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Abstract 1 

Cognitive processes do not occur by pure insertion and instead depend on the full complement of co-2 

occurring mental processes, including perceptual and motor functions. As such, there is limited ecological 3 

validity to human neuroimaging experiments that use highly controlled tasks to isolate mental processes of 4 

interest. However, a growing literature shows how dynamic, interactive tasks have allowed researchers to 5 

study cognition as it more naturally occurs. Collective analysis across such neuroimaging experiments may 6 

answer broader questions regarding how naturalistic cognition is biologically distributed throughout the 7 

brain. We applied an unbiased, data-driven, meta-analytic approach that uses k-means clustering to identify 8 

core brain networks engaged across the naturalistic functional neuroimaging literature. Functional decoding 9 

allowed us to, then, delineate how information is distributed between these networks throughout the 10 

execution of dynamical cognition in realistic settings. This analysis revealed six recurrent patterns of brain 11 

activation, representing sensory, domain-specific, and attentional neural networks that support the cognitive 12 

demands of naturalistic paradigms. Though gaps in the literature remain, these results suggest that 13 

naturalistic fMRI paradigms recruit a common set of networks that that allow both separate processing of 14 

different streams of information and integration of relevant information to enable flexible cognition and 15 

complex behavior. 16 

 17 

  18 
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Introduction 1 

Across the life sciences, researchers often seek a balance between ecological validity and careful laboratory 2 

control when making experimental design decisions. This entails weighing the value of creating realistic 3 

stimuli representative of real-world, interactive experiences versus artificial, reductionist stimuli facilitating 4 

precise assessment of ‘isolated’ mental process of interest via cognitive subtraction. Cognitive subtraction 5 

assumes that a single added cognitive process does not alter the other, co-occurring processes, both neutrally 6 

and cognitively. As such, task-based fMRI has traditionally utilized precisely controlled tasks to study the 7 

neurobiological substrates of cognition. However, cognition does not occur by pure insertion; the 8 

functioning of any cognitive process is not wholly independent from other co-occurring processes (Friston 9 

et al., 1996). Instead, cognition is highly interactive, encompassing measurable changes in neural activity 10 

that are dependent on the full amalgamation of relevant social, cognitive, perceptual, and motor processes. 11 

Thus, it is perhaps unreasonable to expect findings from a highly restricted assessment of a psychological 12 

construct in the scanner to fully generalize to real-world behaviors and settings.  13 

With advances in technology and a desire to study cognition with greater ecological validity, increasing 14 

numbers of studies are utilizing realistic, interactive, and rich stimuli in more ecologically valid 15 

experimental designs that fit within the scanner’s confines (Hasson and Honey, 2012; Maguire, 2012; Wang 16 

et al., 2016). “Naturalistic” paradigms employ dynamic and complex stimuli (Fehr et al., 2014; Kauttonen 17 

et al., 2015; Burunat et al., 2014), in terms of multimodal demands (Lahnskoski et al., 2012; Maguire et al., 18 

2012; Nardo et al., 2014; Dick et al., 2014; Reed et al., 2014; Bishop et al., 2014), or in relation to the length 19 

of the stimulus presentation (Maguire et al., 2012; Cong et al., 2014).  Specifically, the use of video games, 20 

film clips, and virtual reality, among others, has brought a new dimension to cognitive neuroimaging 21 

experiments permitting researchers to study brain activity as participants engage in tasks that more closely 22 

represent real-life demands on attention and multimodal sensory integration. Appreciation of such attention 23 

and integration processes necessitates more complex stimuli than simple static images presented on a 24 

screen. For example, researchers have studied spatial navigation with virtual reality environments as 25 
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complex as the city of London (Spiers and Maguire, 2006) and as classic as a virtual radial arm maze (Marsh 1 

et al., 2010). Similarly, social cognition has been probed with displays of human social interactions from a 2 

dramatic, social television drama (Spunt and Lieberman, 2012) to clips of facial expressions with little 3 

context (Li et al., 2015).  4 

Everyday activities, such as navigation or social observation, involve the integration of processes associated 5 

with object recognition, speech comprehension, motor control, and spatial orienting, which all require the 6 

interpretation of dynamic signals often from more than one sensory modality (e.g. audiovisual film 7 

watching or visuotactile image tracing) and necessitate different attentional demands compared to the 8 

simplistic stimuli used in traditional fMRI experiments (Giard and Peronnet, 1999; McGurk and 9 

MacDonald, 1976; Sailer et al., 2000; Spence, 2010). Recently, this trend has produced open-source efforts 10 

such as studyforrest, a freely-available dataset of MRI scans, eye-tracking, and extensive annotations, using 11 

the movie Forrest Gump as a rich, multimodal stimulus (studyforrest.org; Hanke et al., 2016; 2015; 2014). 12 

