shell of the proteins1–6. While experiments often predict interesting

physical properties of macromolecules in aqueous mixtures, that range from proteins7, 8 to

polymers9, 10, the microscopic understanding to describes the structure, function and stabil-

ity with respect to the specific interactions of macromolecules with cosolvents is lacking.

Therefore, molecular simulations are of particular interest for the (bio)molecular simula-

tions11–20. Furthermore, the numerical studies in the field are limited to the closed boundary

schemes, which, however, suffer from severe system size effects21–24. More specifically,

when the large scale conformational transitions are intimately linked to the large concen-

tration fluctuations, the excess of cosolvents near a macromolecule lead to depletion else-

where in a small sized closed boundary setup. This disturbs solvent equilibrium with the

bulk solution. To a reasonable extent, this discrepancy can be overcome by choosing enor-

mously large simulation domains23–28. However, attaining long time scales within large

simulation domains are computationally too expensive, especially when studying the equi-

librium conformational transitions of macromolecules that require full chemical details.

The larger the solvated macromolecule the larger solvent box need to be chosen to maintain

solvent equilibrium. Therefore, it is important to use an alternative simulation scheme that

can capture local concentration fluctuations correctly within a computationally efficient

framework. In this context, we have recently proposed an approach to simulate aqueous

mixtures in an “effective” open boundary simulation scheme24. Our approach makes use of

the previously developed Adaptive Resolution Scheme (AdResS)29–33. In AdResS, an high

resolution region with full chemical details is coupled to a low resolution reservoir repre-

sented by single site coarse-grained particles. The particles can change their resolution,
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on the fly, in full thermodynamic equilibrium. The AdResS method has been successfully

implemented to study challenging molecular liquids and solvation properties34–37. Re-

cently, we have shown that by coupling a small all-atom region, containing a small peptide

(triglycine), to a much larger coarse-grained osmotic reservoir, the correct concentration

fluctuations could be captured24, 28. We treat the all-atom region within the framework of

the fluctuation theory of Kirkwood and Buff38, derived for the grand-canonical ensemble.

In this book chapter, we present a brief overview of the “effective” open boundary approach

and its application to calculate the solvation free energies of aqueous mixtures a.

The remainder of the paper is organized as follows: In Sec. 2 we sketch the method

where we give a brief summary of AdResS method together with KB theory of solutions.

The results are presented in Sec. 3 and finally we give our conclusions in Sec. 4.

2 Methodology

2.1 The AdResS Scheme

Figure 1. A typical AdResS simulation setup of a water methanol mixture at 50% mole fraction of methanol. The

all-atom region of 2nm radius is coupled to a much larger coarse-grained reservoir. In between there is a hybrid

region of width 1.3nm, allowing for the smooth transition between all-atom and coarse-grained representation

of the molecules. The total linear dimension of the system is ≈ 10nm consisting of 20152 molecules. On the

right panel, we show the mapping scheme. Coarse-grained methanol beads are rendered in black and silver is

chosen for coarse-grained water. The CH3 group of the methanol is treated as united atom represented by steel,

the oxygen is rendered in red and the hydrogen in silver.

The Adaptive Resolution scheme30, 31, is a multi-scale approach that can couple a re-

gion of high resolution (e.g. all-atom) molecules and a region of low resolution (e.g.

coarse-grained) reservoir. In between there is a “so called” hybrid region, where parti-

cles smoothly change their spacial resolutions from all-atom to coarse-grained and vice

versa, allowing for free exchange of particles in full thermodynamic equilibrium29. This

transition is governed by a weighting function w(r) ∈ [0, 1]. w(r) is unity for the ex-

plicit system, zero for the coarse-grained, and smoothly varies between zero and unity

in the hybrid region. In Fig. 1, we show a typical AdResS simulation setup of aqueous

aWhile this chapter predominantly deals with the solvation thermodynamics within AdResS setup, a more de-

tailed description of AdResS method will be presented in the book chapter of this NIC series by Potestio and

Kremer.
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methanol mixture at 50% mole fraction of methanol. AdResS uses interpolated forces

between molecules α and β,

Fαβ = w(rα)w(rβ)F
exp
αβ + [1− w(rα)w(rβ)]F

cg
αβ . (1)

Fαβ is the total intermolecular force acting between two molecules and Fexp
αβ is the

sum of all high resolution pair-wise interactions between atoms of molecules α and β.

Fcg
αβ = −▽Vcg

αβ is the pair-wise coarse-grained force based on Vcg
αβ , the pairwise coarse-

grained potential. rα and rβ are the distances of the molecular centre-of-masses from the

centre of the simulation domain.

The AdResS method using force interpolation has the limitation of not having an en-

ergy. However, the overall scheme can preserve the essential thermodynamics without the

problem of energy conservation. An attempt for the possible coupling using potentials

instead of forces would lead;

Vαβ = w(rα)w(rβ)V
exp
αβ + [1− w(rα)w(rβ)]V

cg
αβ . (2)

The calculation of pairwise force from the Eq. 2, would lead to a drift term that is re-

lated to the derivative of the interpolating function, ▽w(r). Thus the similar approach

with the potential interpolation will lead to a series of problems whose solutions are not

trivial33, 39, 40.

2.2 Systematic Structural Coarse-Graining

An important ingredient of the AdResS setup is the description of the low resolution CG

region. Here we represent the CG region by single site beads and the non-bonded in-

teractions between these beads are derived from the iterative Boltzmann inversion (IBI)

method41, implemented in the VOTCA package42. The procedure starts from an initial

guess for the potential using the radial distribution function gtarget(r) obtained from the

all-atom simulation,

V0(r) = −kBT ln [gtarget(r)]. (3)

Then the potential is updated over several iterations and the potential function after nth

iteration is given by,

Vcg
n(r) = Vcg

n−1(r) + kBT ln

[
gn−1(r)

gtarget(r)

]
. (4)

After every iteration a 1ns long MD simulation is performed using the new potential and

the new gn(r) is calculated. This iterative procedure is followed till the obtained g(r)
matches reasonably well with gtarget(r). This convergence criterion can be assessed by

using the root-mean-squared deviations between the fitted and the target radial distribution

functions △gn
42,

△g2n =

∫
[gtarget(r)− gn(r)]

2
dr. (5)

We show the comparative gn(r)’s and △gn in the part (a) of Fig. 2. It can also be seen that

even when △gn plateaus out for n > 10, there seems to be large noise in the structural

equilibration. This noise can be attributed to the simultaneous potential updates of three
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Figure 2. (a) The radial distribution functions gtarget(r) obtained from the all-atom target (symbols) and the

fitted g(r) after iterative Boltzmann inversion (IBI). Inset shows the root-mean-squared deviation △gn between

the fitted and the target g(r)’s as a function of IBI iterations. (b)potential for methanol water mixture at a 50%

methanol mole fraction. Data is shown for all three different pairwise interactions.

correlated pairs, where the update between a pair always re-adjusts the structure of other

two pairs. However, we want to emphasize that the potentials obtained from this method

reproduces the pairwise structure reasonably well and coupling of such single site CG

system to an all-atom region does not alter the solvation properties within the chemically

explicit region. In part (b) of Fig. 2, we show the best fitted pairwise non-bonded CG

potentials between different components of a methanol water mixture at 50% methanol

mole fraction. Note: because the structure based CG potential are non-transferable across

concentrations, we derive CG potential for every concentration we study.

The potentials, as shown in Fig. 2, however, have a positive pressure, which is of the

order of 6000 bars for pure water. This does not reflect the ambient thermodynamic con-

ditions of the parent atomistic system. Therefore, a pressure correction can be employed

using a linear function41;

∆Vcg(r) = Ai

(
1− r

rcut

)
, (6)

where the rcut is the cut-off distance of the non-bonded interaction. A can be a constant or

can be obtained from a virial expression for the pressure,

−
[
2πNρ

3rcut

∫ rcut

0

r3gi(r)dr

]
Ai ≈ (Pi − Ptarget)V, (7)
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N is the number of particles, ρ the number density, V the volume of the system, Pi is

the pressure in the ith iteration and Ptarget is the pressure of the reference system41. This

allows us to obtain a CG model, which has the structure and average pressure similar to

that of the atomistic reference fluid. While the pressure correction works reasonably well,

the correction leads to different compressibility in the CG system. Therefore, sometimes it

is the matter of choice whether to have same pressure or same compressibility. However,

we want to emphasize that the choice of the CG model does not affect the robustness of

the AdResS method so long as the equilibrium between different regions is ensured. In our

study, we do not use any pressure correction, rather the equilibrium is maintained using a

thermodynamic force29. Use of thermodynamic force is of particular importance because

it allows for the exchange of particles between different regions in full thermodynamic

equilibrium. Additionally, because no pressure correction is employed, it also conserves

compressibility in the all-atom and the CG region of the AdResS setup, which is important

when studying the solvation properties of biological systems in aqueous mixtures. In the

later sections, we will show, in detail, how the thermodynamic force allows us to maintain

equilibrium within the simulation domain.

2.3 Fluctuation Theory: Kirkwood-Buff Integrals

Kirkwood-Buff (KB) theory, derived for the grand canonical ensemble, relates fluctuations

in an open system to the integral of radial distribution functions gij(r) over the volume38.

Thermodynamic quantities can be derived from the KB theory by making use of the “so-

called” Kirkwood-Buff integrals (KBI)22. For the solution components i and j, these KBIs

are defined as38,

Gij = V

[ 〈NiNj〉 − 〈Ni〉 〈Nj〉
〈Ni〉 〈Nj〉

− δij
〈Nj〉

]

= 4π

∫ ∞

0

[
gµVT
ij (r)− 1

]
r2dr,

≈ 4π

∫ r

0

[
gNVT
ij (r′)− 1

]
r′2dr′,

(8)

Figure 3. The Kirkwood-Buff integral can be interpreted as the change in the number of j molecules in a spherical

region of radius r in the solution before and after placing a molecule i at the origin of that region.
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where averages in the grand canonical ensemble are denoted by brackets 〈·〉, V is the vol-

ume, Ni number of particles of species “i”, δij is the Kronecker delta, gµVT
ij (r) is the

radial distribution function in the grand canonical (µVT) ensemble, gNVT
ij (r) is the ra-

dial distribution function in the canonical (NVT) ensemble, and Gij , the KBI, is a local

quantity, which can be used as a measure of the affinity between solution components i
and j. Physically, ρjGij can be interpreted as the change in the number of j molecules in

a spherical region of radius r in the solution before and after placing a molecule i at the

origin of that region (ρj is the number density of component j). A pictorial representa-

tion of the component affinity is shown in Fig. 3. In Eq. 8, we make the approximation

gµVT
ij (r) ≈ gNVT

ij (r). For very big system this is nearly always safe as all ensembles are

equivalent in the thermodynamic limit. In practice, however, the integration of [gij(r)− 1]
over the volume will hardly be feasible for systems with strong or long range fluctuations.

In all cases the integration limit r in the last line of Eq. 8 must be chosen sufficiently large

such thatGij(r) converges to a plateau value or oscillates in a well controlled way around a

mean value. The resulting average is well defined for very large NVT systems and for “ef-

fective” open boundary systems simulated with the AdResS scheme, as will be shown later.

These plateau and/or average values also correspond to the particle fluctuations within the

open boundary setup. A positive (or negative) value of Gij refers to excess (or depletion)

of component j around component i. In a binary system of cosolvent (c) and water (w),

the link to the solvation free energy is given by43,

γcc = 1 +

(
∂ ln γc
∂ ln ρc

)

p,T

=
1

1 + ρc (Gcc −Gcw)
, (9)

where γc is the molar cosolvent activity coefficient and kBT ln γc is the cosolvent solvation

free energy (at pressure p, temperature T , and cosolvent number density ρc) for a single

cosolvent molecule in the aqueous cosolvent mixtures. A similar expression can be derived

for the ternary systems that have a solute (s) at infinite dilution (ρs → 0) in a aqueous

cosolvent mixture. In this case, the variation of solvation free energy of the solute (∆Gs)

with the changing cosolvent concentration in water is given by6, 43,

lim
ρs→0

(
∂∆Gs

∂xc

)

p,T

=
RT (ρw + ρc)

2

η
(Gsw −Gsc) , (10)

where xc is the cosolvent mole fraction, R is the gas constant, η = ρw + ρc +
ρwρc (Gww +Gcc − 2Gcw) is the preferential solvation parameter, and ρ is the number

density of individual components of the aqueous solutions. Gij values are separately cal-

culated for every cosolvent concentration in a pure water-cosolvent mixture. Preferential

solvation of the solute by cosolvent molecules (Gsw − Gsc < 0) results in a decrease of

∆Gs upon increasing the cosolvent mole fraction xc or molar concentration cc (salting-

in b).

bNote: Salting-in is a general terminology used in (bio)chemistry when Gsw < Gsc, which is nothing but the

larger affinity of co-solvent near solute than water. It is not necessarily associated with the ionic solutions.
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3 Results and Discussions

For the all-atom simulations, we use the GROMACS molecular dynamics package44 and

AdResS simulations are performed using a modified GROMACS code37. We will review

results for aqueous methanol and a tri-glycine solvated in aqueous urea. The all-atom

simulations are performed in a NpT ensemble, where the pressure is controlled with a

Berendsen barostat at 1 atm pressure using a coupling time of 0.5 ps45. The temperature is

set to 300K using a Berendsen thermostat with coupling time 0.1 ps. The integration time

step is set to 2 fs. Electrostatics in the all-atom simulations are treated using particle mesh

ewald and reaction field method is used for AdResS simulations. We use the Gromos43a1

force field46 for methanol, the Kirkwood-Buff derived force field47 for urea and the SPC/E

water model48. The force field parameters for try-glycine are taken from Gromos43a146

(for more detail see Refs. 24, 28).

3.1 Closed Boundary All-Atom Simulations: System Size Effects

In order to derive thermodynamic quantities the KBI should show a reasonable conver-

gence at large distances, which, however, severely suffers from the system size effects.

Especially when they are calculated within a small (or moderate) sized closed boundary

NVT (constant number of particles N, volume V and temperature T) or NpT (constant N,

pressure p and T) systems. Therefore, we start by commenting on the results from the

closed boundary NpT all-atom simulations. In Fig. 4, we show the KBI between the wa-

ter molecules for an aqueous methanol mixture at 75% methanol mole fraction. It can

be appreciated that the reasonable convergence in KBI, which is related to the thermody-

namic quantities, is only obtained for the largest system size that has N = 20152, where

N is the total number of molecules in the system. For smaller system sizes, severe de-

pletion is observed at large distances as indicated by the non-convergence of the tail of

G(r). This indicates that the solvent equilibrium is disturbed unless a huge simulation

box is chosen. Furthermore, we here only consider water-water KBI because the system
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Figure 4. Running average of the Kirkwood-Buff integral between water molecules for a mixture at 75% mole

fraction of methanol. Results are shown for three different system sizes (or number of molecules) and for 40ns

data. Partially adopted from Ref. 24.

117



size effect is most severe at high methanol concentrations. Once we ensure a well de-

fined convergence in water-water KBI, the other pairs, over the full concentration range,

is guaranteed to show the convergence. It is still important to mention that even when

a system size of N = 20152 is a good choice for the pure aqueous methanol mixture, a

much larger simulation domain is needed when a large macromolecule is solvated in the

mixture. Thus the closed boundary all-atom schemes become computationally much more

demanding, because in most cases conformational transitions usually occur over very large

time scales. More specifically, attaining large time scales for equilibrium conformational

sampling of the phase space is almost impossible within the huge simulation domains with

full chemical details. Therefore, a more suitable approach will be to device an approach

that can capture correct particle fluctuation, thus can also be suitable for the study of the

large scale equilibrium conformational transition of (bio)macromolecules. A close investi-

gation would suggest that the chemical details are only important within a few nanometer

from the solvated (bio)molecules and/or equivalent to the correlation length in the solu-

tion. Therefore, if an all-atom region is coupled to a much larger surrounding reservoir,

then the all-atom region can be treated within a grand canonical framework49. Addition-

ally, the surrounding reservoir that is “only” present to maintain solvent equilibrium with

the bulk solution can be treated in a computationally inexpensive, single site, CG particle

representation. Therefore, we now proceed to the discussion of this sort in the following

section.

3.2 AdResS scheme: “Effective” Open Boundary Approach

3.2.1 Kirkwood-Buff Analysis of Aqueous Methanol Mixtures

We now focus on the simulation of liquid mixtures within an efficient multiscale AdResS

scheme. For this purpose, we use the AdResS setup presented in Fig. 1. Note that the CG

model used for the AdResS simulations is not pressure corrected. We start by running a

20ns long trajectory for the aqueous methanol mixture within the AdResS setup. However,

due to the difference between the pressures in the all-atom region and the CG region, parti-

cles in the CG region feel an unphysical driving force towards the all-atom region. This re-

sults in a nonuniform density profile over the full simulation domain, as shown by the black

curve in Fig. 5. A closer inspection of the curves in Fig. 5 suggest that even though the

pressure is always higher (for both components) in the coarse-grained region, the methanol

molecules are usually pushed out of the explicit region. This is because the pressure differ-

ence ∆Paa−cg, between the all-atom and coarse-grained representations, is always higher

for water molecules than the methanol molecules. Therefore, water molecules prefer the

explicit region more than the methanol molecules, which finally affects the maximum par-

ticle packing density within the explicit region. This leads to a reduced density of methanol

molecules inside the explicit region, as indicated in Fig. 5. This non-uniformity in the den-

sity profiles can be rectified by applying an iterative thermodynamic force29, 33,

fnth(r) = fn−1
th (r)− 1

ρ2κT
▽ ρn−1(r). (11)

which predominantly depends on the slope of the density profiles within the hybrid re-

gion (for a detailed methodological description and applications see Refs. 24,29,37). Here

κT is the isothermal compressibility of the solvent mixture. The thermodynamic force
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Figure 5. Normalized density profile for both components of the aqueous methanol mixture as a function of the

distance from the centre of the simulation domain. Results are shown for both before (black curves) and after (red

curves) the application of thermodynamic force, shown in Eq. 11. Large oscillations at the small r values are due

to the poor statistics. Vertical lines represent the boundary of the hybrid region. Partially adopted from Ref. 24.

can be calculated over several iterations until a flat density profile is obtained. It can be

appreciated that the overall uniform density profile is observed after the application of ther-

modynamic force, see the red curves in Fig. 5. This thermodynamic force is added together

with the extrapolation forces in Eq. 1, then the full blown AdResS simulations are run for

40ns long trajectory. Using the AdResS simulation runs, we calculate KBIs within the

all-atom region of the AdResS setup. In the top panel of Fig. 6, we show the comparative

KBIs between water molecules calculated for a mixture of 75% methanol mole fractions.

It can be appreciated that the KBI calculated within the all-atom region of the AdResS

setup reproduces almost perfect convergence comparable to the full blown all-atom system

of a much bigger system size. It still need to be mentioned that the all-atom region in the

AdResS setup only accommodates approximately 700 molecules, yet we see perfect con-

vergence of KBI, which otherwise would be impossible within a closed boundary all-atom

setup of same system size consisting of 700 molecules. We have also shown the particle

number fluctuation within the all-atom region of the AdResS setup, calculated using Eq. 8.

Furthermore, the the running averages of KBI shows well controlled oscillations around

the particle number fluctuation. This gives an indication that our approach captures correct

concentration fluctuations and thus making the all-atom region, of the AdResS setup, an

“effective” open boundary. To test the robustness of our approach, we have also calcu-

lated KBIs over full concentration range of methanol. Results are shown in the bottom

panel of Fig. 6. Gij’s are calculated using different methods are consistent and also shows

reasonably good agreement with the existing experiments43, 50. Note: Ideally the value of

KBI should be calculated when the G(r) converges to a plateau. However, within the mid

sized simulation domains, G(r) still shows oscillations upto a maximum distances that are

possible from these system sizes. Therefore, we take the average of G(r) between 0.9nm

and 1.5nm over which G(r) oscillates in a controlled manner around an average value.
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Figure 6. (top panel) Running averages of Kirkwood-Buff integral G(r) between water molecules at a 75%

methanol mole fraction. We present two experimental sets of data and three sets of simulation data. The all-atom

and the AdResS data is derived by integrating the pair distribution functions g(r). For AdResS data, we calculate

g(r) within the explicit region of 2nm radius and the particle fluctuation is calculated using Eq. 8 within the

same explicit region. (bottom panel) Kirkwood-Buff integrals Gij as a function of methanol mole fraction for

(a) methanol-methanol, (b) methanol-water, and (c) water-water. Note: For the calculation of Gij , we take the

average between 0.9nm and 1.5nm of G(r). Experimental value of KBI corresponding to legend exp 1 is taken

from Ref. 43 and for exp 2 we take the value from Ref. 50. Partially adopted from Ref. 24.

3.2.2 Solvation of Tri-Glycine in Aqueous Urea

In this section, we will focus on the calculation of the solvation free energies of a pep-

tide solvated in aqueous urea using the effective open boundary approach. Urea has been

known as a common protein denaturant for more than hundred years. Presence of urea in

water destroys the hydrophobic core of the protein and hence makes the protein more solv-

able in water. For example, two “controversial” mechanisms are proposed: One claims that

urea denatures proteins by disrupting the water structure and thus makes the protein hy-

drophobic residues less compact. Another mechanism can be due to the interactions of urea

with protein, either through stronger electrostatic interactions with backbone and/or polar

residues7, 8, 11, 13–20. More specifically, the solvation free energy of protein decreases with

increasing urea concentration and reaches a preferential extremum at around 8M urea7, 13.

Here we start by calculating the solvation free energy of an isolated urea molecule in
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Figure 7. γuu as a function of urea molar concentration cu (see Eq. 9). Error bars are standard deviations

calculated out of six stochastically independent all-atom runs. The data set for exp 1 is taken from Ref. 47, 51

and for exp 2 data is taken from Ref. 52. Partially adopted from Ref. 28.

the aqueous urea mixtures at different urea molar concentrations cu. We again ensure that

the density profile is uniform (as shown in the previous section) and calculate the KBI

within the all-atom region of the AdResS setup. Using Eq. 9 we calculate γuu and the

results are shown in Fig. 7. All-atom and AdResS data show excellent agreement over the

full concentration range. For comparison, we also include experimental data 47, 51. While

the simulation data could not exactly reproduce experimental values, the trend follows very

closely the first experimental data set of Ref. 51. This is a surprisingly close agreement,

suggesting that the chosen force-field properly captures interaction differences between

urea and water over a significant concentration range. Furthermore, we also observe a

speedup of up to three times by using AdResS over all-atom simulations. At a first look

this might appear to be small. However, in the case when the conformational transition of

a large (bio)macromolecule drives a large number of urea molecules towards the protein,

a much larger surrounding osmotic reservoir is needed to maintain correct solvent equilib-

rium. Therefore, use of our approach will more significantly increase the computational

efficiency.

Having shown the results for aqueous urea solutions, we now focus on studying the sol-

vation thermodynamics of tri-glycine in aqueous urea mixtures at different cu. A typical

AdResS setup for the solvated triglycine in aqueous urea is shown in Fig. 8. The derivative

of the solvation free energy (∂∆Gs/∂xu)p,T can be calculated using Eq. 10. In part (a) of

Fig. 9, we show a comparative plot of (∂∆Gs/∂xu)p,T using all-atom and AdResS simu-

lations. It is clear from the plot that the AdResS (or open boundary) scheme can effectively

reproduce the generic (bio)physical behaviour observed from a more computationally ex-

pensive all-atom simulation of the solvated tri-glycine. It is still important to mention that

for all concentrations of urea we observe salting-in (i.e. (∂∆Gtg/∂xu)p,T < 0), suggest-

ing the preferential interaction of urea with the tri-glycine over water. Furthermore, the

trend of Fig. 9(a) also suggest that ∆Gtg decreases with increasing urea concentration (see

Fig. 9(b)), which is nothing but the preferred solvation of tri-glycine at higher urea con-

centrations. While the variation of ∆Gtg with cu usually follows a linear dependence in

experiments53, simulations usually observe a quadratic dependence12. Here, the deviation

from the linear dependence in the Ref. 12 can be attributed to the (a) choice of force fields
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Figure 8. In the middle panel, we shown the AdResS setup of the tri-glycine solvated in aqueous urea. The all-

atom region is chosen to be of 2nm in radius and the hybrid region has the width of 1.3nm. The centre-of-mass

of the tri-glycine is constrained at the centre of the simulation domain and hence the peptide stays within the

all-atom region throughout the simulation run. The coarse-grained urea molecules are rendered in green and the

coarse-grained water molecules are rendered in silver. The magnified snapshot of the tri-glycine in 2.00M and

8.02M solutions are shown in the left and right panels, respectively. Partially adopted from Ref. 28.

and (b) the calculation of KBIs. As of (a), by comparing different force fields, it was

shown that the deviation from the linear dependence was more for peptide simulated using

AMBER than the GROMOS force field. (b) The peptide used in Ref. 12 consisted of ten

amino acids, where the calculation of KBI from the pair distribution function is nontriv-

ial and can lead to uncontrolled deviations of the solvation free energies that are extremely

sensitive to the values of KBIs (see Eq. 10). In our study, for a triglycine, we observe a nice

linear dependence for cu ≤ 6M urea concentration. For cu > 6M, ∆Gtg deviates away

from the linear dependence to somehow approach a plateau value (see Fig. 9(b)). These

observations are consistent with the known facts that the thermodynamic driving force, to-

wards better solubility, at around 8.02M urea7, 13 and thus leading to protein denaturation

in aqueous urea solutions. Another quantity that can be derived from the Fig. 9(b) is the

m-value for peptide solvation, which is defined as

m-value =
∂∆Gtg

∂cu
. (12)

If we take the m-value (per residue) from the slope of the linear fit in the Fig. 9(b), we

find −0.164 KJ mol−2L. This value is in a close agreement with the experimental value

of −0.163 KJ mol−2L12, 54. It is yet important to mention that the calculation of m-values

from the simulations assume the equal contribution of each residue of a tri-glycine, which

is reasonable as long as we choose a peptide with only a few amino acids. However, for

large peptides this approximation leads to extreme deviations from the experimentally ob-

served value, as in the case of decaglycine where m-value was found to be three times

larger that the expected experimentally value12. Therefore, our new open boundary simu-

lation approach, applied to a simple test case of tri-glycine, could capture all the necessary

ingredients of the solvation thermodynamics of the bio(macro)molecules.
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Figure 9. Part (a) shows derivative of tri-glycine solvation free energy (∂∆Gtg/∂xu) (see Eq. 10) as a function

of urea mole fraction xu. Note: here we use urea mole fraction (instead of urea molar concentration cu) in the

abscissa to be consistent with the Eq. 10. So, the numerical integration can directly lead to solvation free energy

∆Gtg. In part (b) we show the solvation free energy ∆Gtg as a function of molar concentrations cu. Dashed

lines are quadratic fits to the data in the both main plots with the colour of the lines being consistent with the

colour of the symbol. Solid line in part (b) is linear fit between 2M and 6M. Partially adopted from Ref. 28.

4 Conclusions

We present a brief discussion of the “effective” open boundary molecular dynamics ap-

proach applied to biologically relevant aqueous mixtures. Our approach makes use of the

adaptive resolution molecular dynamics scheme (AdResS). We present results for aque-

ous methanol and solvation of tri-glycine in aqueous urea. The solvation free energies

are calculated using the fluctuation theory of solutions derived by Kirkwood and Buff for

open systems. We obtain well converged solvation free energies within the small all-atom

region of the AdResS setup that are impossible in a brute force all-atom MD of similar

size. Though we have only tested relatively simple cases of aqueous methanol and tri-

glycine in the aqueous urea solutions, this approach can possibly be further used to study

the concentration driven conformational transition of more complex (bio)macromolecules.
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The simulation of structure formation by particle-based simulations poses a computational chal-

lenge because of (i) the wide spread of time scales or (ii) the presence of free-energy barriers

along the transformation path. A prototypical example of the former difficulty of multiple

disparate time scales is the simultaneous presence of stiff bonded interactions, defining the

molecular architecture of polymer systems and the weak non-bonded interactions, giving rise

to macrophase separation or self-assembly in dense multicomponent systems. A characteris-

tic illustration of the latter problem are nucleation barriers or metastable intermediate states in

the course of morphology transformation. Continuum models, in turn, describe the system by

a collective order-parameter field, e.g., the composition, rather than particle coordinates, and

often do not suffer from these limitations because (i) the stiff molecular degrees of freedom

have been integrated out and (ii) advanced numerical techniques, like the string method, exist

that identify free-energy barriers and most probable transition paths. Using field-theoretic um-

brella sampling, we determine an approximation of the continuum free-energy functional for a

specific particle-based model. We illustrate how (i) the on-the-fly string method can identify

the minimal free-energy path for the formation of an hourglass-shaped passage (stalk) between

two apposing bilayer membranes and (ii) the continuum free-energy functional can be used

in conjunction with a heterogeneous multiscale method (HMM) to speed-up the simulation of

Lifshitz-Slyozov coarsening in a binary polymer blend by two orders of magnitude.

1 Soft, Coarse-Grained Particle-Based Models

1.1 Length, Time, and Energy Scales in Multicomponent Polymer Melts

Soft matter and in particular multicomponent polymer systems are characterized by (i)

widely disparate time, length and energy scales, (ii) responsiveness to small driving forces,

(iii) a multitude of metastable states, and (iv) structural and chemical complexity of the

materials. These challenges require a multiscale approach that often relies on the develop-

ment and validation of coarse-grained models and the development of new computational

strategies.

The length, time, and energy scales on the atomic scale, e.g. associated with a cova-

lent bond along the backbone of a polymer, are on the order of Angstrom (bond length),

sub-picoseconds (molecular vibrations), and electron Volts (bond energy). The scales as-

sociated with a polymer molecule are its root mean-squared end-to-end distance, Re that

is on the order of tens of nanometers, the time scale to diffuse its own molecular exten-

sion, τ ∼ seconds, and the repulsive interaction free energy between different polymers in a

blend, χNkBT ∼ kBT , where kBT denotes the thermal energy scale, χ the Flory-Huggins

parameter, and N the number of effective coarse-grained interactions centres along the

molecular contour. Length and time scales associated with the collective dynamics of struc-

ture formation, i.e. phase separation in a binary homopolymer blend or self-assembly in
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block copolymer materials, exceed micrometers and hours, respectively. It is quite obvious

that no single computational approach can simultaneously address all these different scales

and it remains a daunting challenge for a systematic coarse-graining procedure to start out

with bond energies of eV and devise a coarse-grained model where free energy differences

between effective coarse-grained segments on the order of χkBT ∼ 10−2kBT ∼ 10−4eV
dictate the qualitative behaviour. Additionally, these effective interactions between the

coarse-grained segments are free energies, and therefore there is only a limited transfer-

ability of the coarse-grained model from one thermodynamic state to another1.

