000845774 001__ 845774 000845774 005__ 20241127124645.0 000845774 0247_ $$2doi$$a10.1016/j.ijhydene.2018.03.085 000845774 0247_ $$2ISSN$$a0360-3199 000845774 0247_ $$2ISSN$$a1879-3487 000845774 0247_ $$2WOS$$aWOS:000438005200018 000845774 037__ $$aFZJ-2018-02983 000845774 082__ $$a660 000845774 1001_ $$0P:(DE-Juel1)129902$$aPeters, R.$$b0$$eCorresponding author 000845774 245__ $$aHeat exchanger design for autothermal reforming of diesel 000845774 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2018 000845774 3367_ $$2DRIVER$$aarticle 000845774 3367_ $$2DataCite$$aOutput Types/Journal article 000845774 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1536569718_27307 000845774 3367_ $$2BibTeX$$aARTICLE 000845774 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000845774 3367_ $$00$$2EndNote$$aJournal Article 000845774 520__ $$aThe increasing electrification of vehicles for passenger and heavy duty transport requires the deployment of efficient, low-emission power sources. Auxiliary Power Units (APUs) based on fuels cells offer an excellent solution, especially for supplying power during idling mode. For urban transport applications, gaseous hydrogen appears to be the best fuel option, whereas long-distance applications are better served by a liquid energy carrier. The autothermal reforming of liquid fuels such as diesel presents a simple and efficient method for producing hydrogen for fuel cell APUs. Heat integration for steam generation and air pre-warming are the key elements to a compact autothermal reformer design. With the aid of intense CFD simulations, a reformer construction was achieved with the high power density of 3.3 kWth/l. Experimental validation indicates high hydrogen concentrations of between 32 and 36%, depending on diesel quality. In combination with already existing results, the newest autothermal reformer (ATR) generation enables the set-up of a complete APU system, fulfilling the U.S. Department of Energy (DOE) targets for fuel cell-based APUs 000845774 536__ $$0G:(DE-HGF)POF3-135$$a135 - Fuel Cells (POF3-135)$$cPOF3-135$$fPOF III$$x0 000845774 588__ $$aDataset connected to CrossRef 000845774 7001_ $$0P:(DE-Juel1)129898$$aPasel, J.$$b1 000845774 7001_ $$0P:(DE-Juel1)207065$$aSamsun, R. C.$$b2 000845774 7001_ $$0P:(DE-HGF)0$$aScharf, F.$$b3 000845774 7001_ $$0P:(DE-Juel1)129935$$aTschauder, A.$$b4 000845774 7001_ $$0P:(DE-Juel1)129928$$aStolten, D.$$b5 000845774 773__ $$0PERI:(DE-600)1484487-4$$a10.1016/j.ijhydene.2018.03.085$$gp. S0360319918308462$$p11830-11846$$tInternational journal of hydrogen energy$$v43$$x0360-3199$$y2018 000845774 8564_ $$uhttps://juser.fz-juelich.de/record/845774/files/1-s2.0-S0360319918308462-main.pdf$$yRestricted 000845774 8564_ $$uhttps://juser.fz-juelich.de/record/845774/files/1-s2.0-S0360319918308462-main.pdf?subformat=pdfa$$xpdfa$$yRestricted 000845774 909CO $$ooai:juser.fz-juelich.de:845774$$pVDB 000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129902$$aForschungszentrum Jülich$$b0$$kFZJ 000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129898$$aForschungszentrum Jülich$$b1$$kFZJ 000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)207065$$aForschungszentrum Jülich$$b2$$kFZJ 000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129935$$aForschungszentrum Jülich$$b4$$kFZJ 000845774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b5$$kFZJ 000845774 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b5$$kRWTH 000845774 9131_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0 000845774 9141_ $$y2018 000845774 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J HYDROGEN ENERG : 2015 000845774 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000845774 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000845774 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000845774 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000845774 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000845774 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000845774 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000845774 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000845774 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000845774 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology 000845774 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000845774 920__ $$lyes 000845774 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0 000845774 980__ $$ajournal 000845774 980__ $$aVDB 000845774 980__ $$aI:(DE-Juel1)IEK-3-20101013 000845774 980__ $$aUNRESTRICTED 000845774 981__ $$aI:(DE-Juel1)ICE-2-20101013