Although studies of participants freely viewing films or navigating virtual environments have been used 13 

since the early days of fMRI, the naturalistic studies represent a small portion of the overall task-based 14 

fMRI literature (Beauregard et al., 2001; Burgess et al., 2001; Maguire, 2012). Despite offering advantages, 15 

the growing body of naturalistic fMRI research has yet to be quantitatively assessed, and little is known of 16 

how the neural bases of these tasks support complex information processing and behavioral demands. 17 

Here, we applied an unbiased, data-driven, meta-analytic approach to quantitatively explore and classify 18 

knowledge embedded in the naturalistic fMRI literature. Using an approach developed by Laird et al. 19 

(2015), we capitalized on the wealth and flexibility of published naturalistic paradigms and investigated 20 

recurrent patterns of brain activation reported across a wide variety of tasks and behaviors of interest. This 21 

method is based on the premise that functionally similar tasks engage spatially similar patterns of brain 22 

activity and that, by clustering activation patterns from experimental contrasts, similar of experimental 23 

paradigms can be identified. Naturalistic paradigms are uniquely rich here, due to the multitude of 24 

component processes contributing to realistic behavior that can be illuminated by modeling strategies in 25 
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data analysis. To this end, we extracted relevant information about the stimuli and task demands of these 1 

paradigms and assessed motifs in the arrangement of this information, with respect the data-driven 2 

clustering analysis, to determine which paradigm aspects elicited activation patterns that subserve common 3 

and dissociable cognitive processes. Although naturalistic paradigms vary greatly and are designed to probe 4 

a wide range of psychological constructs and behaviors, we hypothesized that complex, multisensory 5 

processing are associated with a set of core neural networks engaged by similar content domains and task 6 

demands. The objectives of this study were to first elucidate core brain networks engaged by the myriad 7 

processes that underlie behavior during naturalistic fMRI paradigms and, then to characterize how 8 

information processing is potentially distributed between these networks to facilitate complex behaviors in 9 

realistic settings.  10 

Methods 11 

Naturalistic fMRI Paradigms 12 

Here, “naturalistic” paradigms were operationally defined as tasks employing any stimulus which 13 

demanded continuous, real-time integration of dynamic streams of information. This definition excludes 14 

any paradigms based on still-frame stimulus presentation, which intrinsically impose static constraints that 15 

are rarely present in the world and, thus, limit ecological their validity. Importantly, a key distinction of 16 

naturalistic tasks is that stimuli are continuously presented across the duration of the task, while other tasks 17 

in the literature rely on repeated trials of stimuli. As real-world behavior contextually involves all sensory 18 

modalities, we included naturalistic tasks in which such stimuli were presented via the visual, auditory, or 19 

tactile modalities or any combination thereof. Visual naturalistic tasks require either a real-time interaction 20 

with visual stimuli, in the case of video games and virtual reality, or the continuous integration of real-time 21 

information, such as during film viewing. Auditory tasks, including the perception of music and spoken 22 

stories, similarly require the continuous integration of, and often interaction with, real-time information. 23 

Our operational definition also included tactile naturalistic paradigms, which involve the manipulation and 24 

recognition of physical objects. During these tactile tasks, participants gather and integrate sensory 25 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/165951doi: bioRxiv preprint first posted online Jul. 19, 2017; 

http://dx.doi.org/10.1101/165951
http://creativecommons.org/licenses/by-nc/4.0/


	

	 Bottenhorn	et	al.	–	Page	5	

information to create a mental representation of the object and, if necessary, form an appropriate behavioral 1 

response. Lastly, we note the inclusion of multisensory tasks. As in life, many naturalistic experiments 2 

simultaneously present auditory, visual, and tactile information, and such tasks demand the real-time 3 

integration of information from multiple sensory modalities.  4 

Literature Search, Filtering, and Annotation 5 

An extensive literature search was performed to amass a corpus of naturalistic fMRI studies that were 6 

published since the emergence of fMRI in 1992. To identify published naturalistic fMRI studies, PubMed 7 

searches were carried out by focusing on stimulus types common to naturalistic research (e.g., video games, 8 

film, virtual reality). The first search string, performed on January 13, 2016, used the following string to 9 

identify relevant studies by their titles and abstracts: ((“naturalistic”[Title/Abstract] OR “real-10 

world”[Title/Abstract] OR "ecologically valid"[Title/Abstract] OR "true-to-life"[Title/Abstract] OR 11 

"realistic"[Title/Abstract] OR "video game"[Title/Abstract] OR “film”[Title/Abstract] OR 12 

“movie”[Title/Abstract] OR "virtual reality"[Title/Abstract]) AND ("fMRI"[Title/Abstract] OR "functional 13 

magnetic resonance imaging"[Title/Abstract]) AND (“Humans”[MeSH])). This search yielded 679 studies 14 