The appropriate choice of the coarse-grained computational models reflects the phys-

ical phenomena that one intends to study, i.e. the crystallization of polymers, the glass

transition in polymer materials, or phase separation and self-assembly require the coarse-

grained description to capture different relevant characteristics of a dense polymer melt. In

the following, we will restrict ourselves to structure formation in dense, binary AB poly-

mer materials. These systems are characterized by minute forces that drive structure for-

mation and that cannot yet be adequately predicted by ab initio quantum theory. Therefore

the parameters of such models must often be determined directly from experiment. These

coarse-grained models describe collective phenomena that can be quantitatively compared

to experiments in order to validate the coarse-grained model and, additionally, they provide

molecular insights into the structure and dynamics that are often not available experimen-

tally.

The wide spread of length, time, and energy scales between the atomistic structure

and the morphology imparts a large degree of universality onto the structure formation

in multicomponent polymer melts, i.e. systems with different atomistic architectures and

interactions exhibit similar behaviour on the mesoscopic scale. The appropriate level of

description for the study of the mesoscale structure of multicomponent polymer system is

the level of an entire macromolecule. On this level of coarse-graining, there are three rel-

evant interactions: (i) bonded interactions, which define the macromolecular architecture,

(ii) excluded volume interactions of segments that impart near-incompressibility onto the

dense polymer melt, and (iii) repulsion between unlike segment species, which drive the

structure formation (i.e. phase separation or self-assembly). These three interactions can be

parameterized by three, experimentally accessible, coarse-grained parameters. The length

scale of a linear flexible macromolecule, which adopts a Gaussian random-walk configu-

ration, is set by Re. The high free-energy costs associated with fluctuations of the total

density are set by the inverse isothermal compressibility, κ. Note that in a coarse-grained

model it is not necessary to enforce incompressibility down to the scale of a chemical re-

peat unit or atom but is suffices to limit density fluctuations on the relevant length scale,

which is a small fraction of Re. Within mean-field theory, the correlation length of den-

sity fluctuations is given by ξ = Re/
√
12κN . The low free-energy scale of interactions

between unlike polymer molecules (in a blend) or distinct block in copolymer materials is

set by χN in units kBT . This repulsion gives rise to domain formation, and the width of

the interfaces between domains is given by w0 = Re/
√
6χN in the limit of large incom-

patibility. The three coarse-grained parameters,Re, κN , and χN , describe the strengths of

the relevant interactions, and they are invariant under changing the number, N , of effective

interaction centres that are used to describe the molecular contour.

There is one additional, fourth relevant quantity that dictates the behaviour of dense

polymer melts – the invariant degree of polymerization, N̄ =
(
ρRe

2/N
)2

, where ρ is
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the segment number density. Since in a dense melt, Re = b
√
N , the invariant degree

of polymerization is proportional to the number of segments along the chain contour,

N̄ = (ρb3)2N . The physical meaning of N̄ consists in quantifying the number of neigh-

bouring molecules a reference chain interacts with. Since the Gaussian chain conforma-

tions are fractal, a Gaussian polymer in three spatial dimensions does not fill space but

there are on the order
√
N̄ other molecules pervading the volume of the reference chain.

This large number of neighbours is one of the important characteristics of dense polymer

melts that sets them apart from mixtures of small molecules. In the limit N̄ → ∞, a

molecule interacts with infinitely many neighbours and fluctuations of the collective den-

sity (or interactions with all the surrounding molecules) are strongly suppressed such that

the mean-field theory for polymers – denoted self-consistent field theory – becomes ac-

curate. One important role of computer simulations is to assess the corrections to the

mean-field approximation. Likewise, the depth of the correlation hole in the intermolecu-

lar pair correlation function, which is important for relating molecular interactions to the

Flory-Huggins parameter, or corrections to the Gaussian chain conformations in a dense

melt decrease in the limit of large N̄ . Therefore it is important for a coarse-grained model

to be able to describe systems with experimentally relevant degree of polymerization.

It is important to realize that on this level of coarse-graining one segment corresponds

to many chemical repeat units of a chemically realistic representation. While atoms can-

not overlap, the centres of mass of a collection of atoms may sit on top of each other. In

fact, systematic coarse-graining procedures aiming at reproducing the liquid-like correla-

tions between the coarse-grained segments reveal that the interactions between the coarse-

grained segments become the softer the more chemical repeat units a coarse-grained seg-

ment represents. As discussed above, the repulsive segmental interactions in the coarse-

grained model needs not to be so strong as to enforce incompressibility on the length scale

of an atom but we can weaken the repulsive segmental interactions to a level that they are

sufficient to suppress density fluctuations on the relevant length scale of a small fraction

of Re. This softening of the excluded volume interactions allows for a larger time step

in molecular-dynamics simulations or facilitates the use of non-local Monte-Carlo moves

(e.g. molecular insertions/deletions via the configuration-bias algorithm).

The softness of the interaction is also crucial for representing an experimentally large

invariant degree of polymerization, N̄ = 104. Modelling large values of N̄ = (ρb3)2N
with particle-based models that include harsh excluded volume interactions between the

coarse-grained segments (e.g. lattice models2–5 or Lennard-Jones potential6, 7) one faces

a formidable challenge. The size of a segment, σ, as defined by the range of the harsh

repulsive interactions, and the statistical segment length of a flexible chain, b ≡ Re/
√
N ,

are comparable, σ ≈ b. The segment density of a polymer fluid cannot be increased signif-

icantly beyond ρσ3 ≈ 1, because the liquid of segments either crystallizes into a solid or

it vitrifies into a glass. Thus, a value of N̄ = 104 requires a large number of segments per

chain, N = N̄/(ρb3)2 ≈ N̄/(ρσ3)2 ∼ 104. A small system of linear dimension L = Re

is comprised of n = ρL3 = N
√
N̄ (L/Re)

3 ≈ N̄ 3/2 = 106 effective segments. In a

dense melt, these long entangled chains will reptate8, 9, and the time to diffuse a distance

Re scales like τ = τ0N
3 ∼ N̄ 3 where τ0 is a N -independent microscopic time scale. To

follow the system over one characteristic time one needs about N̄ 9/2 = 1018 elementary

segment moves. Contrary, if the harsh excluded volume interaction is replaced by a soft

repulsion, one will eliminate the constraint ρob
3 . 1, because solidification or vitrification
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can be avoided. In this case, one can choose a much larger segment density, ρb3 ∼
√
N̄ .

For instance, choosing ρb3 = 18, we can model a value of N̄ = 104 by using N = 31
segments along the molecular contour. This discretization of the molecular architecture is

still sufficient to capture the characteristics of the random-walk-like conformations on the

scale Re. Within the soft coarse-grained model, a system of size L = Re contains only

3 200 segments. Moreover, these non-entangled polymers obey Rouse dynamics with a re-

laxation time τ = τoN
2. Thus the simulations require only N3

√
N̄ ≈ 3 · 108 elementary

moves, which is 11 orders of magnitude less than in coarse-grained models, where ex-

cluded volume is enforced on the scale of a segment. For this reason, soft coarse-grained

models are very efficient in describing polymer systems with a realistically large value of

N̄ and allow us to study collective phenomena on the length scale of Re and beyond. This

ability can be traced back to the rather coarse representation of the molecular contour and

the concomitant large number of monomeric repeat units that are lumped into an effective

coarse-grained segment.

In order to identify the length and time scales of the soft coarse-grained model let us

consider a melt of polystyrene with a molecular weight of Mw = 100 000 or 962 chemical

repeat units C8H8. The statistical segment length of a chemical repeat unit is about 0.7 nm

yieldingRe = 21.7 nm. A mass density of 1.06 g/cm3 translates into an invariant degree of

polymerization of N̄ ≈ 4200. Using a typical self-diffusion coefficient ofD = 10 nm2/s10,

we obtain a characteristic time scale of τ = Re
2/D = 47 s. In computer simulations

of soft, coarse-grained models one can study systems with a few million coarse-grained

segments. Assuming a chain discretization of N = 32, i.e. one coarse-grained segment

correspond to 30 chemical repeat units, a typical system is comprised of some 30 000
molecules corresponding to a linear extension L ∼ 8Re ∼ 0.17 µm of a cubic system.

A typical simulation with 106 elementary steps per segment corresponds to 100 τ or 1.5
hours. Thus soft, coarse-grained models are able to reach the experimentally relevant

length and time scales of phase separation and self-assembly in polymer blends and block

copolymer materials.

1.2 Soft, Coarse-Grained Particle-Based Models for Multicomponent Polymer

Melts

We use a minimal, soft, coarse-grained model that captures the three relevant interactions.

In the following, we distinguish between bonded interactions, which define the molecular

shape and its fluctuations, and non-bonded interactions, that impart near-incompressibility

onto the dense melt and drive the structure formation.

Since a coarse-grained segments is comprised of many chemical repeat units, the

distance distribution between neighbouring coarse-grained segments along the macro-

molecule is Gaussian due to the central limit theorem and orientational correlations along

the backbone of the chemical structure have decayed on the length scale of a coarse-grained

segment. Therefore, we model the universal aspects of the molecular shape by the dis-

cretized Edwards Hamiltonian.

Hb[ri(s)]

kBT
=

N−1∑

s=1

3(N − 1)

2Re
2 [ri(s+ 1)− ri(s)]

2
, (1)
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where we consider n polymers with N segments in a volume V . {ri,s} with i = 1, · · · , n
and s = 1, · · · , N denotes the set of segment coordinates that completely specifies the

configuration of our system. The density of the melt is ρ = nN/V and Re denotes the

root mean-squared end-to-end distance of an ideal chain, i.e. in the absence of non-bonded

interactions.

The soft, pairwise interactions can be re-written in the form of a free-energy func-

tional11

Hnb({r}) = Fnb[φ̂A(r|{r}), φ̂B(r|{r})] (2)

where the local microscopic densities, φ̂A and φ̂B , depend on the particle coordinates, {r}.

φ̂A(r|{r}) =
1

ρ0

∑

iA

δ(r− riA) (3)

The sum runs over all A segments irrespectively to which molecule they belong.

A typical local free-energy functional for non-bonded interactions in an AB binary

melt can be written as

Fnb[φ̂A, φ̂B ]

kBT
=
√
N̄
∫

dr

Re
3

[
κN

2
(φ̂A + φ̂B − 1)2 − χN

4
(φ̂A − φ̂B)

2

]
(4)

where χ is the bare Flory-Huggins parameter, and κ is the bare, dimensionless, inverse

isothermal compressibility. Like the end-to-end distance, the actual energy of mixing or

compressibility slightly deviates from the parameters of the Hamiltonian due to fluctua-

tion/correlation effects. The advantage of this formulation is that it offers a general strat-

egy to systematically incorporate thermodynamic information into the soft, coarse-grained

model.

Eqs. 3 and 4 are not suitable for computer simulation; the δ-function needs to be reg-

ularized. Either one computes the local densities by smearing the δ-function out over a

volume ∆L3 or one employs a collocation lattice of grid spacing ∆L. Typically, ∆L is

comparable to the statistical segment length, b = Re/
√
N of the coarse-grained model and

smaller than the width of the AB interfaces, w0.

In the first method, one represents the δ-function in Eq. 3 as a limit of a weighting

function, ω, and defines a weighted density12

φ̂A,ω(r|{r}) =
∫

d3r′

∆L3
ω(|r− r′|)φ̂A(r′|{r}) =

1

ρ∆L3

∑

iA

ω(|r− riA |) (5)

with normalization
∫
d3r ω(|r|) = ∆L3. In the simplest case, ω is proportional to the

characteristic function of a sphere. A quadratic term in the excess free energy yields a

density-dependent pairwise potential13, 14.

√
N̄
∫

d3r

Re
3 φ̂A(r|{r})φ̂B(r|{r}) =

1

N2

∑

iA,jB

v(riA , rjB ) (6)

which is translationally invariant and isotropic, i.e., v(|r′ − r′′|) = 1√
N̄

Re
3

∆L3

∫
d3

r

∆L3

ω(|r−r′|)ω(|r−r′′|). The N̄ -dependence of the integrated strength,
∫

d3
r

Re
3 v(|r|) = 1√

N̄ ,

guarantees that the limit of high density remains well defined.
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In the grid-based scheme, one discretizes space in cubic cells of linear dimension, ∆L.

Each cell is identified by its index, c. We define the local microscopic densities on the grid

by assigning particle positions to the grid cells according to13, 15

φ̂A(c|{r}) =
∫

d3r

∆L3
Π(c, r)φ̂A(r) =

1

ρ∆L3

∑

iA

Π(c, ri,s) (7)

The assignment function fulfills
∑

c
Π(c, r) = 1 ∀r and

∫
d3r Π(c, r) = ∆L3 ∀c

i.e. the contribution of a particle to all cells adds up to unity irrespectively of its posi-

tion, and the volume assigned to each grid cell is ∆L3. In the simplest case, Π(c, r)
is the characteristic function of a grid cell. The grid-based method also yields pair-

wise interactions according to Eq. 6 but, since they make reference to the underly-

ing lattice, they are no longer translationally and rotationally invariant, v(r′, r′′) =
1√
N̄

Re
3

∆L3

∑
c
Π(c, r′)Π(c, r′′). Therefore, one needs to resort to special simulation tech-

niques for computing the pressure and care hat to be exerted to control the effect of self-

interactions16. However, in the grid-based approach, the energy of a segment with its

surrounding can be very efficiently computed from the knowledge of the density on the

collocation lattice. In the former weighting-function method, in turn, the energy involves

the explicit computation of the pairwise interactions between a segment and its neighbours.

This calculation is performed via a cell list, where the cell’s linear dimension is the range

of the pairwise interaction, O(∆L). All interactions in the 27 cells around the one that

contains the segment have to be considered. For a typical choice of parameters, N = 32,

N̄ = 104, ∆L/Re = 1/6 this amounts to O(102) interaction pairs. Thus the grid-based

technique offers a significant computational advantage for dense polymer systems.

1.3 Strong Bonded and Weak Non-Bonded Forces and SCMF Simulations

Due to the computational speed-up we use the grid-based approach in the following. Since

the pairwise interactions are not translationally invariant, we explore the configuration

space of the soft, coarse-gained model by Monte-Carlo simulations. It is worth noting

that for fine discretization of the molecular contour, N ≫ 1, there is a pronounced differ-

ence between the strong bonded forces, fb, that define the molecular architecture and the

weak non-bonded forces, fnb, that drive structure formation.

fb ∼ kBT

b
∼ kBT

Re
·
√
N and fnb ∼ χkBT

w0
∼ kBT

Re
·
√
6(χN)3 · 1

N
(8)

i.e. fb/fnb ∼ N3/2. In molecular dynamics simulations, one would use multiple

time-step integrators (rRESPA)17 to cope with this disparity of forces. In Monte-Carlo

simulations, one can use the Single-Chain-in-Mean-Field (SCMF) algorithm15, 18 to ex-

ploit the separation between the strong, rapidly fluctuating, bonded interactions, which

dictate the size of a segmental movement in one Monte Carlo step, and the weak,

non-bonded interactions, which only very slowly evolve in time. In SCMF simula-

tions, we temporarily replace the pairwise interactions, Eq. 2, of a segment with its

surroundings by the interaction of a segment with an external field, i.e.
HSCMF

nb

kBT =
ρ∆L3

N

∑
c

[
wA(c)φ̂A(c|{r}) + wB(c)φ̂B(c|{r})

]
, where the external field, wA/N that

acts on A segments is frequently calculated from the local fluctuating densities according
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to wA(c) =
N

ρ∆L3
∂Fnb

∂φA(c) . A SCMF simulation cycle is comprised of two parts: 1) evolve

the polymer conformations in the external fields, wA and wB , for a small, fixed amount

of Monte-Carlo steps. We employ Smart-Monte-Carlo moves, using the strong bonded

forces to bias the proposal of a trail displacement19. During these Monte-Carlo simula-

tions the molecules do not interact with each other and the simulation of independent chain

molecules can be straightforwardly implemented on parallel computers. 2) recalculate the

external fields from the instantaneous densities. In this second step, fluctuations and cor-

relations are partially restored. Then the simulation cycle commences again. The quasi-

instantaneous field approximation that consists in replacing the interactions via frequently

updated, fluctuating, external fields will be accurate, if the change of the local composi-

tion between successive updates of the external fields is small. This property is controlled

by the parameter, ε = 1
Nρ∆L3 , which plays a similar role as the Ginzburg parameter in a

mean-field calculation. In contrast to the Ginzburg parameter, however, ε depends on the

discretization of space, ∆L, and molecular contour, N , and these parameters are chosen

such that the quasi-instantaneous field approximation is accurate13.

1.4 Barrier and Time-Scale Problem of Particle-Based Models

In spite of the benefits of soft, coarse-grained models, the investigation of the kinetics

of phase separation or self-assembly in computer simulations of particle-based models is

computationally demanding. Two effects contribute to this difficulty:

(i) barrier problem – In the course of structure formation, multiple free-energy bar-

riers must be overcome. Since collective structure formation involves many molecules,

free-energy barriers typically exceed kBT , and rare thermal fluctuations are required to

overcome them. For the favourable case in which it is possible to identify a suitable

and simple reaction coordinate, or when one can identify a low-dimensional subspace that

characterizes the barriers, a variety of computational techniques have been devised to “flat-

ten” the free-energy landscape and facilitate the exploration of phase space or to compute

the saddle-points of the free-energy landscape that dictate the kinetics of structure forma-

tion20, 21.

(ii) time-scale problem – Even if the time evolution is completely down hill in free

energy, the kinetics of the order parameter can be intrinsically slow because the thermo-

dynamic driving force does not efficiently generate a concomitant current. A prototypi-

cal example is the diffusion of one molecule from one domain to another, as it occurs in

Lifshitz-Slyozov coarsening in binary blends22, the diffusion across lamellae in symmetric

block copolymers, or the exchange of amphiphiles between micellar aggregates. In these

cases, molecules have to “tunnel” through an unfavourable domain, and this thermally

activated process dramatically slows down the current.

These two types of problems can be addressed by concurrent coupling of the particle-

based model to a continuum description.

2 Continuum Models

2.1 Order Parameter and Free-Energy Landscape

In a continuum approach, the system configuration is entirely described through a collec-

tive order-parameter, i.e. a continuum field that does not make references to the proper-

ties of individual molecules. The choice of the order parameter is critical and crucially
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depends on the problem at hand. In the following we consider examples where the dif-

ference between the local A and B densities provides an appropriate order parameter,

m(r) = φA(r) − φB(r). Then, one can define the free energy as a functional of the

order parameter m(r) via the trace over all particle conformations compatible with m(r)

e
−F [m]

kBT ≡
∫ ∏nAB

i=1

∏N
t=1 dri,t

nAB !λ
3nABN
T

e
−H({r})

kBT

∏

r

δ
[
m(r)− φ̂A(r|{r}) + φ̂B(r|{r})

]
(9)

where we considered nAB molecules consisting of N segments. λT is the thermal de-

Broglie wavelength, and H({r}) denotes the interactions of the underlying particle-based

model. Eq. 9 guarantees that the partition functions of the particle-based model and of the

continuum description are identical
∫ ∏nAB

i=1

∏N
t=1 dri,t

nAB !λ
3nABN

T

e
−H({r})

kBT =
∫
Dm exp

[
−F [m]

kBT

]
.

Knowledge of the free-energy functional (or landscape) allows one to draw impor-

tant conclusions: (i) Within the mean-field approximation, minima of F [m] correspond to

(meta)stable states. (ii) If there is a clear separation of time scales between the fast single-

chain dynamics and the slow kinetics of the order-parameter, the molecular conformations

will be in equilibrium with the instantaneous order-parameter, i.e., they sample the equi-

librium distribution that is compatible with the order-parameter field, Eq. 9. In this limit,

the qualitative features of the order-parameter dynamics can be inferred from the free-

energy landscape. Most importantly neglecting thermal fluctuations, one can distinguish

two types of structure formation kinetics – spinodal self-assembly or phase separation and

nucleation.

Having identified the free-energy landscape as a function(al), F [m], of a slowly evolv-

ing order parameter, one can compute the thermodynamic force, ∇ δF
δm(r) , that drives struc-

ture formation. The Onsager coefficient, Λ, connects this thermodynamic force to the

current of the order parameter:

j(r) = −
∫

dr′ Λ(r, r′)∇′ δF

δm(r′)
(10)

Since the order parameter is related to the densities of the different species, it is conserved

and obeys the continuity equation23–25

∂m

∂t
= −∇j (11)

In an incompressible systems, the currents of A and B segments cancel and Λ ∼ φAφB =
(1 − m2)/4. It is this factor that gives rise to intrinsically slow dynamics, cf. Sec. 1.4,

i.e. in strongly segregated systems the kinetics can be protracted even if there is a strong

thermodynamic driving force. a

aGeneral expressions for relating the Onsager coefficient to the dynamics of the underlying macromolecules have

been devised26. For the Rouse model with inverse friction 1
ζ
= ND

kBT
one obtains

Λ(r, r′) ≈

〈

∑

i

∂

∂ri
[φ̂A(r|{r})− φ̂B(r|{r})] ·

1

ζ
·

∂

∂ri
[φ̂A(r′|{r})− φ̂B(r′|{r})]

〉

≈
ND

ρkBT
(1−m2)

g(r, r′)

V

where the last expression refers to a symmetric homopolymer blend in the disordered state and the non-locality

is characterized by the single-chain correlation function, g(r).
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Eqs. 10 and 11 can be augmented by random noise terms such that the dynamics is

able to overcome barriers in the free-energy landscape27, 28. Thermal fluctuations are often

neglected and the mean-field approximation is invoked; in order to address fluctuation

effects one has to cope with short-length scale fluctuations, which lead to UV-divergencies.

Different simple forms of the free-energy functional, F [m], have been proposed on the

basis of general symmetry principles. A common description of binary blends is provided

by the Ginzburg-Landau square-gradient functional29. Microphase separation of block

copolymer materials can be described by the Otha-Kawasaki functional30 or the Swift-

Hohenberg approach31. The small number of parameters that enter such a continuum de-

scription can be qualitatively related to physically accessible quantities like the segregation

inside the domains or the intrinsic widths of interfaces. Because they ignore all molecu-

lar degrees of freedom, these continuum models are computationally efficient. Addition-

ally, sophisticated methods have been devised to identify barriers and minimal free-energy

paths32, and the effects of small Onsager coefficients can be mitigated by using a large time

step for integrating Eq. 11.

3 Systematic Parameterization of a Continuum model:

Field-Theoretic Umbrella Sampling and Force Matching

The barrier and time-scale problem in particle-based models can be addressed by cou-

pling them to a continuum model in the framework of the heterogeneous multiscale

method (HMM)33, 34. To this end, one has to estimate the free-energy functional, F [m],
of the particle-based model. Two computational strategies have been devised to this end:

field-theoretic umbrella sampling35 and field-theoretic force matching16. In both cases,

one does not directly obtain the free-energy functional but rather the chemical potential,

µ(r|m) ≡ δF
δm(r) , for a specific configuration of the order parameter.

In field-theoretic umbrella sampling35, one adds to the interactions of the particle-

based model an umbrella potential that restrains the local microscopic densities,

φ̂A(r|{r})− φ̂B(r|{r}), to the local value of the order-parameter, m(r), at each point

in space

Hfup({r}) =
∫

dr
λ

2

[
m(r)−

(
φ̂A(r|{r})− φ̂B(r|{r})

)]2
(12)

The integral in Eq. 12 is evaluated using a collocation lattice (see. Sec. 1.2). In the limit,

λ→ ∞, the Boltzmann factor of this field-theoretic umbrella potential converges to the δ-

function constraint in Eq. 9 that projects out the microscopic particle configurations com-

patible with the order parameter35, 36, and free energy of the restrained system with the

field-theoretic umbrella potential, Fλ[m], converges towards the constraint free-energy.

The chemical potential can be calculated according to

µλ(r|m) ≡ δFλ

δm(r)
=

〈
δHfup

δm(r)

〉

λ

= λ
〈
m−

(
φ̂A − φ̂B

)〉

λ

λ→∞→ δF

δm(r)
= µ(r|m)

(13)

where the average 〈· · · 〉λ is performed in the restrained system. Independent from λ, this

average has to be sampled for about one molecular relaxation time, τ to accurately calculate

the local chemical potential35.
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In field-theoretic force matching, one alternatively can use the thermodynamic relation

between the force, KA(r), acting on A-segments in a volume element around position, r,

and the gradient of the excess chemical potential16:

ρ 〈KA(r)〉|m(r) = −∇ [µA(r|m)− ρkBT lnφA(r)] (14)

and µ = µA − µB . The force is determined in configurations that are characterized by

the order parameter, m(r). The advantage of this technique is that it does not rely on the

limit λ → ∞ or the use of a collocation grid. For polymers, however, there are large

cancellation effects of forces similar to the atomistic expressions for the virial pressure.

4 Applications

4.1 Barrier Problem: Minimum Free-energy Path (MFEP) of Stalk Formation

In order to overcome the barrier problem and find a suitable path along which structure

formation proceeds, one can adopt an equation-free approach, where no Ansatz for the

explicit form of the free-energy functional is required37. Knowing the chemical potential

µ(r|m), we use the string method32 to find the minimal free energy path (MFEP) that

connects the starting and ending order-parameter configurations38–40. The MFEP is a string

of morphologies, ms(r), where s denotes the contour parameter along the string and the

squared distance between two neighbouring morphologies, ms(r) and ms′(r), along the

string is given by ∆2
s,s′ ∝

∫
dr [ms(r)−ms′(r)]

2. The MFEP is defined by the condition

that the thermodynamic force in the direction perpendicular to the path vanishes

∇⊥F [ms] = µ(r|ms)−
dms(r)

ds

∫
dr′ µ(r′|ms)

dms(r
′)

ds
∫
dr′

(
dms(r′)

ds

)2 (15)

Thus the defining condition for the MFEP can be solely expressed by the chemical potential

that we obtain in the particle-based model via field-theoretic umbrella sampling, Eq. 13.

The MFEP is efficiently determined numerically by the improved string method32, 38, which

consists of a two-step cycle: (i) F is minimized by evolving the morphologies according

to ∆ms(r) = −µ(r|ms)∆ε with µ(r|m) = δF [m]
δm(r) ; and (ii) ms(r) is re-parameterized via

a third-order spline at each point, r, to restore uniform distance of the morphologies along

the string.

One application is illustrated in Fig. 1, where this techniques has been employed to

study the formation of an hour-glass shaped, hydrophobic passage (stalk) between two

apposing lamellar sheets in a copolymer-homopolymer mixture40. By virtue of the univer-

sality of the structure of amphiphilic systems41, this model can be conceived as a represen-

tation of lipid membranes – the A and B blocks corresponding to hydrophobic tails and

hydrophilic heads of lipid molecules and the B-homopolymers representing the solvent.

The MFEP, msi(r), is discretized into 24 particle-based systems and intermediate val-

ues of s are obtained by point-wise spline interpolation. The free energy along the MFEP

is obtained by
dF [ms]

ds =
∫
dr ∂ms(r)

∂s
δF [ms]
δm(r) . and the transition state, m∗, is identified as

the maximum on the MFEP,
dF [ms]

ds = 0.
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Figure 1. Minimum free-energy path (MFEP) obtained by the on-the-fly string method of stalk formation.

Adapted from Ref. 40.

The left axis of Fig. 1 presents the free energy, F [ms], along the MFEP in units of

γd2, where γRe
2/
√
N̄kBT ≈

√
χ0N/6 and d ≈ 1.82Re denote the AB (oil-water) inter-

face tension and the lamella (bilayer) thickness, respectively. Typical experimental values

of lipid membranes are d ≈ 3.6nm and γd2 = 155kBT . The contour plots depict cross

sections of the order parameter, ms(r), for the stable, apposing-bilayer morphology and

the metastable stalk morphology. The snapshot depicts a particle configuration restrained

by the field-theoretic umbrella potential, Eq. 12, using the order parameter, ms∗(r), at the

saddle point, s∗ = 0.532, of the MFEP. Hydrophilic beads are coloured yellow, hydropho-

bic beads are shown in red, solvent (homopolymer) particles are not shown. Only every

10th copolymer is depicted corresponding to a typical density in a lipid system.

This static information is complemented by the probability that configurations along

the MFEP have transformed in the course of simulations into two apposed bilayers at a

specified time after the restraining field-theoretic umbrella potential has been removed

(blue, right axis). Results have been obtained for 256 independent configurations at each

value of s. The probability is a sharply varying function along the MFEP and the position,

s, at which there is a 50 − 50 chance of reaching either the morphology of two apposing

bilayers or the stalk, agrees with the saddle-point of the MFEP.

The hydrophobic bridge that connects the two lamellae – denoted by stalk – has at-

tracted much interest in the context of bilayer membrane fusion42. Our particle-based sim-
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Figure 2. Illustration of one cycle of HMM for the initial stages (spinodal decomposition) of phase separation in

a homopolymer blend. Adapted from Ref. 43.

ulations provide direct microscopic insights into the transition state that consists of only

few hydrophobic tails that bridge between the bilayers and that constitutes a free-energy

barrier of 16kBT in a lipid system.

4.2 Time-Scale Problem: Heterogeneous Multiscale Method Applied to

Lifshitz-Slyozov Coarsening in a Binary Polymer Blend

By knowing the free-energy functional, F [m], one can also mitigate the time-scale problem

by concurrently coupling the particle model to the corresponding continuum model. This

HMM33–35 comprises three steps, which are illustrated in Fig. 2: 1) estimate the parameters

of the continuum description, 2) propagate the continuum model for a large time step, ∆t,
and 3) seamlessly generate a new particle configuration compatible with the new order-

parameter field. Then the cycle commences again.

