001     845779
005     20210129233641.0
024 7 _ |a 10.1182/blood-2017-10-810986
|2 doi
024 7 _ |a 0006-4971
|2 ISSN
024 7 _ |a 1528-0020
|2 ISSN
024 7 _ |a pmid:29724897
|2 pmid
024 7 _ |a WOS:000439131800011
|2 WOS
024 7 _ |a altmetric:40684070
|2 altmetric
037 _ _ |a FZJ-2018-02988
082 _ _ |a 610
100 1 _ |a Bhatia, Sanil
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Targeting HSP90 dimerization via the C-terminus is effective in imatinib resistant CML and lacks heat shock response
260 _ _ |a Stanford, Calif.
|c 2018
|b HighWire Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1533187184_29710
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Heat shock protein 90 (HSP90) stabilizes many client proteins including BCR-ABL1 oncoprotein. BCR-ABL1 is the hallmark of CML in which treatment-free remission (TFR) is limited with clinical and economic consequences. Thus, there is an urgent need for novel therapeutics, which synergize with current treatment approaches. Several inhibitors targeting the N-terminal domain (NTD) of HSP90 are under investigation; however, side effects such as induction of heat shock response (HSR) and toxicity have so far precluded their FDA approval. We have developed a novel inhibitor (referred to as aminoxyrone) of HSP90 function by targeting HSP90 dimerization via the C-terminal domain (CTD). This was achieved by structure-based molecular design, chemical synthesis, and functional pre-clinical in vitro and in vivo validation using CML cell lines and patient-derived CML cells. Aminoxyrone (AX) is a promising potential candidate, which induces apoptosis in leukemic stem cells (LSCs) fraction (CD34+CD38-) as well as the leukemic bulk (CD34+CD38+) of primary CML and in TKI-resistant cells. Furthermore, BCR-ABL1 oncoprotein and related pro-oncogenic cellular responses are downregulated and targeting HSP90 C-terminus by AX does not induce HSR in vitro and in vivo. We also probed the potential of AX in other therapy refractory leukemia such as BCR-ABL1+ BCP-ALL, FLT3-ITD+ AML and Ph-like BCP-ALL. Therefore, AX is the first peptidometic C-terminal HSP90 inhibitor with the potential to increase TFR in TKI sensitive and refractory CML patients and also offers a novel therapeutic option for patients with other therapy-refractory leukemia, due to its low toxicity profile and lack of HSR.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
536 _ _ |a 561 - Biological Key Regulators and Small Chemical Compounds (POF3-561)
|0 G:(DE-HGF)POF3-561
|c POF3-561
|f POF III
|x 1
536 _ _ |a 316 - Infections and cancer (POF3-316)
|0 G:(DE-HGF)POF3-316
|c POF3-316
|f POF III
|x 2
536 _ _ |a Forschergruppe Gohlke (hkf7_20170501)
|0 G:(DE-Juel1)hkf7_20170501
|c hkf7_20170501
|f Forschergruppe Gohlke
|x 3
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Diedrich, Daniela
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Frieg, Benedikt
|0 P:(DE-Juel1)172887
|b 2
|u fzj
700 1 _ |a Ahlert, Heinz
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stein, Stefan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bopp, Bertan
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lang, Franziska
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Zang, Tao
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kröger, Tobias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ernst, Thomas
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kögler, Gesine
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Krieg, Andreas
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Lüdeke, Steffen
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kunkel, Hana
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Rodrigues Moita, Ana J.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Kassack, Matthias U.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Marquardt, Viktoria
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Opitz, Friederike V.
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Oldenburg, Marina
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Remke, Marc
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Babor, Florian
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Grez, Manuel
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Hochhaus, Andreas
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Borkhardt, Arndt
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Groth, Georg
|0 P:(DE-HGF)0
|b 24
700 1 _ |a Nagel-Steger, Luitgard
|0 P:(DE-Juel1)162443
|b 25
|u fzj
700 1 _ |a Jose, Joachim
|0 P:(DE-HGF)0
|b 26
700 1 _ |a Kurz, Thomas
|0 P:(DE-HGF)0
|b 27
700 1 _ |a Gohlke, Holger
|0 P:(DE-Juel1)172663
|b 28
|u fzj
700 1 _ |a Hansen, Finn K.
|0 P:(DE-HGF)0
|b 29
|e Corresponding author
700 1 _ |a Hauer, Julia
|0 P:(DE-HGF)0
|b 30
|e Corresponding author
773 _ _ |a 10.1182/blood-2017-10-810986
|g p. blood-2017-10-810986 -
|0 PERI:(DE-600)1468538-3
|n 3
|p 307-320
|t Blood
|v 132
|y 2018
|x 1528-0020
909 C O |o oai:juser.fz-juelich.de:845779
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172887
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)162443
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 28
|6 P:(DE-Juel1)172663
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
913 1 _ |a DE-HGF
|b Key Technologies
|l BioInterfaces in Technology and Medicine
|1 G:(DE-HGF)POF3-560
|0 G:(DE-HGF)POF3-561
|2 G:(DE-HGF)POF3-500
|v Biological Key Regulators and Small Chemical Compounds
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-316
|2 G:(DE-HGF)POF3-300
|v Infections and cancer
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Gesundheit
914 1 _ |y 2018
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BLOOD : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BLOOD : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
920 1 _ |0 I:(DE-Juel1)NIC-20090406
|k NIC
|l John von Neumann - Institut für Computing
|x 1
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a I:(DE-Juel1)NIC-20090406
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21