(January 2016), some of which utilized stimulus types that we had not included in our initial query, 15 

including music, speech, and tactile objects. To identify any studies using these tasks that may not have 16 

been returned by  initial query, a second search was performed on January 20, 2016 using the string 17 

[("music"[Title/Abstract] OR "speech"[Title/Abstract] OR "spoken"[Title/Abstract] OR "tactile 18 

object"[Title/Abstract]) AND (“naturalistic”[Title/Abstract] OR “real-world”[Title/Abstract] OR 19 

"ecologically valid"[Title/Abstract] OR "true-to-life"[Title/Abstract] OR "realistic"[Title/Abstract]) AND 20 

("fMRI"[Title/Abstract] OR "functional magnetic resonance imaging"[Title/Abstract]) AND 21 

"Humans"[MeSH]]. This secondary search returned 48 studies, some of which were included in the results 22 

of the first search. The two sets of search results were pooled to identify 754 unique studies, which were 23 

then reviewed and filtered to identify studies utilizing naturalistic paradigms as defined above.  24 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/165951doi: bioRxiv preprint first posted online Jul. 19, 2017; 

http://dx.doi.org/10.1101/165951
http://creativecommons.org/licenses/by-nc/4.0/


	

	 Bottenhorn	et	al.	–	Page	6	

Each of 754 candidate studies was first screened and then reviewed according to the following exclusion 1 

criteria (Figure 1; Moher, Liberati, Tetzlaff, Altman, & Altman, 2009). The screening process examined 2 

the Abstracts and Methods of each paper to exclude non-naturalistic tasks in which static, timed blocks of 3 

stimuli were presented with a well-defined window for participant response. In this step, we also excluded 4 

studies that assessed training or learning across multiple trials or across some period of practice (e.g., pre 5 

vs. post contrasts), as our focus was on neural underpinnings of the tasks themselves and not training-6 

induced changes thereof. In determining eligibility of each paper, studies of participants under the age of 7 

18 or of participants with any history of neurological or psychiatric diagnosis were excluded. After this 8 

study-level examination, we then inspected each reported experimental contrast within each paper. In this 9 

context, “experiment” represents each statistical parametric image presented, as the result of some 10 

functional image data analysis, such as contrasting experimental conditions (Fox et al., 2005). Experiments 11 

from analyses that used an a priori region(s) of interest to investigate activation or functional connectivity 12 

were omitted permitting identification of whole-brain neural networks. We also excluded contrasts 13 

modeling ANOVA interaction-specific activations, due to the inherent complexity of such effects. In this 14 

step, any studies/contrasts that did not meet the minimum requirements for coordinate-based meta-analysis, 15 

reporting the brain activation locations in a three-dimensional, standardized coordinate space, were 16 

discarded.  17 
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Figure 1. PRISMA flow chart of inclusion and exclusion criteria. Each of the experiments returned by 1 

the PubMed queries were screened according to this schematic. 2 

During inspection of each contrast, one study associate (KLB) manually annotated each experiment with 3 

terms that described the experimental design with respect to stimulus type utilized, sensory modality 4 

engaged, and the task nature. These terms described the salient aspects of the stimuli and behaviors 5 

associated with each individual experimental contrast from the corpus of naturalistic paradigms, annotating 6 

the particular aspects of the tasks highlighted by each modeled experimental contrast, and not the intended 7 

psychological construct interrogated by the original report. These manual annotations were then 8 

independently reviewed and confirmed by a second study associate (JSF) to assure consistency and 9 

accuracy. Any disagreements or inconsistencies between KLB and JSF were resolved following a final 10 

conversation between the two associates. 11 

Experimental Design and Statistical Analysis  12 

Modeled Activation Maps 13 

Following the identification of relevant papers and experiments/contrasts, reported brain activation 14 

coordinates were extracted. All Talairach atlas-based coordinates (Talairach and Tournoux, 1988) were 15 

converted to Montreal Neurological Institute (MNI) space (Collins et al., 1994; Evans et al., 1993) using 16 

the tal2icbm transformation (Lancaster et al., 2007; Laird et al., 2010). Probabilistic modeled activation 17 

(MA) maps were created from the foci reported in each individual contrast by modeling a spherical 18 

Gaussian blur around each focus with FWHM determined by the number of subjects in each experiment in 19 

order to represent the uncertainty induced by the inherent variability from individual differences and 20 

between-lab differences (Eickhoff et al., 2009). These MA maps were concatenated into an array of n 21 

experiments by p voxels, which was then analyzed for pairwise correlations that reflected the degree of 22 

spatial similarity between the MA maps from each of the n experiment and those of every other experiment. 23 

The resultant n X n correlation matrix represented the similarity of spatial topography of MA maps between 24 

every possible pair of experiments. 25 
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K-Means Clustering Analysis 1 