In step 1), one needs to compute the chemical potential, µ, and the Onsager coeffi-

cient, Λ, for a specific configuration of the particle model. The former can be obtained

by field-theoretic umbrella sampling or field-theoretic force matching. This equation-free

strategy, however, would require the chemical potential be frequently computed because

the local chemical potential significantly changes on the time scale where an AB inter-

face has moved a distance comparable to its intrinsic width. Therefore, rather than using
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the chemical potential directly, it is useful to exploit the knowledge of µ(r|m) to param-

eterize an explicit Ansatz, Ftrial[m], for the free-energy landscape that contains a small

number of variational parameters, {α}, like e.g. the Flory-Huggins parameter and the

coefficient of the square-gradient term. Using the measured µ, one can adjust these pa-

rameters to minimize the deviation between F and Ftrial, i.e. we choose {α} such that
∫
dr
(
µ(r|m)− δFtrial[m]

δm(r)

)2
→ min.

This Ansatz tacitly assumes that Ftrial[m] with the same set of {α} is able to describe

the entire system, e.g. it can simultaneously describe the composition inside large domains

and the profiles across AB interfaces. If the Ansatz were perfect, the parameters, {α},

would not depend on the order-parameter configuration, and one could employ the once-

parameterized free-energy functional to predict the entire kinetics of structure formation of

the particle-based model. In practice, the optimal parameters will slightly depend on the

specific m(r). For instance, we anticipate changes of Ftrial when the segregation of the

domains changes or the structure of the AB interfaces is altered. The residual minimum

indicates the quality of the Ansatz, Ftrial, signals the need for re-parameterization, and

allows for a systematic improvement of Ftrial by including additional terms. Moreover,

the computational time required for computing the small number of parameters, {α}, is

significantly smaller than accurately computing the chemical potential at each point in

space because one can substitute the time average of a local quantity by a spatial average

over the entire system.

It is important to realize that changes of the thermodynamic state that require re-

parameterization occur on a time scale that is much longer than the motion of interfaces.

Hence, Ftrial[m] can predict the structure formation for a much larger time interval than

µ(r|m), and the time step, ∆t, of a single cycle can be significantly larger in HMM than

in an equation-free scheme that directly uses the local chemical potential44.

Since the continuum model is not explicitly concerned with the stiff bonded degrees of

freedom, the time scale can be adjusted to the intrinsically slow process and step 2) of the

HMM scheme takes a vanishingly small computation time compared to the propagation of

the particle-based model.

To seamlessly generate a new particle configuration in step 3), which corresponds to

the new order-parameter field, m(r, t + ∆t), we use the same field-theoretic umbrella

potential that has been employed to compute the chemical potential. Using the new order-

parameter at time t + ∆t in the field-theoretic umbrella potential, Eq. 12, one creates a

large thermodynamic force, −λkBT∇[m(r, t+∆t)− (φ̂A − φ̂B)] towards the new order-

parameter configuration. This strong force amplifies the weak thermodynamic driving

forces of the non-bonded interactions in the original model by a factor that is proportional

to the strength λ, speeding-up the relaxation towardsm(r, t+∆t) compared to the original

dynamics of structure formation. This rational suggests that λ should be chosen as large as

possible in order to achieve the maximal speed-up. There are, however, two limitations: (i)

The thermodynamic force of the field-theoretic umbrella potential should amplify the weak

thermodynamic driving force of the original model, but they must not exceed the strong

non-bonded forces that dictate the single-molecule dynamics. Otherwise, the underlying

particle dynamics will be altered and the time step used to evolve the particle-based model

has to be reduced. (ii) The estimate of the speed-up relies on linear response theory that

fails already at moderately large values of λ. In this case, one might need an additional time
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τ to relax the molecular conformations to the equilibrium statics within the field-theoretic

umbrella potential.

This step 3) also provides a strategy for computing the Onsager coefficient from the

last stage of relaxation towards the new equilibrium in the restrained system. In the case

of large λ the field-theoretic umbrella potential dominates the thermodynamic force and,

since the difference m − (φ̂A − φ̂B) is small, linear response theory is appropriate and

predicts an exponential relaxation towards the restrained equilibrium. Alternatively, one

can estimate Λ by comparing the kinetics of structure formation of the original particle-

based model with the prediction of continuum approach.

One can additionally speed-up the relaxation towards the new order-parameter field by

computing the average current, j̄, during the time interval, ∆t, from the continuum model

and estimate the concomitant time-averaged velocity fields, v̄A(r) and v̄B(r). Then, one

couples these flow fields to the particle model via an additional drag force, Fi = γv̄A(ri)
acting on an A particle at position, ri. γ is a friction coefficient. Applying this force at the

initial stage of relaxation towards the new order parameter, one accelerates the generation

of a new particle configuration. Also in this case, an additional molecular relaxation time

without flow is required to bring the molecular conformations into equilibrium with the

field-theoretic umbrella potential.

Steps 1) and 3) of HMM require a time of the order of the molecular relaxation time,

τ . The computational cost of propagating the continuum model is negligible and thus the

computational speed-up is of the order ∆t/τ . Using an accurate free-energy functional,

Ftrial, that is suitable for describing the slow structure formation over a long time inter-

val, ∆t, without the need for re-parameterization, large speed-ups are feasible. The so-

generated particle configurations can subsequently be used to investigate the single-chain

conformations and dynamics, which is not accessible in the continuum model.

One application of HMM is illustrated in Fig. 3 where the evaporation of chains from a

drop in a binary AB homopolymer blend is investigated. The system of geometry 12Re ×
6Re×6Re is comprised of twoA domains – a spherical drop with excess ∆A ofA segments

and a planar slab-like domain that spans the system via the periodic boundary conditions.

The morphologies are illustrated in the inset images. Due to the curvature of the drop’s

interface, the chemical potential is inside the drop is higher than in the planar domain

and A molecules evaporate from the drop and condense onto the planar domain (Lifshitz-

Slyozov coarsening22). This process is protracted because the Onsager coefficient inside

the strongly segregated B-rich matrix is very small. Fig. 3 depicts the linear shrinking

of the drop’s volume with time. The red solid line corresponds to the simulation of the

particle-based model and the black dashed line depicts the prediction of the continuum

model. The continuum model is a Ginzburg-Landau square-gradient model where we have

adjusted the effective incompatibility and the coefficient of the square-gradient term. The

Onsager coefficient was determined by comparing the time evolution of the particle-based

model and the continuum model at early times. The so-parameterized continuum model

accurately describes the entire drop evaporation. The steep doted lines show the relaxation

of the particle-based model towards the new order parameter at a later time ∆t using the

field-theoretic umbrella potential and an initial coupling to j. The green and black lines

with symbols present the free time evolution of the particle-based model restarted after

one HMM step. The unrestrained particle simulation restarted with the new configuration

captures the behaviour of the original trajectory after time ∆t indicating that the HMM
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Figure 3. HMM of macrophase separation in a soft, coarse-grained model of an AB homopolymer blend,

χN = 5. The inset presents an enlargement of the main panel. Snapshots illustrate configurations of the particle-

based model (right) at t0 + 41τ and t0 + 82τ along the original time evolution and the corresponding configu-

rations after the relaxation step 3) of one HMM-cycle. (left). Adapted from Ref. 44.

scheme also captured the decay of the composition across the B-matrix, which dictates

the evaporation rate. In this example speed-ups of ∆t/τ = 41 and 82 are achieved with

respect to SCMF simulations of the particle-based model44.

5 Concluding Remarks

Soft, coarse-grained models are well suited to efficiently investigate the universal equilib-

rium behaviour of multicomponent polymer blends and copolymer materials in the liquid

state. They can successfully address the relevant time and length scales of structure for-

mation and allows us to systematically explore the structural and chemical diversity of

multicomponent materials and provide structural and dynamic insights on the molecular

level that are often not readily available in experiments. These models are a good start-

ing point for investigating the collective dynamics of phase separation and self-assembly

in nanostructured materials. Given the multitude of metastable states, there is a great po-

tential in controlling and directing the dynamics of structure formation and identifying

mechanisms of collective structure transformations. Due to the widely spread time and

length scales, understanding and reliably predicting the practically important relation be-
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tween the single-molecule dynamics and the kinetics of morphological changes remains a

formidable challenge and computational techniques that seamlessly couple different levels

of description will be instrumental in exploring how the collective dynamics can be tailored

by the underlying motion of the molecules or application of external fields.
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1 Introduction

Many processes in materials physics occur near interfaces on diffusive timescales and in-

volve mass transport driven by thermodynamic driving forces as well as long ranged elas-

tic interactions. Important examples include liquid-solid transitions and dendritic growth,

solid-solid phase transformations via grain boundary motion and coarsening, and adsorp-

tion and epitaxial growth at surfaces. All of these fall in a broader class of pattern formation

phenomena that are out of reach for direct molecular modelling: in a crystal with lattice

spacing a, the relevant timescale is set by the diffusivity a2/D, which is many orders of

magnitude slower than the phononic timescale a/cs of molecular dynamics (MD). Effi-

cient continuum level order parameter (phase field) methods are operating in the relevant

regime, but are devoid of any atomistic level features. Key properties that govern the long

time scale dynamics such as anisotropic surface energies or grain boundary mobilities can

be obtained from atomistic calculations but must be put in by hand. Moreover, individ-

ual defects cannot be resolved but often play a key role, e.g. near grain boundary triple

junctions or step edges.

The purpose of this article is to familiarize the reader with a new modelling paradigm

that alleviates the difficulties described above by operating on atomic length and diffu-

sive time scales. This Phase Field Crystal (PFC) method was introduced 10 years ago1, 2

and has since developed rapidly, as it has proved to be capable of capturing for instance

grain boundary energies, grain boundary solidification, alloy thermodynamics, dislocation

dynamics, elastic defect interactions, grain coarsening and plasticity on a scaling level.

Quantitative results for specific metallic systems have also been obtained in selected cases.

We will provide an introduction, a brief overview of some recent developments, selected

applications that showcase the potential of the method as well as a discussion of outstand-

ing challenges. Readers interested in further technical details may consult a comprehensive

recent review article3.

2 The Phase Field Crystal Concept

2.1 The Basic Idea

The basic premise of the PFC method is to consider energy functionals that are minimized

by periodic density fields. One of the simplest possible forms for such a functional, origi-
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nally due to Brazovskii4, is

βF [n(~r)] =

∫
d3r

[
n

2

(
r + λ(k20 +∇2)2

)
n+ u

n4

4

]
, (1)

where n is a reduced density and r and λ are parameters that can be related to the degree

of undercooling (in the context of liquid-solid transitions) and elastic moduli. Due to the

presence of the gradient terms, this functional is minimized by periodic states that match

the wavevector k0. In 2D, these include striped phases and triangular lattices while in 3D

one can obtain bcc, fcc and hcp lattices. In polymer physics, these have been used for many

years to model the rich phase behaviour of block copolymer melts5, which can appear in

lamellar, spherical, cylindrical phases, etc. The PFC model was created in a seminal paper

by Elder and coworkers1 with the (re)interpretation of n as (lightly) coarse grained atomic

density field representing atoms on a periodic lattice with lattice spacing a = 2π/k0. One

is now in posession of a theory in which deviations from this “ground state” are penalized

by elastic interactions. Specifically, defects in the form of dislocations and grain bound-

aries emerge naturally and automatically as “excitations”. A simple conserved relaxational

dynamics may be postulated that drives the system towards the ground state,

∂n

∂t
=M∇2 δF

δn
(2)

where M is a mobility parameter that sets the absolute timescale of the problem. The field

dynamics is driven by the relaxation of the long ranged elastic interactions between defects;

a polycrystal will coarsen until trapped in a metastable configuration or until it reaches a

defect-free lattice. This from of relaxational dynamics is appropriate as the processes can

be assumed to be overdamped.

Why is the above procedure faster than MD? The answer to this question can be under-

stood by realizing that there are no stable vacancies in the PFC lattice. While topologically

protected defects can only be removed by mutual annihilation, local density fluctuations

relax rapidly as the model is phonon-free. The PFC dynamics does not explicitly represent

the atomistic atom-vacancy exchange mechanism of diffusion, but instead averages over it

so that the long-time dynamics is obtained. As a result, the method can indeed be viewed

as simulating diffusive timescales, which is its principal advantage. A PFC simulation is,

however, not simply a clever way of accelerating MD. An immediate consequence of Eq. 2

is that only the total density is conserved, but not individual peaks (“atoms”) of the density

field. The density modulation is also not sharply peaked at the equilibrium lattice posi-

tions, but varies much more smoothly than in a real solid. The PFC represents a material

with the correct crystal symmetry and geometry, but is composed of “soft” atoms without

a hard core. One can expect, however, that the peaks of the density field that minimizes

the PFC equation does represent a physically relevant atomic configuration at the end of a

nonequilibrium process.

2.2 Elementary Tests

Immediately after introducing the PFC model, Elder and Grant showed that a 2D PFC sys-

tem possesses elastic moduli predicted from a single mode approximation of the ground

state density field2. In order to show that the model also reproduces key properties of grain
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boundaries and elastic strain effects, they calculated the grain boundary energy as a func-

tion of mismatch angle in a triangular lattice and showed that it matches the continuum

elasticity result of Read and Shockley. The critical height for nucleation of a misfit dislo-

cation in a growing film also agrees with the corresponding continuum prescription. These

results give confidence in the basic promise of the PFC model as a theory for describing

elastic effects in dynamical pattern formation problems.

2.3 Relationship to Classical Density Functional Theory

While the PFC free energy functional described so far is motivated on phenomenological

grounds, it can also be viewed as a simplified version of the more formal classical density

functional theory (CDFT). CDFT is a microscopic theory that expresses the free energy

of a many-body system as a functional of the one-body particle density and has exten-

sive applications in complex fluids. Several papers discuss in detail how the simpler PFC

functional may be obtained formally from a general CDFT setup6, 7. The salient point is

that the functional can be recast in a form equivalent to the DFT of freezing introduced

by Ramakrishnan and Yussouff (RY)8. In CDFT, one separates the free energy difference

∆F with respect to a uniform reference state into entropic contributions from an ideal gas

and all other excess contributions. With n(~r) = ρ(~r)/ρo− 1 describing the local deviation

from a uniform reference density ρ0 one writes,

∆F [n(~r)] = ∆Fid[n(~r)] + ∆Fex[n(~r)], (3)

where

∆Fid

ρokBT
=

∫
d~r [ρ(~r)(ln(ρ(~r))− 1)] ≈

∫
d~r

[
n(~r)2

2
− n(~r)3

6
+
n(~r)4

12

]
(4)

The local entropy term can be expanded up to forth order, thereby restricting the dimen-

sionless density to small deviations from zero. The nonlocal excess part responsible for

interactions can be expanded in a functional Taylor series. The RY approximation consists

in truncating this series after the second term,

∆Fex

ρkBT
= −1

2

∫
d~r n(~r)

∫
d~r′
[
C2(|~r − ~r′|)n(~r′)

]
. (5)

In CDFT, the central object linking this theory to the microscopic structure is the direct

correlation function C2(|~r− ~r′|), which is assumed to be isotropic and formally related to

the total correlation h(r) = g(r)− 1 of the fluid via the Ornstein-Zernike equation

Ĉ2(k) =
ĥ(k)

1 + ρ0ĥ(k)
. (6)

Here the hat denotes the Fourier transform. These equations must be closed with approx-

imations, which can lead for instance to the well-known Percus-Yevick formula for hard

spheres. The PFC model Eq. 1 can also be viewed as an approximation in the form of a

low-k expansion of the direct correlation function,

Ĉ2(k) = −r + 1− (k0 − k2)2, (7)
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or correspondingly in real space

C2(|~r − ~r′|) = (C0 − C1∇2 + C2∇4)δ(|~r − ~r′|). (8)

Despite this elegant derivation from the fundamental equations of CDFT, it is important

to realize that the PFC model is not a microscopic theory. It does not use the true direct

correlation function of the solid it attempts to model. Doing so is also not desired, as the

resulting density field would vary so rapidly that an extremely fine discretization would be

needed to integrate the equation of motion9. However, PFC captures the long wavelength

properties of a solid very well. The question of how accurately it also describes short scale

features is a topic of intense current research.

2.4 Refinement of the Functional

2.4.1 Multiple Modes

In a single mode approximation of the density field, the PFC functional as described above

predicts a triangular lattice in 2D and a bcc structure in 3D. The full phase diagram de-

termined from unconstrained energy relaxation does include regimes where close packed

lattices (fcc/hcp) are stable, but the regions are rather narrow and accessing them requires

fine tuning of parameters10, 11. This limitation arises from the fact that the PFC direct cor-

relation function in reciprocal space has only one peak and hence promotes growth of one

single frequency only. It was shown many years ago12 that approximating only the first

peak in the static structure factor always leads to bcc lattices. In order to stabilize other

structures, higher frequencies must be included. The comparison with CDFT shows that

these frequencies should correspond to the magnitudes of the shortest reciprocal lattice

vectors of the lattice of interest. Two extensions discussed in the literature realize this idea.

Wu and Karma introduced a two-mode model for fcc lattices by considering the kernel

function13

Ĉ2(k) = −r + 1− λ(k0 − k2)2(r1 − (k1 − k2)2), (9)

The presence of the second frequency k1 produces a phase diagram with a much wider

fcc region. Greenwood et al.14, 15 also introduced multi-mode PFC kernels, in which each

reciprocal lattice vector contributes a Gaussian peak of the form

C2(k)i = −r + exp(−σ2k2i /2) exp(−(k − ki)
2/2α2

i ). (10)

The complete kernel is then obtained as an envelope to the Gaussian peaks. A represen-

tation in reciprocal space is also numerically advantageous as FFT methods can be used

to evaluate the convolution integrals. The parameters in this model provide a significant

amount of flexibility for simulating materials phenomena. The Debye-Waller like prefac-

tor exp(−σ2k2i /2) introduces a temperature parameter σ that modulates the relative peak

heights. In this way, phase transformations from one lattice symmetry to another can be

realized through temperature quenches. The Gaussian widths αi control the energy for de-

fects and the surface tension. For instance, the liquid solid interface width Wi ∝ α−1
i and

the elastic constants ∝ α−2
i . Even the degree of elastic anisotropy can be tuned by varying

the ratio α1/α2. Greenwood et al. showed that this form of the PFC model realizes square

lattices in 2D as well as fcc and hcp lattices in 3D with maximally three peaks at the lowest

reciprocal lattice vectors15. This strategy even describes stable 2D quasicrystals with 5 and

7-fold symmetry16.
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2.4.2 Anisotropic Interactions

All PFC models discussed so far exhibit rotational invariance, i.e. the free energy func-

tional is independent of the lattice orientation. While this is an advantage when modelling

polycyrstals composed of multiple grains, there are other materials where the constituents

are anisotropic, e.g. ellipsoidal colloids. Directional anisotropy can be introduced by re-

placing k2 → ∑
ij aijkikj and k2 → ∑

ijkl bijklkikjklkm with aij and bijkl appropriate

2nd and 4th rank elastic tensors17.

2.4.3 Orientable Particles

Free energies that aim to capture the rich physics of liquid crystals require the introduc-

tion of additional order parameters that depend on the orientation ui of particle i. The

functional then contains terms that include not only the translational density, but also the

polarization Pi describing the average orientational order and the nematic tensor Qij that

couples to quadrupolar order in nematics18, 19. A plethora of phases including nematic and

smectic phases emerges from the resulting gradient expansion of the free energy that are

only beginning to be explored20.

2.4.4 Binary Alloys

An important rationale for using PFC modelling over MD is its ability to include ther-

modynamic driving forces that lead to compositional segregation and patterning through

diffusive processes. From an engineering standpoint, alloys are far more important in struc-

tural applications than pure materials. A generalized functional for binary (AB) alloys was

introduced by Elder et al.6 and refined in later works21, 22. The entropic component of the

free energy now contains the sum of the ideal free energy of the individual density fields

ρA and ρB ,

∆Fid

kBT
= ρA ln(ρA/ρ

o
A)− δρA + ρB ln(ρB/ρ

o
B)− δρB (11)

while the excess term describes interactions between the two density fields

∆Fex

kBT
=
∑

ij

∆Fij = −1

2

∑

ij

δρi(r)

∫
dr′Cij

2 (|~r − ~r′|)δρj(r′) (12)

Here the sum is taken over the pairwise interactions AA, AB and BB, resp. It is convenient

to recast these equations in terms of the total density n = (ρA + ρB)/(ρ
o
A + ρoB)− 1 and

the solute concentration field c = ρB/(ρA + ρB). One can now make the approximation

that the solute concentration varies more slowly than the atomic density field. After some

modifications one can obtain the form22

∆F =

∫
dr

{
n2

2
− n3

6
+
n4

12
+ (n+ 1)∆Fmix(c)

− 1

2
n

∫
dr′Cn

eff(|r − r′|)n′ + α|~∇c|2
}

(13)
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where ∆Fmix(c) denotes the entropy of mixing,

∆Fmix(c) =

{
c ln

(
c

co

)
+ (1− c) ln

(
1− c

1− co

)}
(14)

and the form of the effective correlation function Cn
eff(|~r − ~r′|) can be chosen to inter-

polate conveniently between the pure density fields. One may view Eq. 13 as a modified

Cahn-Hilliard model plus a PFC contribution that provides symmetry and geometry of the

crystalline phase. As in the one-component PFC model, vacancies are delocalized so that

concentration gradients equilibrate rapidly due to chemical and elastic driving forces.

2.4.5 Propagative Dynamics for Driven Systems

In the dynamics of Eq. 2, density and elastic interactions relax on the same timescale.

While this approximation is reasonable for equilibrium calculations and coarsening, it

surely fails when the material is plastically deformed. It is possible to reintroduce a sepa-

ration of timescales and enable elastic modes to propagate much faster than density modes

by considering propagative (i.e. wavelike) dynamics,i.e.

∂2n

∂t2
+ β

∂n

∂t
= α2∇2 δF

δn
(15)

where the parameters α and β are related to the sound speed and damping rate23. At this

point, a fundamental advantage over MD becomes obvious: the sound speed is not a con-

sequence of interaction potential, temperature and density, but instead a tunable parameter.

With this modification, it is possible to shrink the large gap between phononic and dif-

fusional timescales by simulating a material with an effective sound speed much slower

than the physical sound speed. This approximation is justified as long as elastic modes

still propagate fast enough so that the interaction is quasiinstantaneous. Similar ideas are

used in Car-Parrinello dynamics24 for electronic degrees of freedom and local Coulomb

algorithms for MD25.

3 Selected Applications

The following examples are chosen to give an impression of the class of problems that can

be successfully addressed with the PFC framework. It is not a comprehensive review of all

PFC studies performed to date.

3.1 Nucleation and Growth

Many first order phase transitions begin with the nucleation and growth of a daughter phase

in the parent phase. The PFC model as a simplified density functional theory can provide

insight into atomistic aspects of these processes in the diffusion controlled regime. One of

the properties that can be calculated relatively easily is the nucleation barrier as function

of size of the nucleus26. Since this is an equilibrium property, it can be obtained directly

from the extremal solution of the free energy functional (Euler-Lagrange equation) and

does not require integrating the equations of motion11, 27. The nuclei are faceted as the free
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energy landscape has many local minima from different crystallographic orientations. This

method can also be used to compute the phase diagram and the structure of the precursors

to nucleation. Alternatively, one can use the dynamical Eq. 2 and add conserved white

noise to kick the system over metastable energy barriers. Among the predictions for the

nucleation pathways that emerge are amorphous precursors to stable bcc nuclei28. Studies

of heterogeneous nucleation, e.g. in the presence of a substrate, are also possible29.

In the ensuing growth of the clusters, the PFC model naturally incorporates anisotropic

growth in different crystallographic directions due to its atomistic nature27. It also predicts

interesting dynamical transitions between slow and fast growth modes that when combined

can lead to alternating faceted dendritic growth and fractal like patterns. Rich behaviour

can also be observed when nucleation and clustering takes place in alloys30. Here the

binary PFC model reveals the importance of dislocations in lowering the nucleation barrier

for precipitates, an effect that is intimately coupled with the diffusive relaxation of the

concentration fields in the presence of the strain field of the quenched defects.

3.2 Surface Physics

A second set of problems ideally suited for PFC modelling is the morphology and dy-

namics of (sub)monolayers coupled to a substrate with differing lattice parameter and/or

symmetry. Such systems can be described by adding a substrate-monolayer interaction

term of the form V (x)n(x) to the free energy, where V (x) describes the substrate poten-

tial. The resulting scenario resembles in many ways the well-known Frenkel-Kontorowa

model, but includes plasticity and defects in a self-consistent way. Several studies explored

the phase diagram of such commensurate/incommensurate transition as well as depinning

transitions and sliding friction31–33. The emergence of highly disordered glassy phases

was also observed34. For a monolayer adsorbed on quasicrystalline surfaces with 5-and

7-fold symmetry, a PFC simulation predicted the sequence of film morphologies as the in-

teraction strength was varied from a freely floating film to a strongly adsorbed isomorphic

structure16. These studies also showcase the computational efficiency with which a broad

range of parameters can be quickly explored with the PFC model. An alternative investi-

gation via particle-based Monte Carlo or MD would require significantly more effort than

the (fast) minimization of the PFC functional.

In semiconductor heteroepitaxy, it is very important to understand the effect of strain on

the morphology of the growing film. Here the PFC model can provide a general overview

of the types of instabilities that may lead to the formation of islands, which is relevant

for the fabrication of quantum dots35, 36. Although these calculations are not yet material

specific, they provide valuable trends and give insight into the limitations of continuum

elasticity theory.

Two recent studies showcase the complexity of phases that can emerge from the in-

terplay between alloy thermodynamics and elastic interactions. Muralidharan and Haataja

considered a monolayer film of CoAg on a Ru(0001) surface and found nanoscale do-

main formation upon carefully matching the PFC parameters to experimental values37. A

subsequent study explored strained alloys on quasicrystalline surfaces38. Elder et al. im-

plemented a similar approach for the metal/metal systems Cu on Ru(0001) and P(111)

and obtained various superstructures of stripe, honeycomb and triangular symmetry39. In

both studies the agreement with experiment is striking, which shows that quantitative PFC

modelling is possible at least for metals without directional bonding.
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3.3 Grain Boundary Phenomena

Controlling the distribution of grain sizes is one of the core engineering challenges in

physical metallurgy as the grain microstructure determines the mechanical properties of

the material. When quenched from the melt, a PFC material will crystallize into multiple

grains that merge and coarsen over time. The grain boundary (GB) mobilities and surface

energies that control the coarsening dynamics depend on the atomic level structure of the

interface and emerge in the PFC model automatically without further input. The GB dy-

namics in metals is always overdamped and therefore an ideal match for the PFC model.

The refinements outlined in the previous section permit the simulation of fairly complex

thermal histories. As a 2D example, Greenwood et al. studied a thermal quench from a

liquid phase into a region of the phase diagram where triangular lattice symmetry is stable,

which leads to the formation of polycrystal with triangular grains. After a second quench

into a region where square symmetry has the lower free energy14, grains with square sym-

metry nucleated at the triple junctions of the grains and coarsened into the triangular lattice.

Other studies have explored some of the properties of static GBs, in particular the melt-

ing of GBs a function of mismatch angle40, 41. Systematic studies of GB mobilities would

also be very useful as they could provide important validation that all relevant atomic scale

processes are captured in the PFC model.

3.4 Plasticity

One of the most exciting prospects of PFC modelling is an application to crystal plasticity.

It is clear that the fundamental atomistic process underlying plastic deformation of crys-

tals, dislocation glide, is captured correctly. An extensive study by Berry et al. on sheared

2D PFCs showed that dislocations possess a Peierls barrier and switch from stick-slip mo-

tion to continuous glide as the rate of deformation is increased42. The collective critical

behaviour of multiple dislocations was explored in the work of Chan et al. 43 The authors

employed the propagative dynamics Eq. 15 and studied the distribution of avalanche sizes

in steadily sheared 2D triangular crystal. Dislocations emerge in bursts and mutually an-

nihilate each other due to rapid glide. The size distribution of the energy drops follows

a power law in agreement with a mean-field model in close analogy to the intermittent

dynamics of earthquakes.

In the above example, the PFC simulation behaves essentially like a MD simulation as

diffusive processes are not important for plasticity. A powerful rationale for future work

would be to study plasticity problems that also involve aspects of dislocation climb. All

MD simulations to date miss such processes since vacancy diffusion is too slow. As a

result, the yield stress is often higher than in experiments. Although dislocation climb

does occur readily in the PFC model, it is unfortunately at present not known how to

systematically control the climb rate.

3.5 Binary Alloys

Immediately after introducing the binary alloy PFC model, Elder and coworkers applied it

to one of the paradigmatic multiscale problems: eutectic solidification6. Due to phase sep-

aration, the concentration field often forms lamellar bands with a periodicity that is several

orders of magnitude larger than the atomic length scale. The beauty of the PFC method
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is that both scales can be included in a single simulation. Atomic scale density variations

are resolved at the liquid solid interface, but the method is efficient enough that multiple

lamellae can be simulated in a periodic simulation box. The PFC description can be further

coarse-grained using a technique called amplitude expansions. With this approach, intrin-

sically atomistic processes emerge such as the segregation of solute concentration towards

dislocations that nucleate at the lamellar boundaries44.

Being based on a regular solution model, the phase diagram of the PFC alloy captures

all main qualitative features of eutectic phase diagrams22. The flexibility of the multi-

mode PFC free energies opens up the possibility of modelling rather complex scenarios.

Greenwood et al. studied 2D lamellar growth in a two-component alloy where the two

components individually prefer triangular and square symmetry. As the misorientation

between the lamellae is altered, the coarsening rate and lamellar spacing changes as a

result of different surface tensions and elastic interactions at the interfaces between the

lamellae. It is important to realize that the PFC model captures these effects automatically

and self-consistently without further fitting parameters22.

