001     845774
005     20241127124645.0
024 7 _ |a 10.1016/j.ijhydene.2018.03.085
|2 doi
024 7 _ |a 0360-3199
|2 ISSN
024 7 _ |a 1879-3487
|2 ISSN
024 7 _ |a WOS:000438005200018
|2 WOS
037 _ _ |a FZJ-2018-02983
082 _ _ |a 660
100 1 _ |a Peters, R.
|0 P:(DE-Juel1)129902
|b 0
|e Corresponding author
245 _ _ |a Heat exchanger design for autothermal reforming of diesel
260 _ _ |a New York, NY [u.a.]
|c 2018
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536569718_27307
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The increasing electrification of vehicles for passenger and heavy duty transport requires the deployment of efficient, low-emission power sources. Auxiliary Power Units (APUs) based on fuels cells offer an excellent solution, especially for supplying power during idling mode. For urban transport applications, gaseous hydrogen appears to be the best fuel option, whereas long-distance applications are better served by a liquid energy carrier. The autothermal reforming of liquid fuels such as diesel presents a simple and efficient method for producing hydrogen for fuel cell APUs. Heat integration for steam generation and air pre-warming are the key elements to a compact autothermal reformer design. With the aid of intense CFD simulations, a reformer construction was achieved with the high power density of 3.3 kWth/l. Experimental validation indicates high hydrogen concentrations of between 32 and 36%, depending on diesel quality. In combination with already existing results, the newest autothermal reformer (ATR) generation enables the set-up of a complete APU system, fulfilling the U.S. Department of Energy (DOE) targets for fuel cell-based APUs
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Pasel, J.
|0 P:(DE-Juel1)129898
|b 1
700 1 _ |a Samsun, R. C.
|0 P:(DE-Juel1)207065
|b 2
700 1 _ |a Scharf, F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Tschauder, A.
|0 P:(DE-Juel1)129935
|b 4
700 1 _ |a Stolten, D.
|0 P:(DE-Juel1)129928
|b 5
773 _ _ |a 10.1016/j.ijhydene.2018.03.085
|g p. S0360319918308462
|0 PERI:(DE-600)1484487-4
|p 11830-11846
|t International journal of hydrogen energy
|v 43
|y 2018
|x 0360-3199
856 4 _ |u https://juser.fz-juelich.de/record/845774/files/1-s2.0-S0360319918308462-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845774/files/1-s2.0-S0360319918308462-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845774
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129902
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129898
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)207065
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129935
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J HYDROGEN ENERG : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21