Individual naturalistic experiments (n MA maps) were then classified into K groups based on their spatial 2 

topography similarities. The k-means clustering procedure was performed in Matlab (Mathworks, R2013b 3 

for Linux), which grouped experiments by pairwise similarity, calculating correlation distance by one minus 4 

the correlation between MA maps (from the aforementioned correlation matrix) and finding the “best” 5 

grouping by minimizing the sum of correlation distances within each cluster (code available at 6 

https://github.com/62442katieb/meta-analytic-kmeans). This approach begins by choosing K arbitrary 7 

maps as representative centroids for each of K clusters and assigning experiments to each cluster based on 8 

the closest (most similar) centroid. This process continued iteratively until a stable solution was reached.  9 

Solutions were investigated for a range of K = 2 – 10 clusters. Once the clustering analysis was complete 10 

for all K, we compared each solution to the neighboring solutions and assessed for improvement across 11 

parcellation schemes using four metrics describing cluster separation and stability (Bzdok et al., 2015; 12 

Eickhoff et al., 2016a). This allowed us to objectively select the number of clusters that most optimally 13 

divided the data set. The first metric, average cluster silhouette across clustering solutions, assessed the 14 

separation between clusters and described whether clusters were distinct or overlapping. A higher silhouette 15 

value indicates that greater separation is ideal and that each experiment fits well into its cluster, with lower 16 

misclassification likelihood of fringe experiments into neighboring clusters. Stability is indicated by a 17 

relatively minimal change in silhouette from one solution (K) to the next (K + 1), indicated by the positive 18 

derivative of the silhouette score closest to zero, with greatest stability evidenced by the smallest change 19 

between two points. Second, we considered the consistency of experiment assignment by comparing the 20 

ratio of the minimum number of experiments consistently assigned to a cluster relative to the mean number 21 

of experiments consistently assigned to that cluster. In this case, only ratios above 0.5, in which at least half 22 

of the experiments were consistently assigned, were considered viable solutions. Third, the variation of 23 

information was quantified, which compared the entropy of clusters with the mutual information shared 24 

between them for each solution K and its K – 1 and K + 1 neighbors. A large decrease in variation of 25 
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information from K – 1 to K and increase from K to K + 1, a local minimum in the plot of variation of 1 

information across K, indicated a decrease in overlap between solutions and, thus, stability of solution K. 2 

In this case, “large” is defined, too, in relative terms, with the largest decrease indicating greatest stability 3 

of the solutions considered. Finally, we computed a hierarchy index for each solution, which assessed how 4 

clusters split from the K – 1 to K solution to form the additional cluster. A lower hierarchy index indicated 5 

that clusters present in K stemmed from fewer of the clusters present in K – 1, another indication of stability 6 

in groupings demonstrated by a local minimum across values of K. An optimal clustering solution is one 7 

that demonstrated minimal overlap between clusters (i.e., high silhouette value), while exhibiting relative 8 

stability in comparison with the previous and next solutions (i.e., consistency > 0.5, a local minimum in 9 

variation of information, and lower hierarchy index than previous). 10 

Meta-Analytic Groupings 11 

From the identified optimal clustering solution, we probed the underlying neural topography associated 12 

with each of the K groups of experiments (Laird et al., 2015). To this end, the ALE meta-analysis algorithm 13 

(Turkeltaub et al., 2002; Laird et al., 2005) was applied to generate a map of convergent activation for each 14 

grouping of experiments with similar topography. The ALE algorithm includes a weighting of the number 15 

of subjects when computing these maps of convergent activation and accounts for uncertainty associated 16 

with individual, template, and registration differences between and across experiments (Eickhoff et al., 17 

2009; Turkeltaub et al., 2012). The union of these probability distributions was used to calculate ALE 18 

scores, a quantitative assessment of convergence between brain activation across different experiments, 19 

which was compared against 1000 permutations of a null distribution of random spatial arrangements 20 

(Eickhoff et al., 2012). These ALE values for each meta-analytic grouping of experiments were thresholded 21 

at P < 0.01 (cluster-level corrected for family-wise error) with a voxel-level, cluster-forming threshold of 22 

P < 0.001 (Eickhoff et al., 2016b; Woo et al., 2014). The resultant ALE maps thus reflected the convergent 23 

activation patterns within each of the K clusters. The experimental K clusters are hereafter referred to as 24 

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/165951doi: bioRxiv preprint first posted online Jul. 19, 2017; 

http://dx.doi.org/10.1101/165951
http://creativecommons.org/licenses/by-nc/4.0/


	