Another example of a problem that combines alloy thermodynamics with diffusive

dynamics is solute drag. This dynamical effect is important for GB migration and refers

to the lowering of GB mobilities due to the addition of solutes and is exploited in practical

engineering applications to control the grain size. As the solute segregates towards the

GB, the moving GB is surrounded by a cloud of solute concentration that may impede its

motion. The PFC model is able to capture all main aspects of this phenomenon and permits

a study of the deformation of the solute cloud with increasing driving pressure45. It resolves

locally inhomogeneous structure of the boundaries, but still shows good agreement with

classical continuum theories.

4 Current Status, Opportunities and Challenges

Given the simplicity of the PFC free energy functional Eq. 1, the breadth of materials

phenomena that can be described with it is quite remarkable. It fulfils in many ways the

physicist’s aspiration of a unifying and universal theory that explains natural phenoma on

the basis of symmetry, geometry, and dimensionality alone. The beauty of this result can-

not be questioned. The PFC approach is extremely powerful in providing a computation-

ally efficient overview of possible emergent structures controlled by elasticity in concert

with thermodynamics. Especially in the context of surface physics, experiments have been

explained39 and predictions have been made that can be experimentally challenged16, 38.

Despite these successes, it is important to realize also some of the limitations of PFC

modelling. One of the more serious ones is well revealed in the CDFT inspired formula-

tion: the excess free energy expansion is truncated at 2nd order and neglects multibody

correlations. This approximation may appear arbitrary already at the liquid-solid inter-

face and even more so in the highly ordered solid state. So far no serious attempts have

been made to include such higher order terms, mainly because they would surely have

a detrimental effect on computational efficiency. Even on the level of the RY approxi-

mation, there is an inherent tension in finding direct correlation functions that optimize

both crystal stability and defect stability. This effect was showcased explicitly in recent

work by Berry et al., who found that dislocations in fcc crystals only emerged with the

correct properties when relatively broad (in reciprocal space) direct correlation functions
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were used that permit the simultaneous coexistence of many frequencies46. By contrast,

multi-mode PFC models that stabilize bulk phases more easily have difficulties describing

split-partial dislocations correctly. These results point to inherent limitations in the PFC

method to accurately model highly local properties in solids.

A second challenge consists in transcending beyond scaling level results and turn the

PFC model into a quantitatively predictive tools for modelling of real materials. At present

it is possible to fit PFC parameters to lattice symmetry, bulk elastic constants, and surface

energies. Some studies have made explicit efforts to match material specific parameters37.

We have also learned how to control the stacking fault energy, but it may prove difficult to

capture more local properties without addition of many more parameters. In this regard, a

clearer link to an atomistic pair potential would be helpful. Despite these challenges, the

PFC model is a promising complementary method to MD when atomic displacements cou-

ple explicitly to diffusional processes. The amplitude expansion formalism44 furthermore

serves as a starting point for improved phase field models.
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27. G. Tegze, L. Gránásy, G. I. Tóth, F. Podmaniczky, A. Jaatinen, T. Ala-Nissila, and

T. Pusztai, Diffusion-Controlled Anisotropic Growth of Stable and Metastable Crystal

Polymorphs in the Phase-Field Crystal Model, Phys. Rev. Lett., 103, no. 3, 035702,

July 2009.

155
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Multiscale coupling of quantum mechanical (QM) domains to domains having a coarser-scale

material description is necessary for non-periodic problems that may also involve long-range

deformation fields such as caused by dislocations or crack tips. The goal of a multiscale method

is to compute the interactions of the quantum domain with the surrounding domain with the

same accuracy as would be obtained if the surrounding domain were fully quantum mechani-

cal. The QM domain inevitably requires some type of cluster calculation, and the major errors

then stem from electronic effects at the cluster surface extending into the cluster interior and

generating spurious forces and incorrect physical configurations. Here, we discuss two recent

methods to achieve robust coupling using full Kohn-Sham DFT methods. The first method uses

a thick buffer region of quantum ions and electrons in which the ionic displacements are deter-

mined by elasticity or atomistic methods. The second method uses the concept of constrained

DFT to force the electronic configuration near the outer boundary of the cluster to be identi-

cal to an approximate bulk electronic charge density, with the ion positions again controlled

by elasticity or atomistic methods. The success of the two methods is demonstrated through

application to several simple test problems.

1 Introduction

Despite ever increasing computational power, modelling and simulation of complex mate-

rials at the atomic level remains an enormous challenge. Quantum mechanical (QM) cal-

culations are essential for treating chemical reactions, charge transfer, electron excitation,

and magnetism, but are often so expensive that no more than a few hundreds atoms can be

handled. For problems involving long-range deformations, such as due to dislocations or

crack tips, a few hundred atoms is woefully insufficient to obtain accurate results. Thus,

multiscale methods that couple a quantum domain to a surrounding domain treated by less-

expensive methods, such as interatomic potentials or elasticity theory, have been actively

pursued over the last decade1–9. For metallic systems, the highly delocalized electrons and

a long-ranged density matrix10 pose a particular challenge for any multiscale method. One

feature of the coupling that is particularly difficult is the capturing of the non-additive ki-

netic energy of the system when only one portion is described quantum mechanically. One

solution for the latter problem is to use Orbital-Free DFT11–17 – a true DFT method – but

which is confined, to date, to only a few materials for which the approximate kinetic energy

functionals and local pseudopotentials are sufficiently accurate. The ultimate goal is to ob-

tain a method that provides the accuracy of standard Kohn-Sham DFT. In this paper, we

present two recent multiscale approaches that use Kohn-Sham DFT and several coupling

approaches to capture the non-additive kinetic energy and thereby generate proper forces

and quantum energies within a quantum domain of interest18, 19. We emphasize here some

commonalities between the two methods, and present some limited results to demonstrate

that they provide robust and accurate coupling strategies using full Kohn-Sham DFT.
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2 Multiscale Methods: Energies and Forces

We start from the premise that the goal of the multiscale method is first to accurately

capture the deformation (ion positions and electron density) in some specified QM domain,

and second to provide an accurate estimate of the total energy of the entire system or the

energy change due to some local phenomenon. An alternative viewpoint is often taken

wherein a single total energy functional of the coupled system is defined, from which the

configurational forces on each ion are derived directly. While preferable in principle, in

a multiscale method involving two fundamentally different descriptions of the material,

there are inevitably errors in the energy in the regions near the interface between the QM

and non-QM domain, and these errors lead to errors in forces, which then lead to incorrect

ionic positions and incorrect electron densities. Thus, while the energy and force are self-

consistently determined, the ground-state solution for the problem is not accurate. By

developing a method where forces and deformation are captured accurately, we take the

viewpoint that the estimated energy for the accurate configuration is preferable to a very

accurate energy for an incorrect configuration.

We consider a single-crystal-elemental metal containing a region where QM accuracy

is required. The multiscale methods discussed here start by identifying three domains

of ions/atoms, as shown schematically in Fig. 1. An inner domain labelled as Region I,

contains all defects, chemical interactions and inelastic behaviour and will be described

fully by QM methods. An outer domain labelled as Region III surrounds the defective

region and captures the deformation fields caused by the defects in Region I and transfers

the externally-applied loads/deformations into Region I. An intermediate domain, Region

II, lies between Regions I and III, and is the domain through which Regions I and III are

coupled. Like Region III, Region II must have small deformations, no defects, and no

chemical reactions. We then define two energy functionals, one for the combination of

Regions I and II and one for the combination of Regions I, II and III. The energy of Region

Figure 1. Schematic division of a large domain into Regions I, II, and III. Region III shows only mesh nodal

points at the locations of ions. The black circled ions merely indicate the outer boundary of Region I.
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I+II is computed as a function of the ion positions {Ri} i ∈ I, II via a QM method,

EI+II = EQM({Ri}, i ∈ I, II) . (1)

The energy of Regions I+II+III is computed as a function of the ion positions

{Ri} i ∈ I, II, III and is computed using a classical method (interatomic potentials20; elas-

ticity via finite elements; elasticity via Green’s functions21; hyperelasticity using finite

elements and the Cauchy-Born rule22),

EI+II+III = Ecl({Ri}, i ∈ I, II, III) . (2)

Note that these two energies both include Regions I and II.

The forces on ions in Regions II and III are computed using the classical energy func-

tional, which is reasonable because the deformations in these two domains are small so

that elasticity (or hyperelasticity) is valid. That is, the forces on an ion in Region II or III

is given by

fi = −∂E
I+II+III

∂Ri
= −∂Ecl({Rj}, j ∈ I, II, III)/∂Ri i ∈ II, III , (3)

where the ions in Region I are fixed at the positions dictated by the QM calculation on

Regions I+II. The forces on ions in Region I are computed using the QM energy functional,

so that

fi = −∂E
QM

∂Ri
= −∂EQM({Rj}, j ∈ I, II)/∂Ri i ∈ I , (4)

where the ions in Region II are fixed at the positions dictated by the classical calculation on

Regions I+II+III. The QM forces on ions in Region II are ignored – they are not accurate

because these ions are close to an outer vacuum domain and the QM forces are not those

that these ions would experience in the full system. The classical forces in Region I are

ignored – they are not accurate because this region experiences deformation and chem-

istry that are outside the validity of the classical method. Given the forces on each ion

as computed above, the ionic configuration of the entire system is incrementally evolved

using a convenient numerical scheme (conjugate gradient; steepest descents; etc). After

each incremental step of ion displacements, new forces are computed using the new ionic

configurations derived from the current energy functional.

From a mechanics viewpoint, the coupling is achieved by imposed ionic/atomic dis-

placement boundary conditions in each problem. In each increment, the QM problem is

executed while holding Region II ions at the current positions dictated by the classical prob-

lem while the classical problem is executed while holding the Region I ions at the current

positions dictated by the QM problem. By using ionic positions as boundary conditions,

the proper forces are generated on the various domains using the same energy functional:

Region I ions are driven by QM forces derived from the positions of the Region II ions

while Region II and III ions are driven by classical forces derived from the positions of the

Region I ions. Such an iterative incremental scheme generally eliminates the occurrence

of so-called “ghost forces” that emerge when attempting to use a single energy functional

for the entire system.

Once the entire system has been driven to equilibrium, i.e. zero forces on all ions in

the entire system, the energy of the entire system can be estimated, if necessary. Note,

however, that calculation of the entire energy is not necessary to achieve the equilibrium
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configuration. Unfortunately, the QM energy cannot be decomposed into an ion-by-ion

energy. Therefore, the energy EQM(I+II) must be used in its entirety, which can thus

include spurious energies due to any electronic relaxations at the outer surfaces of the

cluster-type QM calculation. However, the classical energy is easily decomposed into an

atom-by-atom energyEcl
i for any ion/atom i. Therefore, the best estimate that can be made

of the total system energy is

Etot = EQM({Ri}, i ∈ I, II) +
∑

i∈III

Ecl
i ({Rj}, j ∈ I, II, III) . (5)

In classical methods using interatomic potentials (e.g. Ref. 20), the interactions between

atoms have a finite range. In classical methods using finite elements and linear elastic-

ity or the Cauchy-Born rule, effective interactions between “atoms” are limited to near-

neighbours only that define the local deformation gradient. If the width of Region II is

such that atoms in Region III do not directly interact with atoms in Region I, then the sec-

ond term in Eq. 5 does not actually depend on the positions of ions in Region I, and can be

written as

Etot = EQM({Ri}, i ∈ I, II) +
∑

i∈III

Ecl
i ({Rj}, j ∈ II, III) . (6)

Eq. 6 shows that the errors in the estimated total energy are primarily associated with the

errors in the QM energy in Region II and any errors in the equilibrium positions of the ions

in all three Regions I, II, and III, caused by any force errors mainly due to ions in Region

II.

The accuracy of a coupling method based on the above formulation hinges on the fol-

lowing issues. First, the classical method must accurately capture equilibrium lattice con-

stant and the small-deformation (elastic) response of the material as computed by the DFT

method. Second, the QM method must minimize spurious forces in Region I generated by

electronic relaxations around the outer surface of the Region I+II QM cluster calculation.

Third, the positions of the ions in Region II, controlled by forces determined by the classi-

cal method, must be sufficiently accurate relative to their true positions in the hypothetical

infinite QM system. In the next sections, we introduce two methods that address these

key issues in different ways, and present the computational evidence that the methods can

achieve the goal of high accuracy of deformations in the QM Region I.

3 Coupled Atomistic/Discrete Dislocation Method with Quantum

Mechanics (CADD-QM)

As the name implies, CADD was originally developed to enable simultaneous dislocation

plasticity in both atomistic and continuum domains23, 24. The simulation of discrete dislo-

cation plasticity relies on linear elasticity theory in the continuum, and hence CADD-QM

uses linear elasticity in the “classical” domain of Regions II+III, and uses a QM cluster cal-

culation for Regions I+II18. Errors in the CADD-QM coupling are minimized as follows.

Linear elasticity in Regions II+III uses the exact anisotropic elastic stiffness tensor

components Cijkl as computed by DFT using exactly the same DFT physical and numeri-

cal parameters (e.g XC functional, pseudopotentials, energy cut-offs, smearing parameter,

etc.). The reference structure for the continuum calculation is the perfect crystal lattice
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having the lattice constant ao computed by DFT (for simplicity here we consider cubic

materials only). Within the approximation of linear elasticity, the classical material there-

fore exactly matches the QM material.

Errors due to electronic relaxation at the outer boundaries (vacuum surfaces) of Region

II lead, at zero temperature, to electron density oscillations propagating far into the “bulk”

material; these are the Friedel oscillations arising from the sharp Fermi surface. The spu-

rious effects of the surface are minimized in CADD-QM by two means. First, a relatively

large “smearing parameter” or, similarly, effective electron temperature, is used. This is

a numerical approach to smooth out the sharp Fermi surface sufficiently to diminish the

range of the Friedel oscillations. Second, a relatively thick Region II is used. Together,

these can ensure that any spurious forces in Region I caused by the Friedel oscillations are

below the force convergence value used in the computations. The main potential problems

with the above approach are that (i) a thick Region II is computationally costly and (ii) the

material properties and ionic forces can depend on the smearing parameter itself and so

the DFT calculation may not be yielding accurate properties for the real material. Regard-

ing (i), we find that problems with through-thickness periodicity (cracks and dislocations)

can be treated with ∼500 total ions, which is computationally costly but not prohibitive.

Regarding (ii), for Al, we have used a smearing parameter of 1.0 eV, which is larger than

the typical values of 0.1-0.2 eV used in most DFT codes. However, we have computed

the material properties of Al as a function of the smearing parameter up to 2.0 eV, and

find that a value of 1.0 eV yields very good values for a range of mechanical properties

(a) (b)

Figure 2. Regions I and II for a perfect undeformed Al crystal for (a) small (0.2 eV) and (b) large (1.0 eV)

smearing parameters; colours indicate computed ionic forces on each ion, with blue corresponding to 8 meV/Å or

less.
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relevant in Al (lattice constant, elastic constants, surface energies, stacking fault energies).

While the value of the smearing parameter and thickness of Region II must be determined

through careful testing of reference problems, these are assessable and controllable ap-

proximations. Fig. 2 shows the ionic forces on the ions in Regions I and II of a perfect

crystal of undeformed Al, for both small and large smearing values. For a Region II of

thickness 13 Å and a smearing parameter of 1 eV (Fig. 2b), the forces in Region I (in the

box indicated) are less than 8 meV/Å, which is a typical conservative convergence limit for

DFT calculations. Thus, the spurious electronic effects in Fig. 2a have been eliminated.

Finally, the positions of Region II ions are determined by continuum elasticity. Con-

tinuum mechanics is a local approximation, so the solution to the elasticity problem in

Regions II+III uses only those ion positions on the outer boundary of Region I as boundary

conditions. Details of the complex deformations deeper in Region I are irrelevant. Regions

II and III respond according to elasticity as dictated solely by the displacements at the

outer boundary of Region I. If electronic effects due to defects or deformation in Region

I are sufficiently large that the response in Region II is not well-approximated by linear

elasticity, then Region I must be made larger. This issue is difficult to assess, since the

QM Region I+II calculation is constrained by the Region II ion displacements dictated by

the finite elements. In other words, the coupling method forces the outer Region I ions

to be near the elastic solution, and thus simply examining converged displacements does

not reveal underlying errors in the method. However, it is possible to obtain estimates of

errors in the outer ions of Region I by taking a converged solution for a given problem and

analyzing the QM forces on the inner Region II ions (those adjacent to Region I). If these

forces are significant, and compared to the expected forces from the Friedel oscillations,

then Region I is too small. Alternatively, a second computation using a smaller Region I’

and larger Region II’ can be performed, and the displacements of those ions that are at the

boundary, i.e. in Region II’ but previously in Region I, can be examined.

Fig. 3 shows an application of the method to the computation of the core structure of

a screw dislocation in Al. The dislocation dissociates into two closely-spaced partial dis-

locations, as indicated by the Nye tensor plot25 showing the edge components of the two

partials. These results agree well with those obtained using the Lattice-Green’s Function

Figure 3. Core structure of a screw dislocation in Al, showing converged forces within Region I (“QM region”)

and the forces in Region II (“Pad Region”) that are influenced by the outer vacuum boundary in the overall DFT

computation on Regions I+II.
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Method of Rao and Woodward26, and other results on edge dislocations agree well with re-

sults obtained by the QM/MM method of Lu and colleagues15, 16. The method has also been

applied to study both cleavage fracture and dislocation emission at crack tips in Al18, 27 and,

more recently, the effects of atomic oxygen and hydrogen on inhibiting dislocation emis-

sion from cracks in Al28. These first applications demonstrate the power of the multiscale

method to capture accurate chemistry in small focused regions of metals using accurate

DFT methods in configurations with long range fields and non-periodic geometries.

4 QM/MM Based on Constrained DFT

The main problem in CADD-QM is that the relaxation of the electrons near the outer

surface of the QM cluster calculation generates Friedel oscillations and spurious ionic

forces in Region I. While avoided by using a large Region II and large smearing pa-

rameter, it is fruitful to solve the problem more elegantly. Our new QM/MM (Quantum-

Mechanics/Molecular-Mechanics) using a constrained DFT problem achieves this well19,

allowing for the use of a smaller Region II (and thus a cheaper QM computation) and

typical DFT smearing parameters of 0.1–0.2 eV.

The idea underlying the constrained DFT method is that, as the name suggests, the

DFT cluster calculation is constrained to have, in principle, the exact correct electronic

charge density at the outer boundary of Region II. If the charge density in this region is ac-

curate, then there are no Friedel oscillations induced in the system, and no spurious forces

generated in Region I. Of course, the exact electronic charge density is not known a priori,

thus a sufficiently accurate surrogate target charge density must be used. Furthermore, the

constraint can only be implemented by imposing an additional constraint potential into the

standard Kohn-Sham equations emerging from the DFT theory, and the constraint cannot

be satisfied exactly. Thus, the two main issues in the constrained DFT method are (i) deter-

mination of the target charge density and (ii) implementation of an appropriate constraint

potential.

In work to date, we generate a target charge density by using a sum of “atomic” charge

densities associated with each ion i. That is, given an atomic charge density ρat(~r − ~R)

centred on ion ~R, the target charge density at an arbitrary point ~r is computed as

ρtarget(~r) =
∑

i

ρat(~r − ~Ri) . (7)

The atomic charge density ρat(~r − ~R) is first parameterized using a linear combination of

atomic orbital functions containing variational parameters as

ρat(~r) =
∑

lm

clm|R(l)Ylm(θ, ϕ)|2 , (8)

where (r, θ, ϕ) are spherical coordinates, and l and m are angular and magnetic quantum

numbers. clm are coefficients ensuring that
∑

lm clm equals the number of valence elec-

trons of the atom. The Ylm are the spherical harmonic functions, and the radial functions

R(l) are Gaussian functions given by

Rl(r) = rlA(l, αlm)e−αlmr2 , (9)
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where the A(l, αlm) are normalization factors. The parameters clm and αlm in the vari-

ational function of Eq. 8 are then obtained by fitting ρtarget(~r) to the exact perfect crystal

charge density ρperfect crystal(~r) over the unit cell volume using a least-squares procedure.

Such a target density is then exact, within fitting errors, for the perfect crystal. For the de-

formed crystal, the ion positions change but the electron densities attached to each ion do

not change. However, properties of the approximate material that uses the electron density

specified by ρtarget(~r) in a non-self-consistent Kohn-Sham analysis yields a very accurate

lattice constant, cohesive energy, and also bulk modulus (associated with deformation) as

compared to the full self-consistent K-S result. Thus, the target charge density gives a good

representation of the true charge density and linear elastic material properties.

Given the ion positions, whether computed from DFT, EAM, or FEM methods, the

target charge density can be computed in any region of space. The purpose of the con-

straint method is to constrain the otherwise-spurious charge relaxations that would occur

on near the outer surface of Region II. The target charge density is therefore imposed as a

constraint on the electronic charge density computed in the DFT only in a domain denoted

as Ωc at the outer boundary of Region II, where the charge densities from ions in Region II

and ions in Region III would normally overlap in the infinite material. Specifically, given

charge densities computed by QM in Regions I+II, ρQM(~r), and computed by superimpos-

ing atomic charge densities at the ion positions in Region III, ρcl(~r), the domain of Ωc is

defined as those points {~r} satisfying

~r ∋ min
[
ρQM(~r), ρcl(~r)

]
< ρcf , (10)

where ρcf = 10−4 Å−3 is a numerical cut-off parameter.

Within the domain Ωc the constraint is imposed by defining a potential energy “penalty

function” that is proportional to the Coulomb potential energy due to the difference be-

tween the desired target charge density and the computed charge density and is given by

vλc (~r) = λ

∫

Ωc

ρQM(~r′)− ρtarget(~r′)∣∣∣~r − ~r′
∣∣∣

d~r′ , (11)

where λ is a penalty parameter. The constraint potential in Eq. 11 is then localized to

operate only in the domain of Ωc by multiplying it by a weighting function given by

w(~r) = 1 ρ′ = min
[
ρQM(~r), ρcl(~r)

]
< 2ρcf ,

w(~r) = ρ′

ρcf
− 1 ρcf < ρ′ = min

[
ρQM(~r), ρcl(~r)

]
< 2ρcf , (12)

w(~r) = 0 ρ′ = min
[
ρQM(~r), ρcl(~r)

]
< ρcf .

The constraint potential is added as an additional external potential in the otherwise

standard Kohn-Sham equations, and the modified equation is solved to self-consistency for

the QM charge density ρQM(~r). Forces are computed in the normal manner as the entire

system (Regions I+II+III) is evolved toward the configuration corresponding to mechanical

equilibrium. At the equilibrium configuration, the energy of the QM domain is computed

from the DFT-computed energy by subtracting off the energy of the constraint potential,

which was added solely to enforce the constraint on the charge density as

EI+II = EQM({Ri}, i ∈ I, II) = Econstrained DFT −
∫
ρQM(~r)w(~r)vλc (~r)d~r . (13)
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Figure 4. Schematic of the Constrained DFT Quantum-Mechanics/Molecular-Mechanics coupling method. Pink

ions are in Region I, white ions in Region II, and blue ions in Region III. A constraint on the electron density is

imposed in a region around the boundary between Regions II and III. Colours are contours of electron density

from blue (0 /Å3) to red (0.24 /Å3).

There are a few numerical aspects to the implementation of the constrained DFT

method outlined above. These are discussed in the original publication and are not ad-

dressed further here19. One important parameter in the model is the penalty parameter λ.

Increasing λ enforces adherence to the constraint but also makes convergence more dif-

ficult, and thus a compromise must be struck between increased accuracy of the solution

and computational time to achieve convergence. For any given material, a suitable value

for λ can be determined using small unit cell calculations and this value can be used for

any subsequent studies on the same material. We have determined that values of λ = 20,

5, and 2 are suitable for Al, Pd, and Fe, respectively. For magnetic materials such as Fe,

a constraint is developed for each of the two independent spin densities but otherwise the

theory is the same as given above.

Accuracy of the method has been assessed by examination of several simple problems,

and comparisons to standard periodic-cell DFT studies for problems where the periodic

DFT is very accurate. For a perfect lattice of undeformed Al with Regions I+II consisting

of a cube having the lateral dimension shown in Fig. 4, the method generates forces of

25 meV/Å on the outer ions in the cell, which is slightly higher than in the CADD-QM

method, but for a much smaller system and small smearing parameter (0.2 eV). Inserting

a single vacancy in the centre of the Al lattice, we compute the vacancy formation energy

to be 0.79 eV as compared to the value 0.75 eV computed using a similar-sized but fully-

periodic QM domain. We consider this level of accuracy to be very good. Increasing the

size of Region I by one additional layer of Al atoms, we again obtain the vacancy formation

energy of 0.79 eV. Reducing λ to 10 yields a vacancy formation energy of 0.81 eV while

increasing it to 30 yields 0.79 eV. Thus, the results using the original size and λ are robust

and suitably converged.

We have applied the Constrained-DFT QM/MM method to predict the core structure of

an edge dislocation in Fe. The atomic core structure is shown in Fig. 5 along with contours

of a simple local strain deformation measure and Regions I, II, and III as noted in the cap-
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Figure 5. Converged edge dislocation core structure in Fe as predicted by the constrained DFT QM/MM method.

Regions I and II are shown as the pink and white ions, while Region III ions are shown in grey and are treated

using a tuned EAM potential. Colour contours show a simple strain measure (blue -0.04 to red 0.08) that is useful

for gauging the extent of the large deformations around the core (centred at the symbol shown).

tion. The core of the dislocation is not dissociated, but the Burgers vector is spread along

the slip plane over a width of approximately 10 Å (from 0.2b to 0.8b). There are no other

calculations of this core in the published literature. This is, in part, because full periodic

DFT calculations of such cores requires the use of dislocation multipoles (e.g. Ref. 29), and

the computational limitations on the number of atoms feasible in DFT requires these dis-

locations to be quite closely spaced, which can impose artificial and unknown forces that

distort the core. While the Lattice Green’s Function method or the CADD-QM method

have both been used, as shown in Fig. 3 for instance, both require the use of a much larger

Region II and are thus far more costly.

5 Conclusion

We have introduced two novel multiscale methods in which quantum mechanics, via den-

sity functional theory, is used in a small central region while less-expensive atomistic or

continuum methods are employed in the surrounding domain. The intent of this paper has

been to present the two different frameworks through one common framework, and dis-

cuss how each method deals with the challenges of outer boundary artifacts that arise in

many other multiscale methods involving quantum mechanics. The CADD-QM method

has been implemented to date using continuum elasticity in the outer Region III, while the

constrained-DFT QM/MM method has been implemented to date using semi-empirical in-

teratomic potentials for the atomic degrees of freedom in Region III. Either method could

be adopted to use the other approach in Region III. The choice of method in Region III is

dictated by other considerations, such as the availability of suitable interatomic potentials

and/or the expectation that linear elasticity is sufficiently accurate in Region III. These are

largely secondary details. The QM domain needed for any given problem cannot be chosen

a priori, but the methods here can be made adaptive and can, in principle, adjust on the fly

as defects evolve or move.
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We note here that neither method can be subjected to strict mathematical assessments

of convergence in a formal sense. This is not unexpected for methods where two entirely

different energy functionals, having overlapping domains, are used in the formulation.

Thus, application of the methods requires some preliminary evaluation of simple problems

and numerical assessments of convergence of results for energies or forces. However, the

efficiency of the multiscale methods can enable such additional studies, and many aspects

can be established once for a given material and then used reliably across different classes

of problems.

These methods have no serious inherent restrictions on application across the periodic

table, within the limits of application of Kohn-Sham DFT methods, and can deal with

arbitrary geometries including non-periodic systems. As such, they are valuable tools for

performing accurate first-principles calculations for problems that might otherwise not be

computationally feasible.
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Many processes involving ions, polar molecules, or polar moieties take place in an external

medium with heterogeneous dielectric properties. Examples range from protein folding in a

polarizable solvent to contact electrification induced by the rubbing of two dislike solids. When

simulating such processes, it is not appropriate to decompose the electrostatic forces between

the central atomistic degrees of freedom into (effective) two-body contributions. Instead, one

needs to consider the dielectric response of the external medium, which one may want to rep-

resent as a continuum. In this contribution, we show that the split-charge equilibration (SQE)

method can be used to describe continua with well-defined dielectric properties, although it

was originally designed to assign atomic charges on the fly. As such, SQE bears much potential

for hybrid particle-continuum simulations. The comparison of dielectric response functions as

obtained by SQE and point-dipole methods reveals many advantages for SQE. The main points

are: SQE requires fewer floating-point operations, non-local dielectric properties are more eas-

ily embedded, and the leading-order corrections to the continuum limit are isotropic on the

simple cubic lattice in contrast to point dipole models.

1 Introduction

The electrostatic polarization of an embedding medium can strongly affect the interac-

tion between ions, polar molecules, or other polar degrees of freedom. To illustrate this

point, consider an anion with elementary charge close to a surface of a highly polarizable

medium, such as water or, in the extreme case, a metal. If we neglect the surface dipole

of the polarizable medium and the induced dielectric response, no (long-range) interaction

takes place. However, assuming an ideal mirror charge, the anion feels a Coulomb attrac-

tion V = −e2/4πε0d, where d is the distance between the anion and its mirror image. The

numerical value of the correction to a non-polarizable treatment for d = 10 Å amounts to

as much as V ≈ 1.44 eV, which is roughly 55 times the thermal energy kBT at room tem-

perature. This number distinctly exceeds the typical energy difference of ten times kBT
between the ground state energy of a folded protein and the first meta-stable conformation.

If the ion is part of a fluid or a solid, that is, if it is part of the central zone of interest, the

“effective self-interaction” that the ion experiences from the external medium is not quite

as strong as if the ion is in isolation. This is because condensed matter tends to arrange

such that it avoids local electrostatic monopoles. The ion then experiences not only its

own induced mirror charge but also that of a nearby charge-balancing counterion. As an

example, an ideal point dipole of 1.85 D (the value for an isolated water molecule) must

be as close as 5.5 Å to its mirror dipole to acquire an effective self-interaction energy of

roughly kBT . Yet, the annihilation of the induced forces may not be sufficiently systematic

to make polarization corrections negligible, because polar molecules or moieties can adopt

a preferential orientation near interfaces formed by two materials with different dielectric
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properties. For this and related reasons, the electric polarization needs to be accounted for

in accurate simulations of ionic and polar media1–4. Since most systems are heterogeneous

and boundary conditions are more complicated than those of semi-infinite metal walls, it

is futile to derive effective interactions between the explicitly treated atomistic degrees of

freedom. Instead, it is desirable to compute the polarization of the embedding medium,

ideally by exploiting continuum descriptions and appropriate meshing far away from the

zone of interest.

