001     845833
005     20210129233700.0
024 7 _ |a 10.1101/165951
|2 doi
024 7 _ |a 10.1162/netn_a_00050
|2 doi
024 7 _ |a 2128/21725
|2 Handle
024 7 _ |a pmid:30793072
|2 pmid
024 7 _ |a WOS:000449591500002
|2 WOS
024 7 _ |a altmetric:34295947
|2 altmetric
037 _ _ |a FZJ-2018-03040
082 _ _ |a 610
100 1 _ |a Bottenhorn, Katherine L
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Cooperating yet distinct brain networks engaged during naturalistic paradigms: A meta-analysis of functional MRI results
260 _ _ |a Cambridge, MA
|c 2019
|b The MIT Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1550843266_4116
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This study was supported by awards from the National Institute of Drug Abuse (U01-DA041156, K01-DA037819, U24-DA039832, R01DA041353), the National Institute of Mental Health (R56-MH097870),and the National Science Foundation (1631325 and REAL DRL-1420627). The authors declare no competing financial interests
520 _ _ |a Cognitive processes do not occur by pure insertion and instead depend on the full complement of co-occurring mental processes, including perceptual and motor functions. As such, there is limited ecological validity to human neuroimaging experiments that use highly controlled tasks to isolate mental processes of interest. However, a growing literature shows how dynamic, interactive tasks have allowed researchers to study cognition as it more naturally occurs. Collective analysis across such neuroimaging experiments may answer broader questions regarding how naturalistic cognition is biologically distributed throughout the brain. We applied an unbiased, data-driven, meta-analytic approach that uses k-means clustering to identify core brain networks engaged across the naturalistic functional neuroimaging literature. Functional decoding allowed us to, then, delineate how information is distributed between these networks throughout the execution of dynamical cognition in realistic settings. This analysis revealed six recurrent patterns of brain activation, representing sensory, domain-specific, and attentional neural networks that support the cognitive demands of naturalistic paradigms. Though gaps in the literature remain, these results suggest that naturalistic fMRI paradigms recruit a common set of networks that that allow both separate processing of different streams of information and integration of relevant information to enable flexible cognition and complex behavior.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Flannery, Jessica S
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Boeving, Emily R
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Riedel, Michael C
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 4
|u fzj
700 1 _ |a Sutherland, Matthew T
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Laird, Angela R
|0 P:(DE-HGF)0
|b 6
|e Corresponding author
773 _ _ |a 10.1162/netn_a_00050
|0 PERI:(DE-600)2900481-0
|n 1
|p 27-48
|t Network neuroscience
|v 3
|y 2019
|x 2472-1751
856 4 _ |u https://doi.org/10.1162/netn_a_00050
856 4 _ |u https://juser.fz-juelich.de/record/845833/files/Bottenhorn18.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845833/files/Bottenhorn18.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845833/files/Bottenhorn18.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845833/files/Bottenhorn18.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/845833/files/Bottenhorn18.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:845833
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2019
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21