	 Bottenhorn	et	al.	–	Page	11	

meta-analytic groupings (MAGs), representing meta-analytic groups of experiments demonstrating similar 1 

activation patterns. 2 

Functional Decoding 3 

Once we elucidated convergent activation patterns within MAGs, we sought to gain insight into what 4 

aspects of the naturalistic paradigms were most frequently associated with each MAG via functional 5 

decoding. Functional decoding is a quantitative, data-driven method by which researchers can infer which 6 

mental processes are related to activation in a specific brain region (or set of brain regions) across published 7 

fMRI studies. We chose to use two complementary functional decoding approaches, one based on our 8 

study-specific, subjective manual annotations mentioned above, and another based on the objective, 9 

automated annotations provided by the Neurosynth database for over 11,000 functional neuroimaging 10 

studies (Yarkoni et al., 2011; Neurosynth.org). First, the manually annotated terms associated with each 11 

experiment were grouped into the MAGs identified above and were assessed by frequency of occurrence 12 

in each MAG. The distribution of stimulus modality, stimulus type, and salient terms across MAGs allowed 13 

us to evaluate the relationship between activation patterns and the aspects of naturalistic paradigms that 14 

elicited them. Second, we included an automated, data-driven annotation method using Neurosynth, which 15 

includes automatically extracted terms that occur at a high frequency in the abstract of each archived study. 16 

To functionally decode our MAGs, we compared the MAGs’ activation patterns with those reported across 17 

published neuroimaging papers in the Neurosynth database. To this end, we uploaded each ALE map to 18 

NeuroVault, a web-based repository for 3D statistical neuroimaging maps that directly interfaces with 19 

Neurosynth (Gorgolewski et al., 2015; NeuroVault.org,). NeuroVault enables “functional decoding” by 20 

correlating unthresholded uploaded maps with term-specific meta-analytic maps extracted from 21 

Neurosynth’s database of published functional neuroimaging studies. The Neurosynth functional decoding 22 

results were exported as a set of terms and correlation values representing how well the spatial distribution 23 

of activation associated with each term in the database matched the activation pattern of the uploaded map.  24 
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Both sets of terms (i.e., obtained via manual and automated approaches) were evaluated to assess the 1 

specific aspects of naturalistic paradigms associated with each MAG. The Neurosynth terms representing 2 

broad behavioral aspects across fMRI studies that elicit similar brain activation profiles provides both an 3 

unbiased description of the experiments engaging each MAG, as well as a comparison of our corpus of 4 

studies with the broader literature. On the other hand, manual annotation provides more concise, accurate 5 

description of the paradigms, though it is predisposed to the subjective bias of human annotation. The 6 

results of this two-pronged functional decoding approach were designed to describe the processes that 7 

engage brain networks similar to each MAG and how these processes may be similar or different in 8 

naturalistic fMRI studies compared to the broader functional neuroimaging literature. The distribution of 9 

stimulus modalities and types across MAGs was assessed, too. Together, the functional decoding results 10 

and distributions of different stimuli were interpreted to provide insight into how information processing is 11 

functionally segregated across cooperating neural systems during naturalistic tasks. 12 

Results 13 

The literature search yielded a combined set of 110 studies that reported coordinates of brain activation 14 

from naturalistic fMRI tasks among healthy adults (Figure 1, PubMed IDs available in Supplementary Table 15 

1). The final data set included activation foci from 376 experimental contrasts (N = 1,817 subjects) derived 16 

from tasks using a variety of stimulus types and sensory modalities. Across our corpus of naturalistic fMRI 17 

experiments, approximately 55% assessed a single stimulus modality, including 40% visual stimuli, 13% 18 

auditory, and 1% tactile.  19 

Stimulus Modality Number of Experiments 
Auditory 50 (13%) 
Audiovisual 154 (41%) 
Visual 150 (40%) 
Visual + tactile (pain) 9 (2%) 
Visual + tactile 5 (1%) 
Tactile 4 (1%) 

Table 1. Distribution of stimulus modalities across the naturalistic corpus. Paradigms engaged auditory, 20 

visual, and tactile sensory modalities, both separately and in combination. 21 
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Conversely, 45% of experiments utilized multisensory stimuli, including 41% that employed audiovisual 1 

stimuli, 2% in which a visual stimulus was paired with painful, tactile stimuli, and 1% pairing visual and 2 

non-painful tactile stimuli (Table 1). Of the visual experiments, 69% involved a motor response, as did 25% 3 

of the audiovisual experiments, ranging from a button press to joystick and object manipulation. The 4 

stimulus types most frequently used across the included experiments were films (45%), virtual reality 5 

(32%), speech (9%), and music (6%) (Table 2).  6 

Stimulus Type 
Number of 

Experiments 

Film 169 (45%) 
Virtual Reality 121 (32%) 
Speech 32 (9%) 
Music 21 (6%) 
Video Game 13 (4%) 
3D image 6 (2%) 
Tactile 6 (2%) 
Picture 4 (1%) 
Sounds 1 (<1%) 