Often, polarization in condensed matter systems is accounted for by placing inducible

(point) dipoles onto atoms or (super) atoms5–7. However, in addition to electrostatic polar-

ization of atoms, there can be charge transfer between them. Although there is no unique

scheme breaking down the polarization into intra- and inter-atomic contributions8 (mainly

because atomic charges cannot be defined unambiguously9), recent advances show that it

is yet both meaningful and practical to do so10. We shall not repeat the arguments here

and instead simply assume as a heuristic working hypothesis that charge transfer between

atoms and the polarization of atoms can be assigned meaningfully.

Determining the set of atomic charges {Q} and/or atomic dipoles {µ} – plus poten-

tially higher-order multipoles – is usually done using minimization principles11. The idea

is to find an approximation for the potential energy of the system V = V ({Q,µ ...}) by

Taylor expanding V with respect to the set of the (small) parameters {Q,µ, ...} and to find

well-motivated expressions for the expansion coefficients. In this work, we will base this

expansion on the split-charge equilibration (SQE) model12, in which atomic charges result

from the charge transfer through chemical bonds. In addition to fractional charges, atoms

can receive integer charges, which, however, are not subjected to bond energy penalties

but only to on-site interactions. The SQE method has been recently justified from density-

functional theory based arguments10. The gist of this justification is that the non-locality

of the kinetic energy in DFT (which leads to the shell structure of atoms and to band gaps

in solids) can be expressed correctly in leading order by the split-charge terms (which are

needed to yield a dielectric response differing from that of metals).

The SQE method was proposed as a unified model of the original chemical-potential-

equalization method also known as charge equilibration13, 14 (QE) and the atom-atom

charge transfer approach (AACT)15. It turns out that SQE avoids the (mutually exclusive)

disadvantages of QE and AACT method without introducing new ones. For example,

QE automatically produces a metallic response, i.e., a diverging dielectric permittivity, εr,
while AACT can only mimic systems for which εr − 1 . 1 holds16. In contrast, SQE

can reproduce any arbitrary value of εr > 1. In this contribution, we focus on the dielec-

tric properties of SQE and compare them to those produced by approaches in which the

dielectric response results from point dipoles.

The remaining part of this chapter is organized as follows: In Sec. 2, the charge transfer

and point dipole models are introduced within one common framework. In Sec. 3, the

continuum limit is derived for a pure point-dipole model and a pure SQE model on the

simple cubic lattice. Further properties of charge-equilibration methods, that is, those

pertaining to molecular systems, are summarized in Sec. 4. Conclusions are drawn in

Sec. 5.
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2 Charge Transfer Approaches and the Split Charge Model

As mentioned in the introduction to this chapter, the goal is to find an expansion for the

energy as a function of the partial charges and the dipoles – plus potentially higher-order

electrostatic multipoles – as a function of the atomic coordinates:

V ({R, Q,µ}) = V ({R, Q0,µ0}) +
∑

i

{
∂V

∂Qi
∆Qi +

∂V

∂µiα
∆µiα

}

+
∑

i,j

{
1

2

∂2V

∂Qi∂Qj
∆Qi∆Qj+

∂2V

∂Qi∂µjα
∆Qi∆µjα +

1

2

∂2V

∂µiα∂µjβ
∆µiα∆µjβ

}
.(1)

We truncate after second order and after the dipole terms. Here, {Q0} and {µ0} denote,

respectively, a set of reference values for atomic charges and dipoles. In the following, we

will assume that these can be set to zero unless mentioned otherwise. Moreover, Roman

indices refer to atom numbers while Greek indices enumerate Cartesian coordinates, e.g.,

µiα ≡ µiα0 + ∆µiα is the α component of the dipole on (super)atom i. For Cartesian

indices, we use the summation convention. Some terms in the Taylor expansion Eq. 1 can

be readily interpreted.

For isolated atoms, ∂V/∂Qi corresponds to the electronegativity χi (plus potentially

a coupling to an external electrostatic potential), while ∂2V/∂Q2
i can be associated with

the chemical hardness κi. They can be parameterized via finite-difference approximations

of the ionization energy Ii and electron affinity Ai. The latter two quantities can be be

obtained by removing or adding an elementary charge e from atom i,

Ii =
κi
2
e2 + χie (2)

Ai = −κi
2
e2 + χie (3)

and thus κi = (Ii−Ai)/e
2 and χi = (Ii+Ai)/2e. (These quantities are commonly stated

in units of eV, which means that the underlying unit system uses the elementary charge as

the unit of charge.) In principle, κi and χi should depend on the environment, but within a

reasonable approximation, they can be taken from values measured for isolated atoms. In

practical applications, i.e., when allowing κi and χi to be free fit parameters, they turn out

within O(10%) of their experimentally determined values12, 17. Furthermore, it is tempting

to associate the mixed derivative ∂2V/∂Qi∂Qj (i 6= j) with the Coulomb potential, at

least if Ri and Rj are sufficiently distant. For nearby atoms, one may want to screen the

Coulomb interaction at short distance to account for orbital overlap.

All terms related to the atomic dipoles can be interpreted in a straightforward fashion.

The negative of ∂V/∂µiα is the α component of the electrostatic field at Ri due to ex-

ternal charges. The single-atom terms ∂2V/∂µiα∂µiβ , can be associated with the inverse

polarizability 1/γi of atom i. Unlike for the charges, practical applications find a large

dependence of the polarizability on the chemical environment (in particular for anions)18,

including a direction dependence for directed bonds. The two-atom terms ∂2V/∂Qi∂µjα

and ∂2V/∂µiα∂µjβ correspond to the charge-dipole and dipole-dipole Coulomb interac-

tion, respectively, at least for large distances Rij between atoms i and j.
Unfortunately, it is incorrect to assume that the second-order derivatives ∂V 2/∂Qi∂Qj

quickly approach the Coulomb interaction as Rij increases beyond typical atomic spac-

ings, which one might conclude from the argument that chemistry is local. This can be
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seen as follows: we know that isolated fragments (such as atoms or molecules) take in-

teger charges, in many cases zero charge. If we separate two atoms, such as sodium and

chlorine to large separation, we would find that the fragments carry a fractional charge

QNa,Cl = ± χCl − χNa

κNa + κCl − 1/(4πε0RNaCl)
, (4)

assuming that ∂V 2/∂Qi∂Qj quickly approaches the Coulomb potential. Using element-

specific numerical values19, one obtains partial charges of ±0.4 e for a completely disso-

ciated dimer. However, both atoms should be neutral, because INa > ACl, which requires

one to prevent non-local (fractional) charge transfer.

What needs to be done is to penalize the transfer of (fractional) charge over long dis-

tances, i.e., when the overlap of orbitals of isolated atoms or ions ceases to be of impor-

tance. This can be done as follows. We write the charge of an atom as12, 16

Qi = nie+
∑

j

qij , (5)

where ni is called the oxidation state of the atom and qij is the charge donated from atom

j to atom i, which is called the split charge. By definition, qij = −qji. (One may ob-

ject that such an assignment is meaningless as electrons are indistinguishable. However,

assignments can be made unique, e.g., by defining an appropriate Penrose inverse for the

reconstruction of split charges from charges10.) Next, we do not only penalize built-up of

charge on atoms but also the transfer of charge. Thus, the terms in Eq. 1 exclusively related

to atomic charges become

V ({R, Q, · · · }) =
∑

i

{κi
2
Q2

i + (χi +Φext
i )Qi

}

+
∑

i,j>i

{
κij
2
q2ij +

Sij(Rij)

4πε0Rij
QiQj

}
+O(µ). (6)

Here, we have introduced the split-charge or bond hardness κij , which is generally distance

and also environment dependent, i.e., it diverges as Rij becomes large, prohibiting the

transfer of charge over long distances. Moreover, Sij(Rij) denotes a screening at small

distances with Sij(Rij) → 1 for Rij → ∞.

Eq. 6 represents the SQE model. The original QE arises in the limit of vanishing bond

hardness term κij , while the AACT model neglects the atomic-hardness terms κi. Partial

charges of atoms are deduced by minimizing the energy with respect to the split charges

qij . The total charge of the system automatically adjusts to Qtot =
∑

i nie owing to

the qij = −qji symmetry. The minimization of V with respect to the split charges can

be done with the usual strategies for finding minima of second-order polynomials, such

as steepest descent (good and easy for systems with large band gap, i.e., large values of

κs, reasonable convergence in two or three iterations), extended Lagrangians (not effi-

cient for systems with zero or small band gap), or conjugate gradient (probably best when

dealing with small or zero band gap systems). Matrix inversion of the Hessian matrix is

strongly disadvised due to unfavourable scaling with particle number. Once the partial

charges are determined, forces arising due to electrostatic interactions can be computed

from ∂V ({R, Q, · · · })/∂Riα.
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The numerical overhead of SQE versus QE is minimal, if present at all. As a matter of

fact, since QE models all materials as metallic (as we shall see in Sec. 3.2), SQE requires

much fewer iterations to convergence than QE, at least for systems with a band gap. How-

ever, there is a memory overhead within the SQE formulation. For example, assuming 12

neighbours per atom on average, one obtains six split charges per atom, which need to be

stored in memory. Despite of this memory overhead in SQE, the number of floating-point

operations per SQE minimization step is not much larger than for QE. The reason is that

the bulk of the calculations is related to the evaluation of the Coulomb potential VC and

the derivatives ∂VC/∂Qi. Once the latter are known and stored in arrays, the derivatives

∂VC/∂qij can be obtained with little CPU time via

∂VC
∂qij

=
∂VC
∂Qi

− ∂VC
∂Qj

, (7)

since dQk/dqij = δik − δjk.

3 The Continuum Limit of Charge Equilibration Models

In this section, the (static) dielectric response function of the SQE model (augmented with

inducible point dipoles) is explored in the continuum limit. Such a treatment contains the

original QE and the AACT model as limiting cases. The presentation here explores a sim-

ilar model discussed previously20, i.e., a simple cubic crystal in which a “slowly” varying

electrostatic field Eext(R) produced by “external” charges is added. a The derivation of

the dielectric permittivity pursued is simplified with respect to the original one and more-

over, we no longer restrict ourselves to the capacitor geometry.

The charge Q(R) at lattice site R/a = lex+mey +nez (a being lattice constant) can

be calculated through the following second-order, finite-difference approximation

Q(R) = −
∑

∆R

∆R · ∇q(R,∆R), (8)

where ∆R is a lattice vector. For ∆R being a nearest-neighbour vector, the split-charge

field q(R,∆R) shall be interpreted as follows: q([x + a/2, y, z], ae1) is the split-charge

donated from the atom located at (x, y, z) to that at (x+a, y, z). (This way, the expression

∆R q(R,∆R) can be seen as a dipole centred at R +∆R/2.) Because similar relations

hold for split charges shared between next-nearest atoms, etc., the summation in Eq. 8 can

be generalized to any lattice vector ∆R. To clarify Eq. 8, we note that the split-charge

field on the r.h.s. is a function defined on a continuous variable R. The field is chosen

such that it is as smooth as possible but nevertheless represents exactly the true split charge

exchanged between nearest (or farther) neighbours at the centre of the (imaginary) bond of

the two atoms exchanging a split charge. The l.h.s. of Eq. 8 is a discrete charge at lattice

site R. By dividing Q(R) through a3, it can be turned into a continuous charge density.

aIt is probably more meaningful to refer to a continuous-background charge distribution that is not treated ex-

plicitly rather than to an external charge distribution. Moreover, the term “slowly varying” shall imply that the

charge distribution is continuous, e.g., it only lives on one single wavelength within the first Brillouin zone of the

crystal.
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In reciprocal space, Eq. 8 becomes

Q̃(k) = −i
∑

∆R

k ·∆R q̃(k,∆R). (9)

A difficulty that arises when exchanging split charges with next-nearest neighbours

is that we need additional split charge fields, i.e., those living on lattice sites for which

l + m + n is odd and those for which l + m + n is even. This means that our simple

cubic lattice needs to be subdivided into two interpenetrating face-centred cubic lattices,

which makes the analytical discussion intransparent. The need for different lattices will

disappear for external fields that have a wavelength much exceeding a lattice constant.

It is only in this latter case that the conversion from a discrete theory to a continuum

theory as initiated in Eq. 9 is meaningful. Short wavelengths would have to be treated

differently. At this point, it shall suffice to state that it is possible, in principle, to tune the

next-nearest neighbour bond hardness independently from that of nearest neighbours. This

would mean that the polarizability at a wavelength 2a can be set independently from that

at wavelength a. Similar comments apply when including third-nearest neighbours, etc.

Therefore, it should be possible to design a dielectric permittivity such that it reproduces a

desired wavelength dependence. For reasons of clarity, we keep Eq. 9 without introducing

independent split charges fields living on different sublattices. (Of course, an alternative

approach to increasing the unit cell would be to couple different k vectors defined for the

original unit cell.)

Including point dipoles to the lattice sites, the split-charge energy for a perfect (mono-

atomic, χ ≡ 0) lattice reads

V =
∑

R

{
κ

2
Q2(R) +

∑

∆R

κs(∆R)

2
q2(R,∆R)−Eext(R) ·∆R q(R,∆R)

}

+
∑

R

{
1

2γ
µ2
α(R)− Eext

α (R)µα(R)

}
+
∑

R,R′

{
J(∆R)

2
Q(R)Q(R′)

+ Jα(∆R)Q(R)µα(R
′) +

Jαβ(∆R)

2
µα(R)µβ(R

′)

}
. (10)

Here, J(∆R) is the (screened) Coulomb interaction between the charges Q(R) and

Q(R′), the singly-indexed Jα(∆R) represents the (screened) charge-dipole interac-

tion, and the doubly-indexed Jαβ(∆R) is the dipole-dipole interaction. Moreover,

∆R ≡ R−R′ and any Coulomb coupling (from monopole-monopole to dipole-dipole

interaction) is set to zero for ∆R = 0.

Eq. 10 is easily transformed into reciprocal space, as only bilinear coupling occurs. To

do so, one needs to replace sums over R with sums over k and follow the known rules for

Fourier transforms, for instance, the atomic hardness term becomes
∑

k
κQ̃(k)Q̃∗(k)/2.

See also Sec. 3.3, where more details on the dipole-dipole interactions in real and reciprocal

space are stated.

The solutions q̃(k,∆r) minimizing V must satisfy ∂V/∂q̃(k,∆R) = 0, which reads
{
κ+ J̃(k)

}
kα∆RαQ̃(k) + κs(∆R)q̃(k,∆R) = Ẽeff

α (k)∆Rα (11)

with

Ẽeff
α (k) = Ẽext

α (k)− kαJ̃β(∆k)µ̃β(k). (12)
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Figure 1. (a) Minimum eigenvalues of the dipole coupling matrix J̃αβ(k) for selected paths in the first Brillouin

zone of the simple cubic lattice. (b) The coupling of dipoles oriented parallel to the given k vector as a function

of the wavenumber along selected paths. (c) Fourier transform of the Coulomb interaction J̃C(ak) for the simple

cubic lattice.

In reciprocal space, the minimization condition ∂V/∂µi(R) = 0 becomes
{
δαβ
γ

+ J̃αβ(k)

}
µ̃β(k) = Ẽext

α (k)− J̃α(k)Q̃(k). (13)

From the set of coupled Eqs. 11 and 13, one can deduce the dielectric response to an

external field. We will discuss these solutions in a separate paper. In this contribution,

for reasons of simplicity, we focus on the limit in which the coupling between monopoles

and dipoles can be neglected. This allows one to work out the differences between the

dielectric response functions that are due to either pure dipole or pure bond polarization.

3.1 Pure Dipole Polarizability

We start our analysis of the dielectric response by neglecting charge transfer. For reasons

of simplicity, we consider a sinusoidal electrostatic field that is aligned parallel to the z-

axis of our simple cubic solid, i.e., Eext(r) = E3e3 exp(ik3z). To this end, we need

expressions for the J̃αβ(k3e3) elements, see Sec. 3.3. The off-diagonal elements must be

zero (for k parallel to z) for reasons of symmetry. Numerically, we find for unscreened

dipole-dipole interactions that the diagonal elements can be represented quite accurately

via

J̃11(k3e3) = J̃22(k3e3) ≈
δk30 − 1

3ε0a3
{
1 + 0.156(5) sin2(ak3/2)

}
(14)

J̃33(k3e3) = −2J̃11(k3e3), (15)

which includes the discontinuous drop from a finite value at k3 = 0+ to zero at k = 0. It

is furthermore well known21 that the dispersion of the J̃αβ(k) depends on k. This depen-

dence is sketched along some lines in the first Brillouin zone in Fig. 1(b). One can see that

the corrections to the continuum limit depend not only on the magnitude of k but also on

its orientation.

We start our discussion with the analysis of the split charges exchanged in a direction

normal to the external field, i.e., in x-direction. According to Eq. 9
{
1

γ
+ J̃11(k3e3)

}
µ̃1(k3e3) = 0, (16)
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using Eq. 14 for J̃11(k3e3), one can see that the prefactor on the l.h.s. of the equation can

become zero at a finite density ρ, which is defined as ρ = 1/a3. This means that the system

can acquire a finite polarization without energy penalty, which in turn implies a polarization

catastrophe. For small but non-zero k3, this happens at the same density ρ = 3ε0/γ at

which the Clausius-Mossotti (CM) relation for dipoles (see Eq. 23 for k3 → 0) indicates a

diverging dielectric constant, namely for γρ = 3ε0.

The discrete simple cubic solid becomes unstable at an even smaller density, e.g., for

dipoles associated with the wavevector k = π(0, 0, 1)/a and at even smaller densities for

k = π(1, 1, 0), as one can see from Fig. 1a. Specifically, dipoles with the wavevector

(π/a)(1, 1, 0) already become unstable at a density of ρ = ε0/0.4259(3)γ rather than at

3ε0/γ as in CM.

We next analyze the split-charge response parallel to the z axis. Deriving the regular

CM relation from the present treatment is not easily possible. The reason is that the sum

over dipoles is only conditionally convergent – hence the discontinuity of the J̃αβ(k) at

the Γ point. Due to the conditional convergence, the shape of the material matters when

determining its dielectric response. For the regular capacitance geometry, the static di-

electric constant consistent with CM relation requires summing up planes of interacting

dipoles, where each plane is normal to the the z axis22. Here, we proceed using a different

approach, previously pursued to derive the (macroscopic) dielectric response function23.

What we seek is a relation between the polarization P ≡ 〈µα〉eα/a3 and the coarse-

grained total electrostatic field Etot through the equation

1

a3
µ̃α(k) = ε0 {ε̃αβ(k)− δαβ} Ẽtot

β (k), (17)

where ε̃αβ(k) is the dielectric tensor. So far, we only have a relation between the dipoles

and the electrostatic field due to external charges, i.e., for the z-component

{
1

γ
+ J̃33(k3e3)

}
µ̃3(k3e3) = Ẽext

3 (k3e3). (18)

The total field is the superposition of a slowly varying field due to external charges and a

rapidly varying field produced by the dipoles. The latter consists of two contributions. One

is the field coming from “outside” the dipoles, i.e., the one we used to sum up the dipole-

dipole interactions. The other contribution stems from the “internal” field within the point

dipole23. It can be represented as a δ-function if the dipole is located at the origin, see

Sec. 3.3:

Eint
α (r) = −µα

δ(r)

3ε0
. (19)

At a given lattice point, we define the coarse-grained field according to

Etot
α (R) = Eext

α (R) +
1

a3

∫

VE(R)

d3r

{
Edip

α (r)− µα(R)

3ε0

}
, (20)

where VE(R) is a cubic elementary cell of size a3 with its centre of mass located at R.

With this choice, the dipole field from the dipole contained in VE(R) does not contribute

to the coarse-grained field. To leading order, we approximate the value of Edip
α (r) within

178



VE(R) through Edip
α (R) produced by dipoles from outside of VE(R). This makes the

J̃33(k3e3) term on the r.h.s. of Eq. 18 disappear and thus
{
1

γ
− 1

3ε0a3

}
µ̃3(k3e3) ≈ Ẽtot

3 (k3e3). (21)

At this level of approximation, i.e., for 〈Edip
α (r)〉VE(R) ≈ Edip

α (R), the response function

is dispersion-free and moreover continuous at the Γ point. However, each mode becomes

unstable at the same value of k3. This contradicts our previous result (exact for point

dipoles) for the polarization catastrophe in x direction, which – for simple cubic – is sym-

metry related to that in z. The problem can be fixed by re expressing Eq. 21 as

ε0a
3

{
1

γ
− δk30

3ε0a3
− J33(k3e3)

2

}
µ̃3(k3e3)

a3
= ε0Ẽ

tot
3 (k3e3), (22)

where we have introduced some factors to simplify the comparison to Eq. 17. Such a

comparison yields

ε̃33(k3e3)− 1 =
γ/ε0a

3

1− γδk30/3ε0a
3 − γJ̃33(k3e3)/2

=
γ/ε0a

3

1− γ/3ε0a3
{
1 + 0.156(5) sin2(ak3/2)

} (23)

The last two relations state that the dielectric tensor element J̃33(k3e3) is continuous at the

Γ point. Furthermore, Eq. 23 is equivalent to the CM relation at k3 = 0 and k3 → 0.

The treatment parallel to other (symmetry) directions is similar to the one presented

so far. However, it becomes more complicated when k does not lie on a symmetry line,

because the eigenvectors of the coupling matrix are no longer purely parallel or orthogonal

to k. This means that the polarization induced in the crystal is no longer parallel to the

(static) electrostatic field induced by the external charge distribution. Thus, the dielectric

response functions quickly deviates from being isotropic with increasing wavenumber.

3.2 Pure Charge Transfer Polarizability

As argued before, one of the promising properties of the SQE model is that one can define

non-local charge transfer resulting in non-local response functions. However, there are

quite a few differences between point-dipole polarizability and split-charge polarizability

at a level where we only allow for charge transfer between adjacent atoms on the simple

cubic lattice.

To keep the formalism transparent, we will first restrict split charges to nearest neigh-

bours. b In analogy to our previous treatment20, we write nearest-neighbour split charges

as a vector qα(R), where q1(R+ ae1/2) is the split charge donated from the atom located

at R to the one at R+ ae1. This allows one to rewrite Eq. 9 as

Q̃(k) = −iakαq̃α(k). (24)

bWhen describing non-local charge transfer on the continuum scale through Eq. 9, one can proceed as done in the

current text. One only needs to divide Eq. 11 by κs(∆R), multiply the equation with the wavenumber and sum

it over all ∆R. This way, one obtains an equation for Q̃(k) with effective values for the split-charge hardness

and the Coulomb interaction.
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Assuming the same sinusoidal electrostatic field parallel to the z axis as in the previous

section and no point dipoles on atoms, Eq. 11 can be written as
[{
κ+ J̃(k3e3)

}
(ak3)

2 + κs

]
q̃3(k3e3) = aẼext

3 (ke3). (25)

To derive the expression for the dielectric permittivity, we proceed similarly as in the pre-

vious section, rather than as in the original literature20. First we identify aq3(R) as the

dipole per volume VE = a3 and thus P3(R) = q3(R)/a2 is the local polarization. Next,

we convert from an external electrostatic field to a total, coarse-grained field on the r.h.s.

of the equation by eliminating the Coulomb interaction on its l.h.s. The difference to the

previous section is that we do not need to take care of internal dipole fields, because the

Coulomb interactions are solely related to point charges. Thus,

aε0
{
κ(ak3)

2 + κs
} q̃(k3e3)

a2
= ε0Ẽ

tot
3 (ke3). (26)

Comparison with Eq. 17 yields

ε̃33(k3e3)− 1 =
1

ε0a{κs + κ(ak3)2}
, (27)

which is equivalent to Eq. (27) in Ref. 16 but contains, in addition, a dispersion correction

due to atomic hardness. Here, we note that we used simple finite-difference approximations

to deduce the charges from the split-charge field. This is why ε̃33(k) does not turn out

periodic in the Brillouin zone. The problem can be easily fixed without changing the

leading-order behaviour of the dielectric susceptibility by replacing Eq. 27 with

ε̃33(k3e3)− 1 =
1

ε0a{κs + 4κ sin2(ak3/2)}
, (28)

which is equivalent to replacing Eq. 24 with the accurate relation Q̃ =∑
∆R

{exp(−ik ·∆R)− 1} q̃(k,∆R).
Formally, Eq. 28 expresses a similar functional dependence of ε̃33(k3e3) on k3 as that

derived for pure dipole polarization, see Eq. 23. However, there are differences between

them in practice. First, the leading continuum corrections for small but finite k are isotropic

for the SQE model but not for the point-dipole model. Second, the prefactor to the correc-

tions is small for dipoles, i.e., of order 0.1. Conversely, the ratio κ/κs tends to be of order

unity or much greater. This is because κse
2 can be associated with the band gap of solids16

(in fact, κs is an upper bound for the band gap), so that κs (for true chemical bonds) can

be anything between zero and values a few times the atomic hardness. Next, the dielectric

response in the SQE formalism does not automatically diverge at high density for fixed

dipole or bond polarizability. The reason is that the total Hessian can be made positive def-

inite through the choice of large atomic hardness. This is different from the AACT model,

which necessitates small bond polarizability to keep the Hessian positive definite.

Fig. 2 demonstrates that the dielectric permittivity, εr = ε̃33(0), is indeed independent

of the atomic hardness. Moreover, one recognize that the dielectric response does not di-

verge even if κs is very small. For the smallest value of the bond hardness (κs = 1/4ε0a),

the point-dipole model with equivalent local polarization (γ = a2/κs) would have been al-

ready beyond the polarization catastrophe, i.e., it would have produced a negative dielectric

constant of εr = 4/(1− 4/3) = −12.
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Figure 2. Dielectric permittivity for different choices of κ and κs. The numerical results were obtained in a

regular capacitor geometry, in which Nz = 100 layers containing 10× 10 atoms were placed into a simulation

cell. Periodic boundary conditions were applied in all three spatial dimensions, however, in the direction of the

electrostatic field, a gap was introduced. The dielectric permittivity was obtained by measuring the coarse-grained

total electrostatic field within and outside the material. Adapted from Ref. 16.

The reason why κs can be made small even at large density is that the atomic hardness

impedes large local dipole gradients. Thus, the atomic hardness must introduce some

smearing of the response function. To elucidate this claim, we analyze the split-charge

response in a capacitor geometry. Thus, we consider an external electrostatic potential that

has a constant slope in a periodically repeated cell Φ(z) = E3z but goes back to zero when

the periodic image is repeated. The required non-zero Fourier coefficients for the resulting

electrostatic field read16

Ẽ3(k3e3) = −2E3 for k3 = 2πn/L, n ∈ N. (29)

The associated split charge response is

q̃(k3) ≈
−2E0{

κ+ J̃(k3e3)
}
(ak3)2 + κs

, (30)

where a reasonable approximation to J̃(k) was found to be20

J̃(k) =
1− ν(ak)2

ε0a(ak)2
. (31)

A value of ν = 0.22578 expresses the (isotropic) leading-order discretization corrections

for the simple cubic lattice, see Fig. 1. Inserting Eq. 31 into Eq. 30 can be written as

follows

q̃s(k3) =
−2E0

κ′(ak)2 + κ′s
(32)

with κ′ = κ − ν/ε0a and κ′s = κs + 1/ε0a. When solving the response of the dielectric

medium, i.e., with the help of the residue theorem, it becomes clear that the roots of the
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Figure 3. Charge density of a simple cubic SQE model in a constant external electrostatic field as a function

of the coordinate z normal to the surface. The bond stiffness varies from metallic to extremely dielectric. The

atomic hardness was adjusted such that the penetration depth as defined in Eq. 33 remained constant. The shaded

area can be interpreted as total polarization charge. From Ref. 16.

denominator of Eq. 32 have the meaning of an inverse (exponential) decay length δ−1.

This can be solved to yield

δ = a

√
ε0aκ− ν

1 + ε0aκs
. (33)

Thus, the split charge field decays with q(z) ∝ exp(−|z− z0|/δ) from the surface located

at z0. The surface polarization charge must obey the same exponential law, because it is

proportional to the derivative of q(z). Fig. 3 demonstrates that the expected behaviour is

borne out in numerical simulations. Their set-up is described in the caption of Fig. 2.

It is instructive to analyze the properties in the limits where either the bond hardness κs
disappears (as in conventional QE methods) or the atomic hardness κ (as in AACT). First,

for κs = 0 the dielectric constant diverges for small wavevectors according to Eq. 27. This

is the behaviour of an ideal metal. This result implies that electric field lines are perpen-

dicular to the surface of material modelled within the QE approach. (This is observed in

simulations, which shall not be shown here.) Second, for κ = 0, the dielectric constant is

finite. However, a problem that arises is that the Hessian must be positive definite. The

smallest value that J̃(k) takes for unscreened Coulomb interactions on the simple cubic

lattice is −(3π2)M/4πε0a, where M = 1.748 is the Madelung constant of the rock salt

lattice. Thus, κs must exceed the largest negative eigenvalue of the J̃αβ(k) matrix. This is

found at k = (π/a)(1, 1, 1) and the resulting limitation for the the dielectric permittivity

is εAACT
r − 1 < 1/1.748, at least for unscreened Coulomb potentials. This is less than

the corresponding value of any condensed matter material. Very small values observed in

reality are, for example εr & 2 for Teflon or polyethylene. These values are similar to

ε∞r (NaCl) = 2.56.

182



3.3 Dipole-Dipole Interactions in Real and Reciprocal Space

The field of a dipole µ centred at the origin can be represented according to

E(r) =
1

4πǫ0
∇
(
µ · ∇1

r

)

=
1

4πǫ0

(
3(µ · r)r− µr2

r5

)
− µ

3ǫ
δ(r) (34)

Thus, the potential energy V gained when a second dipole is placed at r 6= 0 reads in tensor

notation

V = Jαβ(r)µ1αµ2β (35)

with

Jαβ(r) =
−1

4πǫ0

3rαrβ − r2δαβ
r5

. (36)

If dipoles are placed onto a Bravais lattice, such as the simple cubic lattice, it is readily

shown – using the properties of the Fourier transform – that the net potential energy

V =
1

2

∑

i,j 6=i

Jαβ(Ri −Rj)µα(Ri)µβ(Rj) (37)

can be expressed in reciprocal space as

V =
1

2

∑

k

J̃αβ(k)µ̃α(k)µ̃
∗
β(k), (38)

where k is a reciprocal lattice vector. Moreover

J̃αβ(k) =
∑

R 6=0

−1

4πǫ0

3RαRβ −R2δαβ
R5

exp(−ik ·R), (39)

where the summation runs over all lattice vectors R.

