000845774 001__ 845774
000845774 005__ 20241127124645.0
000845774 0247_ $$2doi$$a10.1016/j.ijhydene.2018.03.085
000845774 0247_ $$2ISSN$$a0360-3199
000845774 0247_ $$2ISSN$$a1879-3487
000845774 0247_ $$2WOS$$aWOS:000438005200018
000845774 037__ $$aFZJ-2018-02983
000845774 082__ $$a660
000845774 1001_ $$0P:(DE-Juel1)129902$$aPeters, R.$$b0$$eCorresponding author
000845774 245__ $$aHeat exchanger design for autothermal reforming of diesel
000845774 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018
000845774 3367_ $$2DRIVER$$aarticle
000845774 3367_ $$2DataCite$$aOutput Types/Journal article
000845774 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536569718_27307
000845774 3367_ $$2BibTeX$$aARTICLE
000845774 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845774 3367_ $$00$$2EndNote$$aJournal Article
000845774 520__ $$aThe increasing electrification of vehicles for passenger and heavy duty transport requires the deployment of efficient, low-emission power sources. Auxiliary Power Units (APUs) based on fuels cells offer an excellent solution, especially for supplying power during idling mode. For urban transport applications, gaseous hydrogen appears to be the best fuel option, whereas long-distance applications are better served by a liquid energy carrier. The autothermal reforming of liquid fuels such as diesel presents a simple and efficient method for producing hydrogen for fuel cell APUs. Heat integration for steam generation and air pre-warming are the key elements to a compact autothermal reformer design. With the aid of intense CFD simulations, a reformer construction was achieved with the high power density of 3.3 kWth/l. Experimental validation indicates high hydrogen concentrations of between 32 and 36%, depending on diesel quality. In combination with already existing results, the newest autothermal reformer (ATR) generation enables the set-up of a complete APU system, fulfilling the U.S. Department of Energy (DOE) targets for fuel cell-based APUs
000845774 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0
000845774 588__ $$aDataset connected to CrossRef
000845774 7001_ $$0P:(DE-Juel1)129898$$aPasel, J.$$b1
000845774 7001_ $$0P:(DE-Juel1)207065$$aSamsun, R. C.$$b2
000845774 7001_ $$0P:(DE-HGF)0$$aScharf, F.$$b3
000845774 7001_ $$0P:(DE-Juel1)129935$$aTschauder, A.$$b4
000845774 7001_ $$0P:(DE-Juel1)129928$$aStolten, D.$$b5
000845774 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.03.085$$gp. S0360319918308462$$p11830-11846$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018
000845774 8564_ $$uhttps://juser.fz-juelich.de/record/845774/files/1-s2.0-S0360319918308462-main.pdf$$yRestricted
000845774 8564_ $$uhttps://juser.fz-juelich.de/record/845774/files/1-s2.0-S0360319918308462-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000845774 909CO $$ooai:juser.fz-juelich.de:845774$$pVDB
000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b0$$kFZJ
000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b1$$kFZJ
000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b2$$kFZJ
000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129935$$aForschungszentrum Jülich$$b4$$kFZJ
000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ
000845774 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH
000845774 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000845774 9141_ $$y2018
000845774 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015
000845774 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845774 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845774 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845774 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845774 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845774 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845774 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845774 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845774 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845774 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000845774 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845774 920__ $$lyes
000845774 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000845774 980__ $$ajournal
000845774 980__ $$aVDB
000845774 980__ $$aI:(DE-Juel1)IEK-3-20101013
000845774 980__ $$aUNRESTRICTED
000845774 981__ $$aI:(DE-Juel1)ICE-2-20101013