Table 2. Distribution of stimulus types across the naturalistic corpus. Within each stimulus modality, 7 

multiple types of experimental stimuli were included across the data set. 8 

 9 

K-Means Clustering Solutions 10 

MA maps were created for each contrast, and then clustered to identify groups with similar activation 11 

topographies. For completeness, the k-means clustering solutions for K = 2 – 10 clusters were quantitatively 12 

evaluated across four metrics to identify an optimal solution (Figure 2). When considering the average 13 

silhouette metric (Fig. 2A), values generally increased as K increased and the smallest increase was 14 

observed between K = 6 to K = 7, indicating little additional separation between clusters gained by moving 15 

from 6 to 7 clusters. With respect to the consistency of assigned experiments metric (Fig. 2B), each of the 16 

solutions K = 2 – 10 met the stability requirement whereby the minimum number of experiments included 17 

in any iteration of the solution was at least 50% of the mean number of experiments included across 18 
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iterations. The variation of information metric (Fig. 2C), suggested the stability of a 6-cluster solutions as 1 

parameter value decreases were observed when moving from K = 5 to K = 6, combined with parameter 2 

increases when moving from K = 6 to K = 7, indicating that a 6-cluster solution demonstrates relative 3 

stability. The hierarchy index metric (Fig.2D) further corroborated a 6-cluster solution, as a local minimum 4 

as observed at K = 6. Due to agreement across these metrics, we chose to proceed with the K = 6 solution.  5 

 6 

 7 

Figure 2. Metrics computed for K = 2 – 10 clustering solutions. (A) The average cluster silhouette for each 8 

solution K from 2 to 10 clusters, showing the distribution of average silhouette values at each value of K, 9 

resampled 100 times leaving one random experiment out each time. (B) Consistency in experiments 10 

assignment to clusters, plotting the minimum consistently assigned clusters next to the mean of consistently 11 

assigned clusters. (C) The change in variation of information, a distance metric, from the K – 1 to K and 12 

from K to K + 1. (D) The hierarchy index for each of K clustering solutions, which provides information 13 

about how clusters in the K solution stemmed from clusters in the K – 1 solution. 14 

 15 

Meta-Analytic Groupings 16 
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The optimal clustering solution yielded six meta-analytic groupings (MAGs) of experiments in our corpus, 1 

suggesting similarities in brain activation across this sample of the naturalistic literature coalesce into six 2 

distinct patterns. The number of experiments that were clustered into each MAG ranged from 50 to 83 3 

experiments (mean = 62.67; SD= 12.46). ALE maps of the six MAGs were generated and demonstrated 4 

little overlap in activation patterns, suggesting distinct patterns of recurrent activation across our set of 5 

naturalistic experiments (Figure 3, Supplementary Table 2). Whereas some of the MAGs exhibited focal 6 

patterns of convergent activation, restricted to a single or neighboring gyri (e.g., MAG 1 and 5), others 7 

presented with distributed convergence across multiple lobes (e.g., MAG 2 and 6). Most of the resulting 8 

MAGs were restricted to cortical activation patterns, although MAG 3 exhibited convergent activation in 9 

subcortical and brainstem regions (results available on NeuroVault at 10 

https://neurovault.org/collections/3179/).  11 

MAG 1 included convergent activation in the bilateral posterior temporal areas, including portions of the 12 

inferior, middle, and superior temporal gyri, extending into the inferior parietal lobule and into the middle 13 

occipital gyrus, as well as in the left supramarginal gyrus, right precentral and middle frontal gyri, and in 14 

the bilateral precuneus. MAG 2 exhibited convergence in left inferior frontal gyrus, left precentral gyrus, 15 

anterior and posterior aspects of the middle temporal gyrus, precuneus, in addition to both the left and right 16 

superior frontal gyri. MAG 3 demonstrated a largely symmetric convergence pattern across multiple 17 

subcortical structures including bilateral amygdalae, putamen, thalamus, parahippocampal gyrus, and 18 

periaqueductal gray, with cortical clusters observed in the left inferior frontal sulcus and inferior frontal 19 

gyrus, bilateral anterior cingulate cortex, and bilateral fusiform gyri. MAG 4 exhibited convergent 20 

activation in bilateral medial temporal lobes, parahippocampal regions, bilateral precuneus, retrospenial 21 

posterior cingulate cortex, occipital regions including the lingual gyrus, right calcarine sulcus, and cuneus, 22 

in addition to a small, bilateral portion of the middle frontal gyri. MAG 5 showed convergence in the 23 

bilateral superior temporal gyri. MAG 6 demonstrated convergence in the bilateral superior frontal sulci, 24 
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intraparietal sulci, and superior parietal lobules as well as convergence in higher-order visual processing 1 

areas in the middle occipital and lingual gyri. 2 

 3 

Figure 3. Convergent activation patterns of MAGs from the naturalistic corpus. ALE meta-analysis of 4 

experiments in each MAG yielded six patterns of convergent activation. 5 

Stimulus Distribution Across MAGs 6 

Each stimulus modality was represented in multiple MAGs, but modalities were not evenly distributed 7 

across MAGs (Figure 4A). Experiments utilizing audiovisual tasks were somewhat uniformly distributed 8 

across the MAGs, with a slightly higher proportion of audiovisual tasks in MAGs 1, 3, and 5. In contrast, 9 

more than half of the experiments using auditory tasks were grouped into MAGs 2 and 6. Notably, more 10 

experiments based on auditory and audiovisual stimuli were clustered into MAG 5 than any other MAG. 11 