Similar comments apply to the point-point and point-dipole interactions.

4 Further Properties of Charge Equilibration Models

Most charge-transfer studies do not focus on periodic systems but are predominantly con-

cerned with molecules. In that context, deficiencies of various models were noted before

the analysis presented in the previous section had been conducted. Here, we summarize

some of the results on molecular systems.

One of the first problems noted with regular QE is that it does not obey the neutral

dissociation limit24, as can be seen from Eq. 4. The original proposition to fix this problem

was to screen chemical potential differences as a function of distance24. Unfortunately,

this fix is hardly justified in reality and its implementation actually leads to artifacts, e.g.,

batteries could not work if the chemical potentials between atoms were screened as a func-

tion of distance. Screening is only meaningful for electrostatic field lines when there is a

medium whose influence is not considered explicitly. But even if field lines were screened,
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Figure 4. Polarizability of (a) QE and (b) SQE as a function of the polarizability deduced from quantum me-

chanical calculations on a variety of molecules. Green, red, and blue data points reflect the smallest, the medium,

and the largest eigenvalue of the polarizability tensor for different molecules (including varying conformations).

From Ref. 17.

this does not mean that energy differences would be completely damped out. The line in-

tegral from one point to another would still remain finite owing to near-field contributions.

Moreover, how can screening be justified for a dimer placed in vacuum?

Approaches in which the concept of bond hardness is introduced can be easily param-

eterized to yield dissociation limits in which the atoms are neutral12, 25 – or have non-zero

integer charge16, 26. All that needs to be done is to make the bond hardness diverge when

two atoms or two molecular fragments are moved to large separation. In fact, a quantita-

tive analysis revealed that making the bond stiffness between two atoms simply a function

of the distances between the two atoms (without including an environment dependence)

already lead to reasonably accurate atomic charges of the reactants (initially and near the

transition state) and of the products of the bond breaking25.

It had also been observed that the polarizability of polymers γ(N) (e.g. simple alkanes)

as treated with QE growths with the third power of the degree of polymerization N in the

limit of large N . The correct scaling is linear27, 17. Some representative results are shown

in Fig. 4 and compared to quantum chemical calculations. One can see that the QE model

systematically overestimates polarizabilities while SQE shows the correct trend. The SQE

data only tends to lie slightly below the quantum chemical results, which is easily explained

because the employed SQE model did not allow for atom polarizability. Lastly, QE models

ignoring the bond hardness term produce alcohols whose dipole moment increases as the

fatty tail of the molecule is made longer, while the dipole quickly levels off at a realistic

value within an SQE type treatment28.

The AACT models do not suffer from the shortcomings of pure QE models. However,

they have different deficiencies. For example, they barely show any dispersion of the

alkene polarizability γ(N) at small N in contrast to the real behaviour and that exhibited

by SQE models27. This behaviour can be rationalized from the small (zero) penetration

depth δ derived for solids in the last section. Moreover, the AACT model produces negative

(chemical) hardnesses of molecules when excess charge is added to a molecule16.

In conclusion, neither pure bond nor conventional QE model produce the correct con-
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stitutive equations, while their combination in form of SQE can be parameterized to re-

produce meaningful numbers. In fact, even absolute numbers turn out reasonable12, e.g.,

atomic charges deduced from SQE were within O(10%) accuracy as compared to DFT-

based results while QE and AACT deviated by O(30%). A comprehensive comparison

between SQE and QE also found that SQE clearly outperformed the original QE in all 23

benchmark tests on a set of more than 500 organic molecules17.

The true advantage of SQE, when applied at a molecular level, might yet be a different

one: It allows one to introduce formal oxidation states and to treat meaningfully excess

integer charge in molecular systems16, 26. This makes it possible to reproduce the generic

features of contact electrification as well as the discharge of batteries, which will be shown

in future work.

5 Concluding Remarks

The main part of this contribution is the analysis of the dielectric permittivity as pro-

duced by the regular split-charge equilibration model and a model in which point dipoles

are placed on discrete lattice sites. While both methods have similar low-density, long-

wavelength response functions, there are quite a few differences between them. First, the

SQE model is based on summing up (eventually screened) Coulomb interactions between

point charges while the point dipole models are based on dipole-dipole interactions. Since

the resulting sums are conditionally convergent in both cases, neither one can be cut off

at a finite distance without uncontrollable errors. The advantage of the SQE model is that

fewer floating-point operations are required to evaluate pair interactions, since the cou-

pling of point charges is described by a scalar rather than by a tensor of rank two as for

dipoles. Moreover, fast summation methods for Coulomb interactions are readily avail-

able. Second, the SQE model produces response functions on the (easy-to-code) simple

cubic lattice that are isotropic not only in the continuum limit but also with respect to their

leading-order continuum corrections, which are of order k2. Point dipole models on the

simple cubic lattice have direction-dependent k2 interactions.

A potentially useful advantage of SQE over point-dipole models is that the SQE model

can reflect non-local dielectric response functions. This can be done, in principle, by intro-

ducing non-local charge-transfer variables. This ability makes the SQE model a promising

candidate as a coarse-grained model for water, which is known to have a strong wave-

length dependent dielectric constant29. Another advantage of the SQE model is that it is

isomorphic to elastic models. The split charges can be treated in analogy to (elastic) dis-

placements in the solid. Thus, coarse-graining of the region and adaptive mashing of SQE

can be done in analogy to elastic models.
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The relationship among macroscopic flow behaviour and microscopic properties of wormlike

micellar solution confined to a channel is analyzed with multiscale simulation that is composed

of the fluid dynamics simulation and the coarse-grained micellar dynamics simulation describ-

ing the microscopic states of micelles. The flow profile of the wormlike micellar solution has

reflected elasticity coming from the orientation of fully grown wormlike micelles.

1 Introduction

Macroscopic dynamics of soft matter (e.g. polymer melts, colloidal suspensions, liquid

crystals, micellar solutions and so on) highly depends on each microscopic states in which

a mesoscopic scale structure is formed. The relaxation time of the mesoscopic structure is

very long and comparable to the time scale of the macroscopic dynamics even if the size of

the mesoscopic structure is much smaller than the length scale of the macroscopic dynam-

ics. When we consider the macroscopic dynamics of soft matter, we have simultaneously

to take into account its microscopic dynamics.

Recently, we have developed a multiscale simulation method1–4 that is composed of

macroscopic fluid dynamics simulation and microscopic coarse-grained polymer dynamics

simulation to investigate a polymer melt flow. And then, we have applied the multiscale

simulation to wormlike micellar solution5.

In the previous work5, we have investigated the flow behaviour of wormlike micel-

lar solution confined to a channel and found that the wormlike micellar solution shows

the elastic flow behaviour. We have predicted that this elasticity is coming from the gel

state of wormlike micelles without any evidence. In this work, we investigate microscopic

details of wormlike micelles, such as orientation order, percolation, and topological infor-

mation. We clarify the relationship among the macroscopic dynamics and the microscopic

properties in the wormlike micellar solution.

2 Multiscale Simulation for Wormlike Micellar Solution

Surfactants consist of a hydrophilic head and a hydrophobic tail. In a water, surfactants

form spherical micelles where the hydrophobic tails aggregate in the micelles and the hy-

drophilic heads are in the surrounding water. When counter ions exist in the water, the

spherical micelles aggregate and form wormlike micelles. Because there is a quite large

gap between the sizes of the surfactants and the wormlike micelles, we need a course-

graining method for describing this system. One of the authors6 has developed a new

course-graining technique that is taking account of the elastic energy of the membrane
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made of the surfactants. This course-graining model for micelles reproduces the breakup

and/or coalescence of the wormlike micelles without directly treating the surfactants. Us-

ing this model as a microscopic simulator in our multiscale simulation, we can simulate

the macroscopic flow behaviour of the micellar solution.

2.1 Macroscopic Part

Macroscopic flow behaviour of micellar solution is described by the Cauchy momentum

equation:

Dv(r)

Dt
=

1

ρ
∇ · ↔σ(r)− 1

ρ
∇p(r), (1)

where v(r),
↔
σ(r) and p(r) are the velocity, the stress tensor, and the hydrostatic pressure

at the position r, respectively, and ρ is the density assumed to be constant. The stress

tensor is obtained from the microscopic structure of micelles. A flow in an infinitely long

channel with two parallel infinite flat walls has a translational symmetry under parallel

displacement along the flat walls, and then, Eq. 1 reduces to the one-dimensional equation:

∂tvx(y) = ∂yσyx(y)/ρ+ ax, (2)

where ax = −∂xp/ρ is the acceleration due to the pressure gradient between up- and

down-streams. x-axis is the flow direction and y-axis is perpendicular to the walls. In the

one-dimensional flow, the velocity gradient is only a shear component γ̇ = ∂yvx. Here we

define zero-shear viscosity as µ = limγ̇→0 σyx/γ̇. Comparing the orders of magnitude in

both sides of Eq. 2 in the limit of zero shear rate, we obtain the Stokes number St defined

by St = ρL2/µT, where L and T is the characteristic length and time, respectively, of the

macroscopic flow.

2.2 Microscopic Part

The stress tensor
↔
σ depends on local microscopic states that are influenced by the flow

history (the experienced strain-rate) of a fluid particle. To describe the local microscopic

states in a fluid particle, we perform microscopic simulation, “the particle-field hybrid

model”6. This model consists of three parts; discrete particle dynamics, continuous fluid

dynamics and reaction mechanism (elementary processes). In the wormlike micellar solu-

tion, hydrodynamic interaction among micelles is screened out because the concentration

of micelles is high. Therefore, we now do not consider the continuous fluid dynamics at

the microscopic level, just assume a linear shear flow field γ̇ obtained at the macroscopic

level.

A particle, which represents a spherical micelle, obeys the following overdamped

Langevin dynamics:

d

dt
r̃i(t) = γ̇ỹiex − 1

ζ

∂H({r̃j(t)})
∂r̃i(t)

+ ξi(t), (3)

where r̃i(t) ([Lm]) is the position of the i-th particle (i = 1, · · · , Ns) in the microscopic

coordinate system (Unit length of r̃i is Lm.), ζ is the friction coefficient, H({r̃i(t)}) is the

Hamiltonian in the microscopic system, ξi(t) is white noise: 〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 =
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2ζ−1kBTδijδ(t− t′)
↔
1 , where kB is the Boltzmann constant and T is the absolute temper-

ature.

When spherical micelles aggregate, the spherical shape of micelles turns into an el-

lipsoidal shape, a wormlike one, and a branched one, and so on. In the Hamiltonian

H({r̃i(t)}) in Eq. 3, the following Helfrich’s bending energy coming from the shapes

of micelles is taken into account:

HHelfrich =
∑

i

∫
dai[2κ(cm(ai)− c0)

2 + κ̄cG(ai)], (4)

where cm(ai) and cG(ai) are the mean curvature and the Gaussian one, respectively. (κ
and κ̄ are elastic constants.) Restricting the shapes of curvature to sphere, half sphere,

cylinder, tripod and tetrapod according to the connectivity of micelles (surface area ai is

assigned on the i-th particle r̃i), we can approximately evaluate the bending energy at r̃i
(the integral in Eq. 4)6.

The reaction mechanism describes the association and dissociation process of mi-

celles. The dominant processes are the following four: (a) scission, (b) fusion, (c) end

interchange, (d) bond interchange. The Gaussian curvature energy (the second term in

Eq. 4) HG = 2πχκ̄ (χ is the Euler characteristic) is calculated from these elementary

processes. The reaction rate is assumed to be proportional to the transition probability

e−β∆E/(1 + e−β∆E) where ∆E is the energy difference before and after reaction. The

association and/or dissociation processes are determined with the Monte Carlo method.

The stress tensor of micelles
↔
σm in the microscopic system is composed of the virial

stresses coming from two and three body forces:

↔
σm = − 1

V

Ns∑

i=1

Ns∑

j=1

j 6=i

r̃iF
(2)
ij − 1

V

Ns∑

i=1

Ns∑

j=1

j 6=i

Ns∑

k=1

k 6=i

r̃iF
(3)
ijk . (5)

The units of time, length and energy in the microscopic system are Tm = ρa3/ζ, Lm = a,

and Em = ζ2/ρa, respectively, where a is the size of spherical micelle. The boundary

conditions are periodic in x- and z-direction while Lees-Edwards boundary condition is

assumed in y-direction.

2.3 Macro-Micro Conversion and Model Parameters

The macroscopic simulation and the microscopic simulation connect with each other

through the shear rate γ̇ and the shear stress σyx. Since the units of time and length are

different between the macroscopic and microscopic simulations, we need conversion rules

for the shear rate and the shear stress. When one macroscopic time step ∆t corresponds to

n microscopic time steps ∆tm, ∆t[T] = Cn∆tm[Tm], where C = ∆t/(n∆tm)[T/Tm] is

a conversion constant. Then,

γ̇m = Cγ̇, (6)

where γ̇m is the shear rate with the inverse of the microscopic time unit. Taking account

of the viscosity of the solvent in the microscopic system, the relationship between the
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macroscopic shear stress σyx and the microscopic shear stress σm
yx is

1

µ
∂yσyx = (1− β)

1

Cη0
∂yσ

m
yx + β∂2yvx, (7)

where η0 = limγ̇m→0 η(γ̇m), η(γ̇m) = limt→∞ σm
yx(t)/γ̇m, β is a ratio of a purely vis-

cous component in the shear stress in the microscopic system3. Eq. 7 is not sufficient for

describing the macroscopic stress because the number of degrees of freedom in the micro-

scopic system is too small compared to that in the macroscopic fluid element. To increase

the number of degrees of freedom in a fluid element, we prepare Nb microscopic simula-

tion boxes with different random seeds for describing one fluid element. Averaging over

Nb simulation boxes, the thermal noise decreases according to 1/
√
Nb. We replace σm

yx

with 〈σm
yx〉 = 1

Nb

∑Nb σm
yx in Eq. 7. Because of this ensemble average method, we can

regard the microscopic simulator as a macroscopic constitutive equation in the multiscale

simulation. Because each microscopic simulation box is independent of the other simu-

lation boxes in a time interval ∆t, we utilize a parallel computer based on a distributed

memory architecture. For communication among processors on the parallel computer, we

implement Message Passing Interface.

Parameters in the multiscale simulation are summarized in Tab. 1.

Variable Value Unit

(macroscopic part)

L 1.0 (Width of channel)

T 1.0 [ρL2/µSt]
St 1.0 [ρL2/µT] = [ ]
∆t 0.0001 [T]
∆y 0.05 [L]
ax 0.1 [L/T2]

(macro-micro conversion part)

β 0.2 [ ]
C 0.1 [T/Tm]
Nb 100 [ ]

Variable Value Unit

(microscopic part)

Tm 1.0 [ρa3/ζ]
Lm 1.0 [a]
Em 1.0 [ζ2/ρa]
∆tm 0.001 [Tm]
a 1.0 [Lm]

3
√
V 32a [Lm]
Ns 3000 [ ]
κ 0.5 [Em]
κ -0.1 [Em]
c0 0.3 [1/Lm]
η0 0.45 [EmTm/Lm

3]

Table 1. Set of parameters in the multiscale simulation.

3 Simulation Results

We investigate Startup flow of micellar solution confined to a channel. Initial condition

is that fluid state is stationary and the spherical micelles are randomly distributed in each

microscopic simulation box. Namely, the initial state of this solution is sol. As soon as

the micellar solution starts to flow, the spherical micelles aggregates to form the wormlike

micelles. The initial sol state turns into the gel state within 10[Tm] under the parameter

sets in Tab. 1. Space-time plots of macroscopic and microscopic information of micellar
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Figure 1. (Colour online) Space-time plots of the micellar solution obtained with the multiscale simulation. The

figures show (a) velocity profile (vx[L/T]), (b) nematic order parameter (S), (c) number of percolated particles

(np/Np), and (d) Euler characteristic (χ/Np) within a time interval from 0 [Tm] to 150 [Tm].

solution are summarized in Fig. 1; (a) Velocity field vx[L/T], (b) Nematic order parameter

S = 〈 32 (u · n)2 − 1
2 〉 (u is a normalized bond vector connecting between neighbouring

particles and n is a local director), (c) The number of percolated particles np normalized

by Ns, and (d)Euler characteristic χ = 2(nc − nh) normalized by Ns (nc is the number of

clusters and nh is the number of holes in a cluster). Figs. 1 (c) and (d) characterize the fluid

state. After t = 10[Tm](= tp), a cluster in a fluid element percolates between the opposite

boundaries in a microscopic simulation box and the rest of the clusters immediately belong

to the percolated clusters, as shown in Fig. 1 (c). Fig. 1 (d) shows a steady state after tp,

corresponding to Fig. 1 (c). Because Euler characteristic is negative after tp, the clusters

have many holes as reported by one of authors6. After tp, the magnitude of vx decreases

with increasing nematic order parameter S from the neighbourhoods of the walls. This

nematic order parameter reflects local strain which results in a stress that restores to an

isotropic state.
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4 Concluding Remarks

We have investigated the start-up flow of micellar solution confined to a channel with

the multiscale simulation. The multiscale simulation has revealed that the elastic flow

behaviour of micellar solution is caused by the gel states and the orientation of the worm-

like micelles. The multiscale simulation enables us to investigate the relationship among

macroscopic states and microscopic states.

We have assumed the translational symmetry in an infinitely long channel. However,

this assumption breaks at the microscopic level because microscopic states are different in

each fluid element and do not have the translational symmetry. To consider the microscopic

states precisely, we need to treat the Cauchy momentum equation 1 with a Lagrangian

method1. We will consider a more general situation using a Lagrangian method in the near

future.

Acknowledgements

We would like to thank Professor Ryoichi Yamamoto and Professor Takashi Taniguchi

for providing their computer facilities. Some of the calculations in our works were done

using the computer facilities of the Institute of Solid State Physics (ISSP) Super Computer

Center (University of Tokyo). This work was supported by JSPS KAKENHI Grant Number

23340120 and 24350114.

References

1. T. Murashima and T. Taniguchi, Multiscale Lagrangian fluid dynamics simulation for

polymeric fluid, J. Polym. Sci. B 48, 886–893, 2010.

2. T. Murashima and T. Taniguchi, Multiscale simulation of history-dependent flow in

entangled polymer melts, EPL 96, 18002, 2011.

3. T. Murashima and T. Taniguchi, Flow-History-Dependent Behavior of Entangled

Polymer Melt Flow Analyzed by Multiscale Simulation, J. Phys. Soc. Jpn. 81, SA013,

2012.

4. T. Murashima, S. Yasuda, T. Taniguchi,and R. Yamamoto, Multiscale Modeling for

Polymeric Flow: Particle-Fluid Bridging Scale Methods, J. Phys. Soc. Jpn. 82,

012001, 2013.

5. T. Murashima, M. Toda, and T. Kawakatsu, Multiscale Simulation for Soft Matters:

Application to Wormlike Micellar Solution, (submitted to AIP Conference Proceed-

ings).

6. M. Toda, Dynamics of Wormlike Micellar Systems, (Ph. D. Thesis, Tohoku University,

2012); M. Toda and T. Kawakatsu, Structure and Rheology of Wormlike Micellar

Systems, (submitted to AIP Conference Proceedings).

192



A Hybrid Particle-Continuum Method in

Soft Condensed Matter Simulations

Shuanhu Qi, Hans Behringer, and Friederike Schmid

Institut für Physik, Johannes Gutenberg-Universität Mainz,

Staudingerweg 9, D-55099 Mainz, Germany

E-mail: {qish, behringh, friederike.schmid}@uni-mainz.de

A multiscale hybrid model combining a particle-description method and a continuum-field-

description method is developed for simulations in soft condensed matter systems. The hybrid

model treats part of the system as particles, and the other part as continuum fields, and particles

in different resolution regions can switch and migrate on the fly. The switch and migration

of particles from different resolution regions are controlled by an inhomogeneous ”chemical

potential”. The hybrid model is tested for a polymer solution with implicit solvent with the

comparison to that of the pure particle representation method, and good agreements are reached.

1 Introduction

Hybrid simulation schemes are rapidly developing in the community of multiscale mod-

elling1–3. A hybrid description means that the system under consideration is partitioned

into a few regions, each of which is represented by a model depending on its resolution

level, and the information from different regions can be exchanged on the fly4. These di-

verse resolution methods are chosen according to the problems that one is interested in, and

if the proper ones are set up investigating the properties of the system, not only the intrinsic

physics can be kept, but the time consumption of the simulation can be decreased. As an

example, we consider a polymer solution confined in a large box. This solution shows very

sharp interfaces near the boundaries and wide bulk region around the centre of the box.

The configurations of polymers in the interface may be interesting, so a detailed particle

representation method is required in the description, while in the large bulk region, only the

knowledge of density profile is enough, so the coarser continuous field representation in

such region is sufficient. The hybrid particle-continuum method is quite suitable for such

a system, and similar systems are ubiquitous in soft condensed matter science. Further,

many successful and powerful strategies are widely used in dealing with the problems in

the continuous model5, and the implementation of such strategies in the hybrid model will

make it more applicable in practice. Hence, this hybrid particle-continuum method would

be attractive.

2 Methodology

In this section, the methodology for our hybrid particle-continuum simulations is sketched.

The construction of this hybrid model proceeds mainly through two steps, in which two

crucial questions, i.e., how one extracts the coarser degrees of freedom from finer ones

and how one couples these two types of degrees of freedom, are answered. These two

questions are always encountered in multiscale modelling, and the ways to solve them
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not only characterise the hybrid method but also determine the extent to which the model

reflects reality.

In order to show the construction more clearly and make the notation simple, we come

back to the polymer solution mentioned in the introduction. By several steps which will be

discussed in more detail elsewhere, we can rewrite the partition function exactly as

Z =
∑

{τα}

∫
DωfDρf

∫ ∏

{α,j}
dRα,j exp

{
−Heff +

∑

{α}
[∆µ(Rα,0)τα − ln(e∆µ + 1)]

}
,

(1)

where the τα = 0, 1 are auxiliary variables, the ωf and ρf are auxiliary fluctuating fields,

and the integral
∏
dRα,j runs over chains with τα = 1 only (which we shall denote

‘p’-chains in the following). The effective HamiltonianHeff contains the contribution from

pure p-chains Hp, the contribution from the remaining chains (denoted ‘f’-chains), and a

coupling termHcoup = v
∫
drρ̂pρf , where ρ̂p is the density contributed from only p-chains.

The Hamiltonian for ‘f’-chains is given by Hf = v
2

∫
drρ2f −

∫
driωfρf − nf lnQf ,

where Qf is the single chain partition function in an external fluctuating field ωf , and nf
the number of f-chains. Obviously, we have described some of the chains (the ‘f’-chains)

by an equivalent fluctuating field representation. The particle description, the continuum

field description as well as the hybrid one are equivalent in describing the macroscopic

quantities by construction. However, they have different types of degrees of freedom, since

the particle-based description refers to the particle coordinates, while for the continuum-

based description refers to the fluctuating field.

The partition function Eq. 1 is the exact and complete form for the present hybrid

model, and it is also the starting point for the incorporation of various approximations in

order to make the hybrid model more practical, simple, and efficient in case of the central

physics being kept. One important approximation usually implemented is the saddle point

approximation8 to reduce the number of fluctuating fields. It can be seen from the partition

function, there are two fluctuating variables in the continuum representation part. The

saddle point approximation is used to approximately perform the integration over one field,

for example, the auxiliary potential, and in doing so the complex sampling of the potential

is also avoided. This approximation can be safely implemented in case of high f-chain

densities. Further approximations can also be performed for numerical convenience, i.e., a

variable transformation from the density to auxiliary potential to avoid a time-consuming

inverse solution in finding the auxiliary potential at a given density. Finally, the particle

coordinates and auxiliary potential are the basic degrees of freedom for the present hybrid

model.

3 Simulation Method

The Monte Carlo (MC) method9 is used to sample the polymer configurations and contin-

uum fields, and calculate statistical averages. In the MC simulation process, we performed

a few thousand MC steps to equilibrate the system and another few thousand MC steps for

the calculation of ensemble averages. During each MC step, one bead is averagely updated

once. One MC step is split into 3 substeps to update the relevant variables, and in each sub-

step Metroplis rule is used to evaluate the acceptance probability. Substep 1): update the

configurations of p-chains10 keeping all fields fixed. For the p-chains, one could perform

194



Figure 1. Snapshot of p-chains obtained by the hybrid model in different regions of the system, near the bound-

aries of z = ±Lz/2 (green), in the bulk (red), and others (blue). There are obviously very few p-chains in the

bulk region. The parameters are set µe = 3.0, µm = −4.5, and in such case the number of p-chains is about

4000 out of the total 10000.

a normal move or a bias-configuration move. Substep 2): update the auxiliary potential a

few steps, keeping the p-chain configurations fixed. In this step there are a few different

ways to generate the new potential. One is the dynamic density functional scheme, where

the fluctuation in the field is neglected; the other one could be referred to as the simple

un-biased fluctuation algorithm, meaning that the potential is updated by adding small ran-

dom numbers; for the third, one updates the potential by some field-biased method called

the field-biased fluctuation algorithm. The new potentials obtained using the dynamic den-

sity functional scheme are always accepted. Substep 3): perform the identity switch a few

times keeping the configuration and field fixed. Choose a chain at random, if it is a p-chain,

we will transform it into an f-chain, meaning that this p-chain disappears and the number

of f-chains increases by one. If an f-chain is picked up, it will be transformed to a p-chain,

i.e., one new p-chain is generated according to the Gaussian distribution function, and the

number of p-chains increase by one. A few hundred switching steps are performed in each

MC step.

4 Results and Conclusion

To test our approach, we study a system of nt = 10000 polymer chains with N = 20
beads in each chain, both in the bulk and in a confined slab geometry . The volume of the

system is set as V = Lx · Ly · Lz = 8 · 8 · 16R3
g , where Rg ≡

√
Nb2/6 is the mean
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Figure 2. Normalized total density distributions with respect to z calculated by pure particle model (MCP),

the hybrid model (PF), and the self-consistent mean field theory (SCMF). Large deviation happens near the

boundaries, since SCMF theory is not suitable modelling the real boundaries.

radius of gyration (for ideal polymers), and b is the bond length. The system is discretized

into nx · ny · nz = 16 · 16 · 32 cells. The boundary conditions along the x direction

and the y direction are always set to be periodic, so the density distributions along these

two directions are always homogeneous. In the z direction, it is chosen periodic for bulk

simulations, or impenetrable for confined slab simulations. In the pure particle model,

impenetrable means that bonds may not cross the boundaries. In the continuum field model

the impenetrable boundaries are introduced by imposing an infinite external potential at the

boundaries. In principle, one can set the chemical potential ∆µ(r) to any forms and any

values. In the present work, it is chosen

∆µ(r) =
µe + µm

2
+
µe − µm

2 tanh η
tanh

[
η cos

2π

Lz

(
z +

Lz

2

)]
(2)

where µe, µm and η are free parameters, and the former two control the magnitude and

average value of ∆µ(r), while the third controls the width of the transition region. In the

following we set µe = 3.0, µm = −4.5, and η = 11.

Fig. 1 is a snapshot of the p-chain configurations obtained by the hybrid model with

impenetrable boundary conditions in the z direction. As expected, in the high chemical

potential region µe = 3.0, most of the chains are p-chains, while in the low chemical

potential region µm = −4.0, there is only a very small number of p-chains (in red), i.e., in

the bulk region, they are all most f-chains. We emphasize again that the particle description

near the boundaries is preferred, since it allows one to model the interactions between

boundaries and chains at a microscopic level. In the middle of the system, the chains

behave like ideal chains, therefore the field description should be sufficient.

Fig. 2 shows the comparison of the total density (normalized by the average bead den-

sity) distributions obtained from the pure particle model, the hybrid model, and the SCF

method. In the hybrid method, the potential is updated by a dynamic density functional

scheme, so the field fluctuation is not taken into account. However, it can be seen that near

196



the boundaries, the curves calculated from the pure particle model and that from the hybrid

one are almost superposed. For the SCF calculation, a small deviation happens near the

boundaries, meaning that the SCF method can not capture the real boundary effect cor-

rectly. In the bulk region the densities obtained by these three methods almost agree with

each other.

In summary, the hybrid model dynamically couples the particle description method and

continuum field description method together allowing them to show their individual advan-

tages in both analytical derivation and numerical calculations. The hybrid model has the

potential to be more efficient than the pure particle model. The degrees of freedom sampled

in the particle model correspond to the total number of beads, while in the field one they

are given by the total number of grid points, so larger number of polymers will increase

the time consumption for the particle method, but not for the field one. Very large systems

with small regions calling for a particle description, while the remaining large part requir-

ing only a continuum description, will be treated more efficiently by a hybrid description.

Hence, this model is especially suitable to investigate very large systems in which there ex-

ist large regions that can be described by lower resolution models. Future studies include

the optimization of the hybrid model to make it more efficient, exploiting the applications

in other systems, as well as trying to construct a “self-determined” chemical potential.
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Recent studies have revealed the key role of natively-unfolded proteins in many important bi-

ological processes. In order to study the conformational changes of these proteins, a one-

bead-per-amino-acid (AA) coarse grained model is developed and a method is proposed to

extract the potential functions for the local interactions between beads. Experimentally ob-

tained Ramachandran data for the coil regions of proteins are converted into distributions of

pseudo-bond and pseudo-dihedral angles between neighbouring alpha-carbons in the polypep-

tide chain. These are then used to derive bending and torsion potentials, which are residue and

sequence specific.

1 Introduction

Despite the classical view that a protein can attain its biological function only upon folding

into a unique structure, there is increasing evidence that unfolded proteins play a key role in

many important biological functions1. The basic functions of this class of proteins exploit

the absence of a stable secondary structure in their polypeptide chain. An example is the

so-called Nuclear Pore Complex (NPC): a huge molecular assembly with an estimated

mass of 40–70 MDa, which provides bidirectional pathways for passive transport of small

molecules and active transport of larger proteins. The NPC is a nearly cylindrical channel

with a diameter of around 50 nm, which is composed of approximately 30 different proteins

called Nucleoporins (Nups). Although the transport process of large molecules is not well

understood, it has been shown that a subset of about 30% of the Nups containing many

phenylalanine-glycine (FG) repeats in their amino acid sequence is key. These FG-nups

are lined-up at the central channel of the NPC and are natively unfolded. Much research

is going on to unravel the role of the FG-nups, but theoretical work is strongly constrained

by the fact that Nups are large amino acids and are highly dynamic because they are not

folded.

The dynamics of large disordered proteins amplifies the limitations of atomic-level

molecular dynamics in terms of (biologically interesting) time and length scales. These

limitations have drawn researchers towards the development of coarse-grained (CG) mod-

els to reduce the degrees of freedom and, thus, to increase the spatial and temporal domains

of interest. Available CG models can be categorized into different classes according to the

level of coarse-graining, the treatment of the solvent environment, and the method used

for the force field parametrization2. Here we summarize an implicit-solvent method tai-

lored for problems involving large numbers of unfolded proteins. In this approach, amino

acids (AA) are represented by single beads with force fields that retain residue specificity

– henceforth, the name AA model.
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We first present the basics of the AA model3, including local interaction potentials that

are derived from experimental Ramachandran plots. Next, we present the long-range force

fields that describe the electrostatic and hydrophobic interactions between as well as inside

proteins4. The closing section discusses AA model predictions of the Stokes radius of

Nups, in comparison with experimental results.

2 Coarse-Grained Model and Local Interactions

The central idea of the method is to represent each amino acid with a single bead. The

coarse graining thus obtained is illustrated in Fig. 1. Since the atomic bond lengths and

Figure 1. All atom schematic of a polypeptide chain (a) and coarse-grained representation (b) of the backbone

with pseudo-bending and torsion angles. In (b) the dashed lines represent the polypeptide chain and the solid

lines are the pseudo-bonds between Cα carbons which represent the coarse-grained geometry.

bond angles vary only slightly from their average values, the pseudo-bond lengths between

subsequent Cα’s can be taken to have a fixed value of b = 0.38 nm as defined by geometry.

In the simulations this is achieved by a stiff harmonic potential Φbond = Kb(r − b)2 with

Kb = 8038 kJ · mol−1.

The pseudo-bending angle θ and pseudo-dihedral angle α along the CG chain are de-

fined between three and four consecutive Cα’s and can also be computed from the back-

bone dihedral angles (φ, ψ) (see Fig. 1a). CG bending and torsion potentials can, in prin-

ciple, be derived from atomistic simulations, but the absence of any structure in disordered

proteins makes this impractical. Instead we have proposed3 to extract them directly from

Ramachandran plots – density distributions of the backbone φ and ψ values – of proteins

by means of Boltzmann inversion. By confining attention to the coil regions, long range

hydrophobic or electrostatic interactions are negligible.

The CG bending and torsion potentials depend on three and four subsequent residues

respectively. For the total number of 20 amino acids this would require a humongous

number of different potentials. Fortunately, the Ramachandran plots for many amino acids

are very similar, and they can be classified into three types: Glycine (G), Proline (P) and

the rest of the amino acids (X). This greatly reduces the number of interaction potentials,
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but for bending it is important whether or not the next residue is P. This leads to a total

of six bending potentials and nine torsion potentials, which are shown in Figs. 2 and 3,

respectively.
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Figure 2. Bending potentials for fragments with G, P or X as central residues that (a) do not and (b) do have a

Proline (P) following them. O represents any type of amino acid, while Y is any type except P.
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Figure 3. Torsion potentials for all combinations of three-letter amino acids.
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The potentials presented above are applied to all beads in the polypeptide chain.

In addition to the long-range interactions to be discussed in the next section, beads of

different chains interact through a purely repulsive potential with a repulsive radius of

Rrep = 0.38 nm to represent excluded volume effects.

3 Long-Range Interactions

The most important non-bonded interactions among disordered proteins – namely hy-

drophobic and electrostatic interactions – are incorporated in two force fields, which are

designed to combine specificity and simplicity.

Hydrophobicity is implemented by making use of experimentally obtained hydropho-

bicity scales for all amino acids. After normalization, each amino acid bead i is attributed

a relative hydrophobic strength πi ∈ [0, 1], see Tab. 1. The interaction strength εij for each

pair (i, j) of amino acids is defined as

εij = εhp

√
(πiπj)α , (1)

where α and the strength of the most hydrophobic amino acids εhp are fit parameters.

The intensity of repulsive hydrophilic interactions is set by a parameter ε̄0. Hydropho-

bic/hydrophilic interactions are incorporated in the form of a modified Lennard-Jones po-

tential:

Φhp(r) =





ε̄0

(σ
r

)8
− εij

[
4

3

(σ
r

)6
− 1

3

]
for r ≤ σ

(ε̄0 − εij)
(σ
r

)8
for r > σ

(2)

where σ is the distance at which ε̄0 = εij .

AA A R N D C Q E G H I

πi 0.7 0 0.33 0.0005 0.68 0.64 0.0005 0.41 0.53 0.98

charge 0 1 0 -1 0 0 -1 0 0 0

AA L K M F P S T W Y V

πi 1 0.0005 0.78 1 0.65 0.45 0.51 0.96 0.82 0.94

charge 0 1 0 0 0 0 0 0 0 0

Table 1. Relative hydrophobicity and charge of all amino acids, as used in Eqs. 2–3.

The electrostatic interactions between charged amino acids is taken to be governed by

a modified Coulomb law,

Φel(r) =
qiqj

4πǫ0ǫr(r)r
e−κr , (3)

where the exponential part is included to incorporate the screening effect of the free ions

in the solution, using a Debye screening coefficient of κ = 1 nm−1. Expression 3 also

accounts for the polarity of the aqueous solvent (recall that we use an implicit solvent

model) through a distance-dependent dielectric constant of the solvent ǫr(r), given by

ǫr(r) = 1 + Ss

[
1−

(r
z

)2 e(r/z)

(e(r/z) − 1)2

]
, (4)
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such that the dielectric constant changes from 1 at very short distances (r << z = 0.25nm)

to that of the solvent, Ss = 80.

4 Application to Nucleoporins

The local interactions incorporated in the model have been validated by comparison of

the predicted Stokes radii of individual denatured proteins3. The non-bonded potentials

contain two free parameters: the exponent α in the definition 1 of εij and the hydrophilicity

ε̄0. With a view on the projected application of the CG model to the NPC, Ghavami et al.4

have fitted the parameter values by benchmarking against the Stokes radii of the most

important Nups in the NPC.

The Stokes radius of all nups in the NPC is computed from Langevin dynamics simu-

lations carried out at 300 K using Gromacs5. The time-step size is fixed at 0.02 ps and the

Langevin friction coefficient is set to 50 ps−1 which is similar to the collision frequency

of water molecules. Each Nup is simulated for 200 ns and the average Stokes radius RS is

computed from all generated conformations. A low-charge and a high-charge segment of

two Nups have been used for tuning the fit parameters. Comparison of the predicted versus

the experimental values of the Stokes radii reveals that the maximum error is no more than

24%.
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Biofilms are sessile microbial communities that arise frequently in nature, and form an in-

tegral part of our own microbiome. Modelling biofilms is challenging as it couples biology

(microbe growth and division) to chemistry (reaction, diffusion and advection of nutrients and

metabolites) to physics (biofilm elasticity in the presence of flow). Natural biofilms exhibit

chemical gradients and architectural structures on cellular length scales, thus a representative

model must treat the biofilm as particulate, while retaining a continuum description for small

dissolved molecules. Here I will present work developing a software platform coupling all of

the key features mentioned above, and highlight two early applications. (1) Modulating dental

plaque to be in its healthy state by subjecting the system to low doses of fluoride; (2) The rapid

growth of surface roughness and how it is smoothed by shear flow.

1 Introduction

Biofilms are surface-associated microbial communities encased in a polymeric mesh (EPS)

at least partly of their own production, and represent the dominate mode of existence of

bacteria in nature1. Although often commensal to human existence, they are sometimes

pathogenic or otherwise problematic, but can be difficult to treat due to their enhanced

resistance to antibiotics. Alternative treatment strategies are urgently being sought, but

the development cycle is hampered by a lack of understanding of the complex web of

intercellular communications and other interactions within biofilms, and the often lengthy

and expensive experiments needed to trial novel ideas.

Mathematical modelling can address both of these problems by providing full and

non-invasive data extraction of systems of reduced complexity, and by acting as a rapid

pre-screening tool for experimental trials. Biofilm models tend to fall into two groups:

Continuum models, well suited to single-species films, where both the biomass and the

dissolved agents (i.e. small molecules such as nutrients, metabolites etc.) are represented

as scalar fields2. Multi-species films, however, are known to exhibit chemical gradients

on the length scales of cells, giving rise to micro-environments that cannot be naturally

represented at the continuum level. For such systems, which represent the norm for natural

biofilms, an agent-based description of the biomass is more suitable, while maintaining a

continuum representation of the dissolved molecules. The combined model is in this sense

hybrid.

Here we describe the initial development and early results for a biofilm modelling tool

capable of representing multi-species films within a mechanically consistent, immersed

biofilm. The achievable spatial range spans from ≈ µm to ≈ 100µm ormm in each direc-

tion, thus individual molecules cannot be explicitly represented and their influence must be

incorporated as input parameters or calibration curves. Due to separation of timescales for

each of the primary processes, the temporal domain spans milliseconds to years. Coupling
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to fluid flow is incorporated, a first for multi-species models, but currently at a restricted

level as explained below. The methodology is described first, before presenting results for

two applications and outlining some future directions.

2 Model Definition

A popular and well-known example of the hybrid approach to biofilm modelling is known

as the Individual-based Model or IbM. This model is too complex to describe in detail here,

instead we just give an overview of the main points and direct the interested reader else-

where for details3, 7. In this class of model, there are M scalar fields cα(x), α = 1 . . .M ,

which obey the steady-state reaction-diffusion equations

0 ≡ ∂tc
α(x) = ∇ · [Dα(x)∇cα(x)] +

N(t)∑

i=1

rαi δ(x− xi) , α = 1 . . .M, (1)

where the diffusion coefficient Dα(x) may be inhomogeneous. The second term on the

right-hand side of Eq. 1 represents the coupling to the biomass. At any given time t, there

are N(t) biomass particles i = 1 . . . N(t) with centres at spatial coordinates {xi}. Each

particle represents a single cell or a small aggregate of genetically-identical cells. For

all chemical reactions metabolised by particle i, there is a total reaction rate rαi for each

scalar field α. For instance, nutrient uptake is represented by a rate rαi < 0 for the α
corresponding to the nutrient field. Although first-order reaction kinetics are sometimes

used, a more common choice is Michaelis-Menten kinetics of the form r ∝ c/(K1/2 + c),
so that the reaction term in Eq. 1 generates a non-linear coupling between the cα.

The steady-state scalar fields cα(x) (and hence reaction rates rαi ) are found by simul-

taneously solving Eq. 1 for all α. The change in particle masses can then be determined by

employing some chosen rule, typically by scaling the rate of nutrient uptake by a growth

(yield) factor. It is then possible to update the particle diameters di given a predefined den-

sity parameter. Particles divide (i.e. are replaced by two daughter particles with the same

total mass) according to a selected threshold criterion, such as a maximum diameter.

In the original IbM template, excluded volume interactions are mediated by ‘pushing’

rules that do not admit adhesive interactions within the biomass. This rules out coupling to

any flow in the surrounding fluid, which is known to be an important factor in determining

the morphology of many natural biofilms5. A particle-based model with adhesive interac-

tions and coupling has been developed6, but not yet applied to growing multi-species films.

A future goal of this project is to incorporate hydrodynamic coupling to a growing film by

combining these methods. In the current version, however, fluid flow is incorporated only

as a predefined velocity field v ≡ (vx, vy, vy) = (γ̇z, 0, 0) corresponding to an affine shear

with rate γ̇ (here z is the height from the base of the film). The reaction-diffusion Eq. 1 is

extended to include an advection term (note we now also assume homogeneous diffusion),

0 ≡ ∂tc
α(x) = Dα∇2cα(x) +

N(t)∑

i=1

rαi δ(x− xi)− v · ∇cα(x) (2)

The mechanical stability of the biomass is incorporated by three steps: (i) each particle

has a shell of EPS associated with it, with a mass mEPS
i and diameter dEPS

i determined
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analogously to the cellular mass and diameter; (ii) particles with overlapping EPS shells are

connected by a simple Hookean spring with spring constant determined from the mEPS
i ;

and (iii) particle positions {xi} are simultaneously solved to ensure force balance is obeyed

for each particle. This includes the EPS-mediated spring forces, and (for v 6= 0) a drag

force fdragi = 3πνdiv(xi) with ν the fluid viscosity. More details can be found in Ref. 7.

2.1 Overview of Iteration Methodology

The reaction-diffusion-advection Eq. 2 is solved on a uniform rectangular mesh by ge-

ometric multi-grid8, cyclically implementing a single V-cycle per cα until all converge

simultaneously. Up-winding or line smoothing has not yet been included, which limits

the strain rates for which the iteration converges. The delta functions in the reaction term

in Eq. 2 are handled by (bi- or tri-) linearly interpolating the concentrations cα at adjacent

mesh points to the site of the particle xi, calculating the corresponding reaction rates {rαi },

and distributing these back to the surrounding mesh nodes in a manner that conserves the

total rate.

The mechanical equilibrium of the biomass is determined by one of two equivalent

methods, selected according to their performance for the given problem: (i) Overdamped

molecular dynamics in which the {xi} are updated as per δxi = Af resi δτ , with f resi the

residual (unbalanced) force on particle i and A a damping coefficient. The microscopic

time step δτ is adaptive, increasing sub-linearly with the inverse of the maximum parti-

cle velocity at the previous time step. (ii) Sparse matrix inversion of the stiffness ma-

trix constructed from the EPS-mediated interactions, with drag forces incorporated as a

source term. The current implementation uses a non-linear conjugate gradient iteration

with block-diagonal preconditioning. More details are given in Ref. 7.

3 Applications

3.1 Two-Species Plaque Model

Dental plaque is one of the most well-studied and accessible natural biofilms relevant to

human health, and harbours many species interacting both intercellularly and with the

environment, including the host9. The successful ecological plaque hypothesis regards this

ecosystem as being potentially benign or pathogenic depending on the intrinsic population

dynamics that can turn on environmental changes. Since indiscriminate removal of all oral

bacteria can cause health problems such as fungal infections9, alternative treatments target

modulation of the plaque ecosystem into its benign state. A well-known problem is supra-

gingival plaque that can lead to caries (tooth decay) due to the intake of carbohydrates,

which shifts the population composition in the direction of acid-producing bacteria such as

S. mutans at the expense of commensal species such as S. gordonii. The deleterious effects

of S. mutans are primarily due to its aciduricity (ability to function at low pH), which is

significantly reduced in the presence of even low concentrations of fluoride. Thus fluoride

can help restore ecosystem balance.

To test this hypothesis, and make quantitative predictions for experimental verification,

we have employed the biofilm model to include both of the Streptococci species mentioned

above, which are both well characterised in the literature, including their glycolytic activity
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Figure 1. Example of the two-species plaque model with S. mutans (light discs) being outcompeted by S. gordonii

(dark discs). The scalar field in the background (also visible through holes created by cell death) denotes lactic

acid, with lighter shades corresponding to higher concentrations. This example corresponds to a feast-famine

protocol in which 12 minutes of carbohydrate is added every 8 hours, and 1 mM of fluoride is continuously

present. The flat upper surface at 150µm is imposed as a simple way to achieve a fixed film thickness.

rates (for the conversion of glucose to lactic acid) as a function of pH and fluoride10.

This two-species system exhibits a benign, S. gordonii dominated state and a cariogenic

S. mutans dominated state as stable solutions, depending on the duration and frequency of

glucose intake and the presence of fluoride. As expected, fluoride acts to bias the system

dynamics towards the S. gordonii dominated state. An example is shown in Fig. 1. More

detailed analysis is ongoing and will be presented elsewhere11.

3.2 Fractal Surface Growth

Fractal surface growth is an established field in statistical physics, with a range of canon-

ical models typifying universal classes sharing invariant properties (symmetries, con-

served quantities, locality etc.) in their growth rules12. Recent attempts to interpret two-

dimensional growing IbM biofilms within this context suggested potentially non-canonical

behaviour13. Simulations of the version of the IbM discussed here in three-dimensions

suggests a possible explanation - that the non-local surface-surface coupling mediated by

long-range variations in the nutrient (scalar) field drive anomalous roughening, where both

the roughness and horizontal height-height correlation length scale linearly with time (this

after taking the mean height to be a surrogate time variable, to reduce the gap to the canon-

ical models). Introducing shear flow does not change this scaling, but does reduce the

prefactor, thus shear flow is found to smoothen the film, in contrast to experiments with

high Reynold’s number flow5. The cause of this discrepancy is not yet apparent, but may

result from the different flow regimes considered, or the lack of two-way fluid-structure

coupling in the current model. A snapshot is given in Fig. 2 and further results are avail-

able7.
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Figure 2. Surface roughening in a three-dimensional single species model, with slices through the single nutrient

field displayed on the back and side walls. Particles have a brightness that is proportional to their growth rate, so

the particles far from the peaks (which have low local concentrations of nutrient due to mass transfer limitation)

grow only very slowly.

4 Discussion

Although the current model is still some way short of its intended goal of a fully-

mechanistic IbM biofilm model with fluid-structure coupling, the early results presented

here demonstrate the power of this approach, both in aiding the elucidation of potentially

universal mechanisms governing biofilms as in §3.2, and its use as an in silico modelling

tool to predict and, eventually, restrict experimental trials as in §3.1. In the latter case, the

intention is to incrementally extend and validate this system to incorporate more species

until matching one of the 10-species in vitro models that represent full dental plaque, both

both supra- and subgingival. Once validated, it will then be employed as a rapid prescreen-

ing tool to reduce the number of lengthy and costly experiments that need to be performed

when developing new treatments, accelerating the translational pipeline to novel clinical

products.
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Efficient implementations of hybrid molecular-continuum flow solvers are required to allow for

fast and massively parallel simulations of large complex systems. Several coupling strategies

have been proposed over the last years for 2D/ 3D, time-dependent/ steady-state or compress-

ible/ incompressible scenarios. Despite their different application areas, most of these schemes

comprise the same or similar building blocks. Still, to the authors’ knowledge, no common

implementation of these building blocks is available yet. In this contribution, the Macro-Micro-

Coupling tool is presented which is meant to support developers in coupling mesh-based meth-

ods with molecular dynamics. It is written in C++ and supports two- and three-dimensional

scenarios. Its design is reviewed, and aspects for massively parallel coupled scenarios are ad-

dressed. Afterwards, scaling results are presented for a hybrid simulation which couples a

molecular dynamics code to the Lattice Boltzmann application of the Peano framework.

1 Introduction

Hybrid molecular-continuum flow simulations allow to bridge the gap between purely

molecular fluid descriptions and coarse-grained flow models such as mesoscopic or con-

tinuum models. The typical approach in concurrent molecular-continuum simulations is

based on the decomposition of the computational domain into a continuuma and a molec-

ular dynamics (MD) region. Within the molecular dynamics region, the fluid is resolved

on the atomistic level. This yields a physically accurate description on the one hand, but

implies high computational costs on the other hand since every molecule’s trajectory needs

to be computed. In contrast, a computationally fast, but less accurate flow simulation is

carried out in the continuum region based on either particle- or mesh-based simulation

methods. Examples for the latter comprise (in-) compressible Navier-Stokes or Lattice

Boltzmann methods.

Several strategies for various flow problems have been proposed throughout the last

years to coupled MD and mesh-based continuum solvers such as strategies for steady-state

coupling of incompressible Navier-Stokes1 or Lattice Boltzmann methods2 and MD or

compressible flux-based coupling schemes3 for unsteady flow.

Despite their different application areas, most of these schemes comprise the same

or similar building blocks. For example, the sampling of average velocities or fluxes is

needed in nearly all coupling schemes; the same holds for particle insertion and removal.

Depending on the similarity of two coupling schemes, the same algorithms or slightly

modified versions or completely different approaches are required for each building block.

aIn the following, the term “continuum” shall generally denote the coarse-grained flow description.
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Besides, in order to handle large-scale problems from nanoscale engineering or

biotechnnology, the simulation on massively parallel systems is of essential importance.

Parallel solvers for the continuum and the MD region as well as a parallel implementation

of the coupling mechanisms are hence necessary.

Within this context, we designed the Macro-Micro-Coupling tool4, 5 which is meant to

support developers of new hybrid molecular-continuum schemes and allows for massively

parallel coupled simulations. We recently described the parallel USHER-based6 particle

insertion implementation of the tool4 and the software development of the coupling tool5 in

detail. In the following, the parallel performance of the coupling tool in a hybrid molecular

dynamics-Lattice Boltzmann simulation is discussed. The software design with emphasis

on the parallel extensions of the coupling tool is reviewed in Sec. 2. We report scaling

results on different platforms in Sec. 3 and draw a short conclusion in Sec. 4.

2 Software Design

2.1 General Concept and Modularity Aspects

The design of the Macro-Micro-Coupling tool4, 5 is shown in Fig. 1 (a). The modules

for momentum and particle insertion can be used, extended or modified by the devel-

oper to implement mass and momentum transfer on the MD solver side. In order to use

these mechanisms, three interface implementations (MoleculeWrapper, Molecule-

Iterator, MDSolverInterface) need to be provided by the MD simulation. The

MacroscopicSolverInterface represents the only required interface on the con-

tinuum solver side. All four interface implementations are used by the internal mechanisms

of the coupling tool. A direct call to each interface is accomplished via the respective

services, cf. the CouplingMDSolverService or the CouplingMacroscopic-

SolverService. In order to consistently describe the mapping of flow quantities be-

��������	
������



���
���	
������



���������������������
���������������������


���
�����
�������

��
�����
������
�������


��������������


�������	�������


�������	
�������

����������������	
�������

��������	�
� �
�	�����������	�
�

���
������������

�������
��

��������

��������

��
��
�������

��������
����������

��
��
�������

�������
��

�������� ��������

�����



����
��
�������

���������������
��
�������
�����
���

(a) (b)

Figure 1. Design and general concept of the Macro-Micro-Coupling tool. (a) Interfaces and module separation.

(b) Macroscopic cell-concept: macroscopic cells (green) build a geometrical interface between the mesh-based

continuum solver (grey cell) and molecular dynamics (blue-coloured molecules).
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tween the continuum and the MD solver, macroscopic cells are introduced, cf. Fig. 1 (b).

They represent the discrete control volumes for sampling and exchange of mass and mo-

mentum; both two- and three-dimensional scenarios are supported.

2.2 Parallel Extensions

In distributed parallel simulations, the macroscopic cells are always stored on the same

process as the respective volume in the MD simulation. Since the cells are strictly

tied to the MD simulation, it is only the continuum solver which is left to be linked

to the topology of the coupling tool (or the MD solver, respectively). For this pur-

pose, the interface implementation of the MacroscopicSolverInterface needs

to be provided. The method accumulateSendReceiveInformation() is called

during the initialisation phase of the coupling. It loops over all continuum cells

and calls addSendReceiveInformation(cellPosition) of the Coupling-

MacroscopicSolverService on each cell. The latter method uses the two meth-

ods receiveMacroscopicQuantityFromMDSolver(...) and sendMacro-

scopicQuantityToMDSolver(...) of the MacroscopicSolverInterface

to determine if the flow data of a particular grid cell are received/ sent from/ to the MD

solver. Depending on the coupling strategy and the respective implementation of the

MacroscopicSolverInterface, an arbitrary subset of the macroscopic cells can

thus be chosen in the initialisation phase for the quantity transfer mechanisms. As a conse-

quence, the coupling tool has full knowledge of all required macroscopic cell-based com-

munications after this phase.

In order to exchange quantities between the continuum and the MD solver dur-

ing the coupled simulation, local macroscopic cell buffers are filled with respective

mass and momentum contributions. A call to receiveMacroscopicQuantities-

FromMacroscopicSolver() or sendMacroscopicQuantitiesToMacro-

scopicSolver() of the MacroscopicCellService triggers the MPI-based com-

munication between the processes.

3 Results

We recently investigated the sequential performance of the coupling tool as well as its par-

allel performance with respect to the parallel USHER-based particle insertion scheme4. In

the following, the parallel performance of the tool in molecular dynamics-Lattice Boltz-

mann simulations of plane channel flow is measured. For this purpose, a single-centred

Lennard-Jones MD simulation is coupled to the Lattice Boltzmann solver of the Peano

framework7.

The coupling is established following the principles of the steady-state based coupling

approach by Dupuis et al.2. In our scenario, a fully three-dimensional domain is considered

which consists of 54 × 54 × 54 Lattice Boltzmann cells; each Lattice Boltzmann cell

corresponds to one macroscopic cell of the coupling tool. In the middle, the molecular

dynamics domain is embedded, cf. Fig. 2. The number density in the MD simulation is

chosen as n = 0.6, and the Lennard-Jones parameters are scaled to unity. One coupling

cycle consists of two Lattice Boltzmann time steps and 100 concurrent molecular dynamics

time steps; though significantly more time steps are required to reach steady-state in each
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Figure 2. Parallel molecular dynamics-Lattice Boltzmann simulation executed on 64 cores. (a) Complete simu-

lation domain consisting of 54×54×54 Lattice Boltzmann cells. The molecules that are handled by the process

on rank 0 are shown as coloured spheres. (b) Zoom into the molecular sub-domain on rank 0.

cycle, this choice is found to be sufficient for the scaling experiments. It further represents

a suitable measure in case of unsteady flow simulations. Within a boundary strip of two

Lattice Boltzmann cells, the flow velocity of the Lattice Boltzmann simulation is sent to

the MD simulation. The molecules are relaxed towards this target average velocity in

each macroscopic cell. In the outermost cell strip, the mass of the molecular system is

relaxed towards the reference mass. For this purpose, the average mass is measured over

one coupling cycle, and the mass difference between this average and the reference mass

mref = n · dx3 is imposed over the next coupling cycle where dx denotes the cell size of

one macroscopic, i.e. Lattice Boltzmann, cell. The removal of molecules is accomplished

using a random removal technique whereas the particle insertion is based on the USHER

scheme4. In the macroscopic cells which are located in the inner region of the molecular

dynamics domain, the average velocity is sampled and sent to the Lattice Boltzmann solver.

Two scenarios are evaluated: in scenario A, the cell size is chosen as dx = 2.5 using

1.3 · 105 molecules. The scenario B applies cells of size dx = 5.0 and holds 1.0 · 106
molecules. This corresponds to a MD simulation which is eight times bigger than in sce-

nario A and yields the same macroscopic cell topology in both scenarios. The strong scal-

ing of a single coupling cycle has been measured on two IBM systems – Shaheenb(IBM

BlueGene/P) and Huygensc (IBM pSeries 575). The computationally intensive MD simu-

lation is executed in parallel mode using a standard domain decomposition to distribute the

computational load among the processes. The Lattice Boltzmann simulation is executed in

sequential mode on rank 0. The initialisation phase including the setup phase for the paral-

lel topology between the solvers is negligible for both scenarios A and B; its contribution

to the overall runtime has been found to be of the order of seconds.

The speed-up factors for one coupling cycle are shown in Tab. 1 and 2 for scenarios

A and B. Besides the speed-ups for the hybrid molecular dynamics-Lattice Boltzmann

simulations, the speed-ups for a pure MD simulation of the same MD setting are depicted

bSee http://www.hpc.kaust.edu.sa/documentation/user guide/resources/shaheen/

for details.
cSee http://sara.nl/systems/huygens/description for details.
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Proc. Shaheen Huygens

MD-LB MD MD-LB MD

1 1.0 1.0 1.0 1.0

8 6.6 6.8 6.5 6.4

64 36.0 44.0 34.6 37.6

512 105.4 206.6 98.0 122.5

Table 1. Strong scaling for scenario A. The first column shows the number of processor cores. The speed-ups

obtained on Shaheen and Huygens are listed in the second and third major column. For both machines, the

speed-up of the hybrid molecular dynamics-Lattice Boltzmann (MD-LB) simulation is compared to a pure MD

simulation.

Proc. Shaheen Huygens

MD-LB MD MD-LB MD

1 1.0 1.0 1.0 1.0

8 7.2 7.3 7.3 6.9

64 46.0 49.6 45.7 45.3

512 244.0 321.0 235.5 249.7

1728 484.4 814.5 456.7 494.7

Table 2. Strong scaling for scenario B.

for each scenario and platform. Especially for the lower core counts, the sequential Lattice

Boltzmann simulation plays a negligible role, and similar speed-ups as in the pure MD

simulations can be reached.

4 Conclusion

We presented the parallel extension of our Macro-Micro-Coupling tool which is meant

to support developers of massively parallel molecular-continuum simulations. The strong

scaling measurements indicate good scaling behaviour on moderate core counts. In these

scenarios, a parallelisation of the computationally intensive MD simulation was found to

be sufficient whereas the Lattice Boltzmann simulation was executed sequentially. In order

to obtain speed-ups on bigger core counts, a parallel continuum solver is required as well.

First steps towards a spatially adaptive parallel Lattice Boltzmann solver within the Peano

framework are already taken. The realisation of a fully parallel molecular dynamics-Lattice

Boltzmann simulation is therefore expected in near future.
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In contrast to field-based continuum mechanics, particle-based methods can take into account

the specific atomistic structure of the material under consideration. In our approach the system

consists of a particle region that is coupled to a continuum by introducing a bridging domain

where both regions overlap. The particle domain is computed by Molecular Dynamics (MD)

at finite temperature, while the continuum is discretized and solved using the Finite Element

Method (FEM). In addition to existing coupling schemes, the particles are tethered to anchor

points which transfer displacements and forces between the different domains.