Experiments in which participants experienced physical pain were not present in MAGs 1, 5, and 6, but 12 

distributed nearly evenly among MAGs 2 through 4, with a slightly higher portion in MAG 3. More than 13 
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half of experiments that used tactile stimuli were grouped into MAG 5 and 6. Visual experiments were 1 

more evenly distributed across clusters, though there was a markedly smaller proportion in MAG 5 than 2 

any other MAG. One stimulus type, “Sounds”, was represented only once across the corpus and was, thus, 3 

excluded from Figure 4. The complete distribution of stimulus modalities across MAGs is provided in 4 

Supplementary Table 3.  5 

As with stimulus modality, most stimulus types showed unequal, but not necessarily selective, distribution 6 

across MAGs (Figure 4B). Film-based experiments were uniformly distributed across MAGs and tasks 7 

utilizing spoken stimuli were more frequently grouped into MAGs 2 and 5. Again, auditory stimuli were 8 

highly associated with MAG 5, as more than 50% of music experiments and 20% of speech experiments 9 

were clustered into MAG 5. Experiments that required subjects to play video games were most often 10 

grouped into MAGs 4, and 6. Experimental contrasts which included a condition in which participants 11 

received tactile stimulation or manipulated tactile objects, were most prevalent in MAGs 3 and 6. A detailed 12 

distribution of stimulus types across MAGs is shown in Supplementary Table 4. 13 
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 1 

Figure 4. Distribution of stimulus modalities and types across MAGs. (A) The presence of each sensory 2 

modality across the corpus that is associated with each MAG. (B) The proportion of each stimulus type 3 

present within the corpus that is associated with each MAG. These percentages represent the proportion 4 

modality or stimulus type present in each MAG, compared to the total count of that modality or stimulus 5 

type across all MAGs. 6 

Functional Decoding  7 

Two approaches for functionally decoding each MAG, manual and automated annotations, were performed 8 

to develop a functional interpretation of each MAGs’ association with aspects of naturalistic paradigms.  9 

Manual Annotations 10 

Our manual annotations utilized a list of 26 corpus-specific metadata terms, which captured salient features 11 

of the naturalistic design, rather than the psychological constructs assumed to be involved. Table 4 displays 12 
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each of these terms and their frequency of occurrence across MAGs and across the entire corpus (Column 1 

= “Total”), highlighting which terms described the largest number of experiments (e.g., “navigation”, 2 

“visual features”, “emotional film”, “attention”), as well as those that accounted for a minimal number of 3 

experiments (e.g., “violence”, “tactile”, “pain”). Values in Table 4 indicate the percent of experiments 4 

labeled with each term, or the base-rate of each term throughout the data set, keeping in mind that each 5 

experiment was labeled with only one or two terms. Once the experiments were clustered into six MAGs, 6 

we evaluated the relative contributions of each term per MAG, controlling for base-rate by dividing each 7 

term’s per-MAG count by that term’s total count across the corpus (Table 4). We assessed, too, the ability 8 

of each term to predict whether an experiment labeled with that term will be clustered into each MAG, 9 

(P(MAG|term) or “forward inference”, and the ability of belongingness to each MAG to predict whether 10 

an experiment will be labeled with a particular term, (P(term|MAG)) or “reverse inference”. These 11 

outcomes provide the association of each term with each MAG (Table 4). Some of the terms in the manual 12 

annotation analysis corresponded to stimulus types in Figure 4B (e.g., per-MAG distribution for “music” 13 

and “video game”). However, many of the manually derived terms highlighted experimental aspects that 14 

reflect the unique and salient features of the naturalistic corpus (e.g., “anthropomorphic”, “violence”) and 15 

are not included in standard neuroimaging paradigm ontologies such as BrainMap (Fox et al., 2005) or 16 