1 Introduction and Motivation

In continuum mechanics, a field-based approach is used to describe the mechanical be-

haviour of e.g. solids. The resulting equations can be solved by the Finite Element Method

(FEM). In contrast, particle-based approaches may offer a deeper insight into the material

since molecular or atomistic effects can be taken into account in order to capture relevant

processes taking place in the material. In this field, e.g. Monte Carlo (MC) or Molecular

Dynamics (MD) simulations are employed. However, these techniques do not allow for

simulations at the macroscale due to the huge number of particles that would have to be

considered.

Hybrid techniques bring together the advantages of particle-based and continuum-

based tools by coupling the different domains. In our approach, we aim to combine the

efficiency of continuum mechanics with the accuracy of MD simulations by applying the

particle-based approach only in regions of interest, e.g. in the vicinity of solid-polymer

interfaces. The remaining parts are treated by continuum mechanics at a much coarser

resolution. Thus, a spatial decomposition into a particle region and into a continuum is

necessary.

Here, we will focus on a hybrid scheme to solve structural mechanics problems. In the

recent years, an increasing number of approaches have been published in that field, mainly

focused on the failure of crystalline solids. A well-known example in this context is the

Quasicontinuum method by Tadmor and co-workers1.

However, applications to amorphous systems are still rare and often restricted to zero

temperature. In our contribution we refer to the “Arlequin” method introduced by Ben Dhia

and Rateau2, which can be used for hybrid simulations of particle models and continuum

mechanics.
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In this method, a so-called “hand-shake” region is introduced where the continuum and

the particle domain overlap. The particle domain does not require any underlying FE mesh,

thus, the particles do not have to be arranged in a lattice.

In our approach, we use an extension of the Arlequin method that allows for a coupling

between a continuum and an MD domain at finite temperature. Therefore, we only treat

the particle domain dynamically while the continuum remains quasi-static. Due to the big

gap between the timescales on the atomistic and the continuum level, any time-dependent

processes taking place in the continuum seem to be almost static compared to the dynamics

on the particle level.

In this contribution, we will highlight the most important requirements and features of

our coupling scheme without going too much into detail. For deeper insight, we would like

to refer to the literature and other publications.

2 System Setup and Mathematical Foundations

(a )

(b ) (c )

α(ξ) 1− α(ξ)
1

ξ

ξa ξb

Ωc

Ωc

ΩbΩb

Ωb

Ωd

Ωd

c oup ling b etw een a nc h or

p oints a nd th e c ontinuum

c oup ling b etw een a nc h or

p oints a nd th e p a r tic le dom a in

Figure 1. Spatial coupling: continuum Ωc, bridging domain Ωb, and particle domain Ωd; small spheres: MD

particles, large spheres: anchor points; weighting factor α(ξ); the complete spatial setup (a) is separated into a

coupling between the anchor points and the continuum (b) and into a coupling between the anchor points and the

particle domain (c).

The system to be considered consists of a particle region Ωd that is embedded into

a continuum Ωc and which is large compared to the dimensions usually encountered in

atomistic simulations. Thus, it is modelled by a coarse grained (CG) technique that treats

groups of atoms as superatoms, cf. e.g. the publications by Müller-Plathe3, 4. In order

to couple the particle system to the continuum, stochastic boundary conditions (SBC) are

used rather than more common periodic boundary conditions (PBC). For a more detailed

description we refer to a previous publication of our groups5.

The overlapping region between the continuum and the particle domain is called the

bridging domain Ωb, cf. Fig. 16. In this region, a set of auxiliary particles is defined as

218



“anchor points” which serve as transmitter units. They do not interact within each other

and are coupled to the remaining MD particles via a harmonic interaction potential. Thus,

the coupling procedure (a) can be subdivided into a (static) coupling (b) between the anchor

points and the continuum and into a (dynamic) coupling (c) between the anchor points and

the MD domain.

In case of the coupling between anchor points and MD particles, the anchor points form

a rigid frame that prevents the MD particles from leaving the simulation box and pretends

the existence of particles outside the box. Within this boundary, the movement of the MD

particles can be computed by employing the conventional MD procedures.

On the other hand, when the coupling of the continuum to the anchor points is con-

sidered, the MD particles appear to the continuum as static particles at fixed positions.

The anchor points can be coupled to the continuum by the Arlequin method as mentioned

above. Therefore, a weighting factor α(ξ) is introduced to couple the energy of the con-

tinuum and that of the anchor points. In the continuum, the weighted total energy can be

written as

Êtot
c =

∫

Ωc
0

α(ξ(X)) Ψ(F) dV −
∫

∂σΩc
0

α(ξ(X)) u ·T dA−
∫

Ωc
0

α(ξ(X)) ρ0 u · b dV, (1)

with the scalar function Ψ = Ψ(F) denoting the strain or stored energy density, the de-

formation gradient F, the displacement field u, the surface tractions T, and the density ρ0
in the initial configuration. Furthermore, V is the volume of the body, A the area in the

initial configuration, while ∂σΩ
c
0 denotes the Neumann boundary with prescribed surface

tractions.

Accordingly, the weighted energy of the particle domain can be formulated. It has to

be remarked that within our investigations no external forces acting on anchor points shall

be considered. Thus, the weighted total energy follows as

Êtot
d = Êint

MD +
1

2

nMS∑

I=1

[
1− α(ξ(RMS

I ))
]
Eint

MS I , (2)

with the internal energy contribution Eint
MS I of the bond between anchor point I and its

associated MD particle. Furthermore, the total number of anchor points is given as nMS ,

while the energy contribution of the remaining MD particles is denoted by Êint
MD. Here,

it is not necessary to know the exact formulation of Êint
MD since a change of MD particle

positions is not possible during the continuum equilibration. Consequently, Êint
MD remains

constant.

Thus, the total energy of the system can be written as Êtot = Êtot
c + Êtot

d and has

to be minimized in order to obtain equilibrium. Additionally, the mismatch between the

displacement field u of the continuum and the displacements of the anchor points has to

be minimized in the coupled system. This is realized by introducing a coupling constraint

that is incorporated by employing Lagrange multipliers λ, which renders the following

problem:

L(λ,u,w∗) = Êtot +

∫

Ωb

λ · [u−w∗] dV → min (3)
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The artificial displacement field w∗ of the anchor points is computed from the discrete

anchor point displacements using an MLS approximation7.

Eventually, after discretization using linear shape functions and with restriction to a

linear elastic continuum, a linear system of equations is obtained and solved by standard

algorithms.

3 Coupling Algorithm
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Ωc
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Ωb

Ωb Ωd

Ωd

Ωd

(a )

(b )

(c )

Figure 2. Concept of the staggered coupling scheme, small spheres: MD particles, large spheres: anchor points.

In Fig. 2 (taken from Ref. 6), the staggered coupling scheme employed here is de-

picted: starting from an initial configuration (a), the coupling procedure (b) is carried out.

This consists of an equilibration run of the continuum coupled to anchor points (bottom,

merely the anchor points are ”visible“ to the continuum, the MD particles are fixed), which

renders modified anchor point positions as a result of the boundary conditions and of the

forces exerted to the anchor points by the pure MD particles. Next, an equilibration run of

the particle system is required (top, fixed anchor points represent the continuum enclosing

the particles), which delivers updated forces on the anchor points. Consequently, the con-

tinuum has to be equilibrated again. After a sufficient number of MD–FE iteration steps,

the coupled system reaches equilibrium (c).

4 Numerical Results

In order to demonstrate the coupling scheme described above, a polystyrene system in 3d

is considered under uniaxial tension, cf. Fig. 36. It consists of a cubic particle system,

enclosed by the bridging domain and a cubic continuum, discretized by finite elements,

with an edge length of 30 nm. The FE system is subjected to prescribed displacements

uy at the top and bottom xz-surfaces. In total, the MD domain contains 300 polymer

chains, each of them consisting of 200 superatoms, which amounts to 60,000 superatoms.
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In the boundary region, approximately 29,000 superatoms are located, 9004 of them being

tethered to the same number of anchor points. Furthermore, the FE domain is represented

by 936 FE nodes, 448 of them located in the bridging domain. The material parameters,

i.e. the Young’s modulus E and Poisson’s ration ν, of the FE system are chosen based on

a parameter identification of the pure MD system.

uy

uy
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x

y
y
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p ure M D dom a in Ω
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Figure 3. Coupled system subjected to prescribed displacements uy at the top and bottom xz-surfaces, 3d view

(left) and sectional view A–A (right).

In order to evaluate the coupling scheme, the results are compared to those obtained

from a pure FE system with the same material parameters. Among others, the mean value

of the normal stresses σ̄yy in load direction is investigated as a function of MD–FE iteration

steps, cf. Fig. 46. As an example, the results for E = 800 MPa and ν = 0.3 at a strain of

1% in y-direction are discussed here.
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Figure 4. Uniaxial tension test, E = 800 MPa, εyy = 1%: mean value of normal stress σ̄yy (coupled and pure

FE simulation) and convergence behaviour of ∆σ̄yy versus MD–FE iteration step i.

It is obvious that σ̄yy converges to a value of 7.56 MPa, which is slightly lower than

the analytic value of 8.00 MPa that is obtained from the pure FE simulation as well. Fur-
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thermore, the change ∆σ̄yy in each MD–FE iteration step is very close to zero after 100

steps. Thus, the methodology described here seems to be reasonable, although adaptions

and improvements are still necessary and currently in progress. Meanwhile, the scheme

has been applied to nanocomposites which delivers reasonable results as well.

5 Concluding Remarks

We have described a staggered algorithm to couple a continuum discretized by finite el-

ements to an amorphous particle domain solved by an MD procedure under stochastic

boundary conditions. In contrast to many methods already available, this scheme allows

for a coupling at finite temperature. Furthermore, the MD procedure can be carried out at

highly specified machines employing specialised algorithms. Our numerical findings have

proven that the coupling scheme produces reasonable results, although there is still effort

required to improve the methodology. This is still work in progress.
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An Arlequin-based method to couple molecular dynamics and finite element simu-

lations of amorphous polymers and nanocomposites, Computer Methods in Applied

Mechanics and Engineering, submitted, 2012.

7. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods:

An overview and recent developments, Computer Methods in Applied Mechanics and

Engineering, 139, 3–47, 1996.

222



Coarse Graining: From Particles to a Continuum

Jens Boberski, Alexander Ries, Lothar Brendel, and Dietrich E. Wolf

Department of Physics, University of Duisburg-Essen,

Lotharstr.1, 47057 Duisburg, Germany

E-mail: jens.boberski@uni-due.de

After a brief summary of the coarse-graining formalism we present two applications with regard

to particle continuum hybrid simulations of disordered systems. First we discuss the possibility

to calculate local elastic fields and, in a second part, coarse graining close to interfaces between

continuum and discrete particle system is discussed.

1 Introduction to Coarse Graining

Coarse graining is a way to derive a continuum description for a particle system. In granu-

lar systems, which lack a clear scale separation (unlike simple fluids)1, 2, it must be applied

with care. As a first example, we will discuss how microscopic expressions for elastic

constants of a granular packing can be calculated unambiguously. Second, the problem

will be briefly addressed how to implement coarse-graining procedures in order to treat the

interface between continuum and particles in hybrid simulations.

Recent publications by Goldhirsch3, 4 provide a comprehensive description of the

coarse-graining formalism. Here we give only a short guide. In the following, Latin indices

like i and j are used for different particles. Greek indices indicate the spatial coordinates,

and summation convention is implied. The mass, centre of mass position and velocity of

the i-th particle are given by mi, ri and vi respectively. The contact between the particles

i and j is characterized by the contact point rcij and the branch vectors ℓij = rcij − ri and

ℓji = rcij − rj . The force acting on particle i due to a contact with particle j is given by

fij .

Microscopic quantities that can be attributed to an individual particle i, like the mass

mi and momentum pi are assigned to its centre of mass. The mass and momentum density

fields are then defined as weighted averages of the microscopic quantities:

ρ(r, t) ≡
∑

i

miφ(r− ri(t)) , p(r, t) ≡
∑

i

mivi(t)φ(r− ri(t)) , (1)

where the weighting (coarse-graining) function φ(r) is positive semidefinite, normalized

and localized around r = 0 with the width w (the coarse-graining scale).

Defining the coarse-grained velocity field as V(r, t) ≡ p(r, t)/ρ(r, t), it can be

shown3 that the coarse-grained fields satisfy the continuity equation

∂ρ(r, t)

∂t
= − ∂

∂rβ
(ρVβ) . (2)

According to the equation of momentum conservation with the body forces b(r),

∂pα(r, t)

∂t
= − ∂

∂rβ
[ρ(r, t)Vα(r, t)Vβ(r, t)− σαβ(r, t)] + bα(r) , (3)
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a stress tensor field σαβ(r, t) is defined, consisting of a kinetic part

σkin
αβ(r, t) = −

∑

i

(viα(t)− Vα(r, t)) (viβ(t)− Vβ(r, t))miφ(r− ri) (4)

and a contact-force-dependent part, the contact-stress tensor field, which is given by

σcont
αβ (r, t) =

∑

ij

fijα ℓijβ

∫ 1

0

φ(r− ri(t)− s ℓij)ds . (5)

In frictional granular materials, the conservation of angular momentum introduces the

couple-stress tensor5. In the quasistatic limit and without taking rolling friction into ac-

count, this reads3

µαδ(r, t) ≡
∑

ij

((
rc
ij − r

)
× fij

)
α
ℓijδ

∫ 1

0

φ(r− ri(t)− s ℓij)ds . (6)

This tensor appears in the equilibrium condition for frictional materials (in absence of

external torques), which is given by

ǫαβγσβγ = ∂δµαδ , (7)

and is a generalization of the classical symmetric stress tensor (ǫαβγ is the Levi-Civita

symbol).

So far, we have not specified a coarse-graining function φ, because the basic structure

of the resulting continuum description does not depend on it. In the following we use

a Gaussian, φ(r − ri) = 1
(πw2)d/2

exp
(
|r− ri|2/w2

)
, where d is the number of spatial

dimensions.

2 Coarse-Grained Elastic Tensor

The microscopic foundation of elasticity theory for disordered materials (like glasses, gran-

ular or amorphous solids) is hampered by the fact that for those materials the uniform

strain assumption does not hold, due to non-affine deformations6. The aim of this section

is to show how elastic constants for these materials can be defined. Calligraphic letters

are used for matrices, generalized vectors are underlined. The derivation is given for the

two-dimensional case, but the generalization to three dimensions is straightforward.

Consider a two-dimensional assembly of granular particles that is in equilibrium, i.e.

the net force and torque on each particle are zero. When deformed by displacing the

boundaries, the particles will move form their initial equilibrium positions {r0i } to new

positions, so that the system is in equilibrium again. In general this behaviour is not re-

versible, since contacts may be created, opened or slide, which in a generalized sense can

be regarded as plastic deformations of the granular packing. In any finite system, these

plastic events (numbered by k) occur at certain discrete deformations εk. Generically, one

can therefore choose a pre-deformed configuration as reference state in between the εk,

and keep its perturbation small enough as to probe only the elastic response. Generically,

one can therefore choose a small enough perturbation of the pre-deformed configuration

(reference state) such that it only probes the elastic response. The interaction between the

particles can then be linearized around the reference state7 {r0i }. In a two-dimensional
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system with N particles this leads to a system of 3N coupled linear equations (force and

torque equilibrium) for the 3N unknowns {ui, ϕi} (displacements and rotations). In ma-

trix form, this set of equilibrium equations can be written as MU + F ext = 0, where U
is the generalized displacement vector containing all 3N components of the displacements

and rotations in the system. F ext contains the external forces and torques on the particles.

They are determined by displacements of the boundary particles, UB . Hence, in linear or-

der F ext = −AUB , and the equilibrium equations can be written with the discrete Green’s

function G = M−1A as:

U = GUB . (8)

The vector U gives all displacements and rotations of the particles and enables one to

calculate local displacement and stress fields4. For small deformations (to linear order in

ui) and small pre-strain the incremental stress field is given by (cf. Eq. 5)

δσlin
αβ(r) =

∑

ij

δf lin
ijαℓ

0
ijβ

∫ 1

0

dsφ(r− r0i + sℓ0ij) , (9)

where δf lin
ij is the change of the contact force between particles i and j due to the defor-

mation to linear order in the relative displacements and rotations. The displacement field

for small deformations is given by ulin
α (r) = 1

ρ

∑
imiuiαφ(r − r0i ), which leads to the

displacement gradient field:

∂ulin
α (r)

∂rβ
=

1

ρ2

∑

ij

mimj(uiα − ujα)
∂φ(r− r0i )

∂rβ
φ(r− r0j ) . (10)

Using the fields to linear order in the relative displacements allows one to write the

coarse-graining procedures as linear functions of the generalized displacement vector U ,

δσlin(r) = S(r)U , ∆lin(r) = D(r)U , (11)

where the stress and displacement gradient vectors in two dimensions are defined as

δσlin = (δσlin
11, δσ

lin
12, δσ

lin
21, δσ

lin
22)

T and ∆lin = (∂1u
lin
1 , ∂2u

lin
1 , ∂1u

lin
2 , ∂2u

lin
2 )T . The 4× 3N

matrices S and D are defined by Eqs. 9 and 10.

The local 4× 4 elastic matrix, C (see right panel of Fig. 1), is usually defined as

δσlin(r) = C(r)∆lin(r) . (12)

The trouble is that such a unique linear relation between δσlin and ∆lin does not exist.

The fact that D and S in two dimensions are 4 × 3N matrices shows, that there are many

microscopic displacements U that lead to the same coarse-grained displacement gradient

but different stress fields. We solve this dilemma by restricting ourselves to deformations

that are caused by affine displacements of the boundary particles, determined by a fixed

four component boundary displacement gradient ∆B (analogous to ∆lin), UB = H∆B .

The 4 × 3M matrix H contains the unstrained coordinates of the M boundary particles.

For any such affine boundary deformation, the elastic matrix field throughout the whole

system is uniquely given by

C(r) = S(r)GH [D(r)GH]
−1

. (13)

We calculated C(r) for a pre-strained packing of 4000 frictional disks generated by a

Discrete Element Method (DEM) simulation. The interaction is harmonic in normal and

tangential direction, with kt/kn = 0.5 and the mean radius of the particles is r̄.
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Figure 1. (left) The coarse-graining length dependence of the shear and bulk moduli for different configurations

with increasing z from bottom to top.

(right) The spatial dependence of the 16 components of the elastic tensor. Each square shows the same segment at

the centre of a system with coordination number z = 3.56, calculated with a coarse-graining length of w = 8r̄.

The left panel of Fig. 1 shows that the shear modulus, G = C1111 + C2222 − C1122 −
C2211, and bulk modulus,E = C1111+C2222+C1122+C2211, become almost independent

of the coarse-graining scale for w > 14r̄ (with deviations less than 5%)8. Plateaus like

these have also been observed experimentally in the stress fields of granular systems9 and

allow a scale-independent definition of physical quantities.

The right panel of Fig. 1 shows spatial maps of the local elastic constants for a fixed

coarse-graining length. One notices that the components C1111 and C2222 have the largest

values, and the elastic constants that are relating off-diagonal elements of the strain (stress)

to diagonal elements of the stress (strain) are close to zero. Calculating these maps enables

one to see local structures in the system and study correlations between the elastic constants

and other fields. Fig. 1 confirms that the elastic tensor field violates the classical symme-

tries, but the deviations are small (below 5% of the norm of the elastic tensor). The stress

tensor of a frictional material is in general not symmetric due to its micropolar nature3,

so the symmetry in the first two indices is not present. Rotational degrees of freedom and

fluctuations of the microscopic displacements (non-affine motion) lead to a coarse-grained

energy-density field that is not given4 by σαβ
∂uα

∂rβ
, so the symmetry in a pairwise exchange

of indices is broken. The fact that classically only the symmetric strain tensor is needed

to describe the deformation of a material is a consequence of the first two symmetries and

thus can not be expected in a material where either of them is broken.

3 Coarse Graining at Boundaries of the Discrete System

We turn to the question of how to coarse grain near a planar boundary, e.g. the interface

between regions with a continuous and a particle based description in a hybrid simulation.

We imagine the planar boundary as the surface of an infinitely big particle (the “wall”).
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Figure 2. (left) The coarse-grained mass density ρ. (right) The stress components σxx, σ∗

zx = σzx − ∂zµyz −
∂xµyx close to the wall for the different models (A) and (B), done with w = 2.5, fx/fz = 1/3 and α = π/5.

As a first model (A), we may regard the wall as an elastic continuum. A particle in

contact with it at the origin, and exerting a force fw, provides the following contribution to

the stress field within the wall10, 11:

σw,mic
αβ (r, fw) = −cd

fw · r
rd+2

rαrβ (14)

with c2 = 2/π and c3 = 3/(2π). Coarse graining (by convoluting with φ(r)) removes the

singularity at the contact point, but of course does not influence the long-range behaviour.

Coarse graining (by convoluting with φ(r)) removes the singularity at the contact point,

but of course does not influence the long range behaviour of the resulting σw
αβ . The latter

appears in the total coarse grained stress tensor

σ̃αβ(r) = σc
αβ(r) +

∑

i

σw
αβ(r− rciw, fiw), (15)

as an addition to Eq. 5 in form of contributions from the contacts between particles and the

wall, which are located at rciw.

As a second model (B), we can generalize Eq. 5 by extending the wall branch vec-

tors ℓiw infinitely far into the (infinite) particle representing the wall. Denoting their unit

vectors as niw, the additional terms are of the form (cf. also Weinhart et al.12)

fiwαniwβ

∫ ∞

0

φ(r− ri − r′niw)dr
′ . (16)

Note that the generalization Eq. 16, can as well be applied to the couple stress in Eq. 6.

We illustrate the two models by means of a semi-infinite rhombic array (see inset of

Fig. 2) of identical frictional disks, terminated by a wall at z = 0 which exerts the same

force fxex + fzez on each boundary particle. For a large enough coarse-graining width

(w = 2.5 turns out to be sufficient), the fields like density and stress are constant far from

the interface. They agree with the asymptotic bulk quantities, which can be calculated

analytically.

The behaviour in the vicinity of the interface is displayed in Fig. 2, where the left panel

shows the density for the case that the wall density agrees with the bulk density of the

particle array. The dip at the interface is due to the increased pores caused by the planar
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wall. For the stress tensor, equilibrium requires that σzz and σxz are constant throughout

the whole system (bulk, interface, wall), which is fulfilled by both models. Rotational

equilibrium further demands that

σ∗
zx = σzx − ∂zµyz − ∂xµyx (17)

is equal to σxz (cf. Eq. 7). This only holds true for model (B), but not for the elastic wall.

Though the latter fulfills equilibrium far beyond the wall, it is violated at the interface. The

reason is the elastic medium’s lack of micropolar character.

σxx drops to σzz = 1 for model (A) and to 0 for model (B). Due to translational sym-

metry in x-direction, the equilibrium condition derived from Eq. 3 is fulfilled, no matter

how σxx continues beyond the wall. Therefore, its value could be adjusted to match the

bulk field, just as done with the density ρ.
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Miniaturized and multi-stratified semiconductor devices require high-precision pla-

narization of their copper (Cu) wiring layers. Chemical mechanical polishing (CMP) by

abrasive silica grains in aqueous H2O2 solution is a popular technique to reach this goal,

owing to high polishing rates and good planarity1. However, Cu-CMP has critical problems

of dishing, erosion, the persistence of residual copper, and wiring corrosion. Such effects

can cause a rise of the wiring resistance, an increased dielectric constant of the dielectric

film as well as short circuits. Recently, the demands on CMP accuracy have increased to

further improve 32 nm and 22 nm process technologies. The development of more pre-

cise Cu-CMP techniques requires a better understanding of the atomic-scale mechanism

of the mechano-chemical reactions by the abrasive grain and the oxidizer on the substrate.

However, the polishing mechanism with chemical reactions has not been clear, because it

is very difficult to obtain atomic-scale information directly by experiments.

Computer simulations have accumulated useful information for many different aspects

of the mechanical processing of semiconductors. Yet, simulations of CMP have remained

challenging, because both chemical reactions and mechanical polishing need to be simu-

lated at the same time. While force-field based molecular dynamics can be used to simulate

the mechanical polishing process, it is not sufficiently predictive to model chemical reac-

tions. Conversely, a static first-principles calculation can address the chemical reactions,

although it can not be applied to the mechanical polishing processes. A first-principles

molecular dynamics method cannot be used for the simulation of systems containing suf-

ficiently many atoms to represent the polishing process.

To simulate both, the chemical reaction and mechanical polishing dynamics in the CMP

process, we developed a CMP process simulator based on our tight-binding quantum chem-

ical molecular dynamics method2. Our CMP process simulator was successfully applied to

a CMP process of a Si surface by a SiO2 particle2 and of a SiO2 surface by CeO2 particle3.

For the present study, we used our tight-binding quantum chemical molecular dynamics

CMP process simulator to elucidate the CMP mechanism of a Cu surface by a SiO2 parti-

cle in an aqueous 20% H2O2 solution. We performed the polishing simulation of a Cu(111)

surface by an OH-terminated SiO2 particle in an aqueous 20 % H2O2 solution and in a pure

water environment. In our simulations, a constant normal force of 4.5× 10−10 N was ap-

plied to the polishing particle, which was slid in lateral direction at a constant velocity of

50 m/s. Temperature was maintained at 330 K by through the scaling of atomic velocities.

The adopted model is shown in Fig. 1(a) and 2(a). First-principles calculations were also
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Figure 1. Snapshots of the polishing simulation in a aqueous 20 % H2O2 solution.

performed to estimate the activation barrier of the chemical reactions using the Accelrys

DMol3 code4.

Snapshots of the polishing process of the Cu(111) surface in an aqueous 20 % H2O2

solution are shown in Fig. 1. During picosecond long equilibrium calculation, some H2O2

molecules adsorbed onto the Cu(111) surface and dissociated into two OH radicals. The

subsequent oxidation reaction of the Cu surface occurred through these OH radical as

shown in Fig. 1(b). After 1 ps equilibration, we applied the pressure on the SiO2 particle

and imposed the sliding motion. We observed that oxygen atoms coming from the oxidized

Cu surface diffused into the bulk area due to the friction of the SiO2 particle as shown in

Fig. 1(c). Then, copper oxide was generated and the SiO2 particle easily polished the

copper oxide as shown in Fig. 1(d). From these observations, we conclude that the friction

of the SiO2 particle promotes the oxidation and the softening of the Cu surface under

aqueous H2O2 solution environment. This is why the CMP process of the Cu surface can

proceed efficiently.

We also performed the polishing simulation under a pure H2O environment (Fig. 2).

The oxidation of the Cu surface no longer occurred. Instead, the SiO2 particle polished

the pure copper surface as shown in Fig. 2 (a)-(d). Under a pure H2O environment, fewer

Cu atoms were removed from the Cu surface as compared to an aqueous H2O2 solution

environment. This result is in good agreement with the experiments. The above analysis

indicates that the oxidation of the Cu(111) surface by H2O2 molecules is essential for the

efficient CMP process of the Cu surface. Softening of the Cu surface by the oxidation was

identified to be a key step for the Cu CMP processes.

In order to evaluate the activation barriers for the oxidation of the Cu(111) surface

by H2O2 molecule, we employed density-functional-theory based first-principles calcula-

tions. First, we investigated the activation barrier for the dissociative adsorption of the

H2O2 molecule to two OH species. The calculated activation barrier for the above pro-

cess is only 8.0 kcal/mol. Such a low activation barrier indicates that the process easily
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Figure 2. Snapshots of the polishing simulation in 100 % H2O environment.

occurs on the Cu(111) surface in the aqueous H2O2 solution. This is in good agreement

with our tight-binding quantum chemical molecular dynamics simulations. Next, we in-

vestigated the formation process of the adsorbed O atom on the Cu(111) surface by the

chemical reaction of the adsorbed OH species and an H2O2 molecule. The final product

of this process is the adsorbed O atom, the adsorbed OH group and an H2O molecule.

The calculated activation barrier for the above process is only 8.2 kcal/mol. This low ac-

tivation barrier indicates that this process also easily occurs on the Cu(111) surface in the

aqueous H2O2 solution. This is also in good agreement with our tight-binding quantum

chemical molecular dynamics simulations. Finally we investigated the intrusion process of

the adsorbed O atom into the Cu surface. The activation barrier for this copper oxide for-

mation process is 35.1 kcal/mol. Such a high activation barrier indicates that this process

needs the enhancement of the chemical reactions by the mechanical polishing. This result

is also in good agreement with our tight-binding quantum chemical molecular dynamics

simulations. In the tight-binding quantum chemical molecular dynamics simulation, the

formation of copper oxide was not observed before the friction of the SiO2 particle against

the substrate.

In summary, we applied our chemical-mechanical-polishing-process simulator based

on the tight-binding quantum chemical molecular dynamics method to the chemical me-

chanical polishing processes of Cu surface by SiO2 particles. Under aqueous H2O2 so-

lution, a Cu surface was oxidized by H2O2 and SiO2 particles. The resulting Cu surface

was softened by the oxidation and then easily polished. We clarified that the friction force

of SiO2 particle accelerates the chemical oxidation of Cu surface by H2O2. The activa-

tion barrier for the oxidation reaction processes of the Cu surface obtained by density-

functional-theory based calculations supports the above results. We also performed the

polishing simulation of a Cu surface in a pure H2O environment. Fewer Cu atoms were

removed from the Cu surface as compared to an aqueous H2O2 solution environment. This

result is in good agreement with experiments. Overall, the study confirms the effective-
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ness of our chemical mechanical polishing simulator based on the tight-binding quantum

chemical molecular dynamics method.
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research in science and engineering through a three-way strategy:
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of physics and natural sciences.
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schools, seminars, courses, and guest programmes for scientists and students.

The research groups of the John von Neumann Institute for Computing (NIC) regularly conduct 

workshops on leading-edge subjects in computational physics.  In this tradition, the Computa-
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jointly with the Institute of Advanced Simulation on March 4 - 7, 2013 at the Forschungszentrum 

Jülich. The goal of the workshop was to foster the exchange of ideas between the communities 
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mediated interactions between particles as well as on the adaptive and non-adaptive coupling 

between particle-based and continuum-based descriptions of materials. 
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