CogPO (Turner and Laird, 2012). 17 

Automated Neurosynth Annotations 18 

To complement the manual annotation analysis, we used Neurosynth’s automated annotations, which 19 

describes experiments that engage each MAG based on published neuroimaging data, allowing comparison 20 

of our corpus with the broader literature. MAG results were decoded in Neurosynth, yielding correlation 21 

values indicating the similarity of the input map (i.e., each MAG’s ALE map) and maps associated with 22 

each term from the Neurosynth database. To facilitate interpretation, the top ten terms with the highest 23 

correlation values for each MAG are presented (Table 5). Terms that were near-duplicates of terms already 24 

included in the list were removed, such as “emotion” and “emotions” if “emotional” was higher on the list. 25 
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Non-content terms (e.g. “abstract”, “reliable”) and terms that described brain regions, such as “insula” or 1 

“mt”, were also excluded2 
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Term 
   Frequency per MAG 
Total   MAG 1   MAG 2   MAG 3   MAG 4   MAG 5   MAG 6 

anthropomorphic 21 3%  10† 48%  0 0%  2 10%  2 10%  4 19%  3 14% 
attention 50 7%  18*† 36%  3 6%  2 4%  8 16%  10* 20%  9 18% 
auditory features 17 3%  0 0%  1 6%  1 6%  2 12%  12*† 71%  1 6% 
congruence 22 3%  7 32%  4 18%  0 0%  2 9%  3 14%  6 27% 
emotional film 61 9%  17* 28%  8 13%  17*† 28%  4 7%  11* 18%  4† 7% 
encoding 24 4%  1 4%  3 13%  1 4%  6 25%  0 0%  13*† 54% 
erotic 15 2%  1 7%  0 0%  8† 53%  1 7%  0 0%  5 33% 
faces 21 3%  5 24%  2 10%  2 10%  2 10%  8† 38%  2 10% 
imagination 23 3%  4 17%  6 26%  2 9%  2 9%  4 17%  5 22% 
inference 11 2%  4 36%  6† 55%  0 0%  1 9%  0 0%  0 0% 
language 47 7%  9 19%  11* 23%  3 6%  4 9%  14*† 30%  6 13% 
movement 14 2%  4 29%  0 0%  1 7%  2 14%  2 14%  5 36% 
music 21 3%  2 10%  3 14%  3 14%  1 5%  11*† 52%  1 5% 
narrative 30 4%  5 17%  5 17%  1 3%  4 13%  11*† 37%  4 13% 
navigation 81 12%  8* 10%  7 9%  10* 12%  26*† 32%  2 2%  28* 35% 
negative valence 27 4%  8 30%  3 11%  9 33%  1 4%  4 15%  2 7% 
pain 9 1%  0 0%  2 22%  4† 44%  3 33%  0 0%  0 0% 
positive valence 11 2%  2 18%  4 36%  2 18%  2 18%  1 9%  0 0% 
recognition 12 2%  0 0%  4 33%  2 17%  1 8%  1 8%  4 33% 
retrieval 23 3%  1 4%  5 22%  2 9%  4 17%  1 4%  10 43% 
social 26 4%  9 35%  8 31%  2 8%  3 12%  1 4%  3 12% 
spatial memory 10 1%  0 0%  2 20%  0 0%  7† 70%  0 0%  1 10% 
tactile 9 1%  0 0%  1 11%  1 11%  0 0%  3 33%  4 44% 
video game 15 2%  1 7%  2 13%  2 13%  4 27%  0 0%  6 40% 
violence 8 1%  1 13%  2 25%  2 25%  2 25%  0 0%  1 13% 
visual features 65 10%  23* 35%  4 6%  0 0%  10 15%  10* 15%  18*† 28% 

Table 4. Manual functional decoding results across meta-analytic groupings. The relative contributions of each manually-derived metadata term 1 

(e.g., term frequencies) were computed for all MAGs, controlling for the base-rate by dividing each term’s per-MAG count by that term’s total count 2 
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across the corpus. Base-rates are provided as the total count for each term. *Indicates significant forward inference at pcorrected < 0.05 and †indicates 1 

significant reverse inference at pcorrected < 0.05 (corrected for false  2 
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Functional Interpretation of MAGs 1 

The combined knowledge gained from the MAGs topography, as well as the manual and automated 2 

metadata decoding analyses provided insight into the functional interpretation of the clustering results. 3 

Overall, the terms yielded by Neurosynth decoding generally agreed with the manual annotation terms in 4 

characterizing the MAGs. Below is a summary of the six MAGs; note that reported labels do not refer to 5 

the definitive function of these regions, but rather indicate how each MAG reflects differential network 6 

contributions during naturalistic fMRI paradigms.  7 

Manual annotations indicated that MAG 1 experiments involved attention and the processing of dynamic 8 

visual features, in addition to visually-presented anthropomorphic forms and faces. Most of the stimuli in 9 

these experiments were films (Fig 4B), especially affective films. Neurosynth results largely converged 10 

with these manual annotations, as terms including “videos”, “body”, “observation”, and “visual motion” 11 

(Table 5) were associated with activations in MAG 1 regions. These annotations, together with the presence 12 

of convergent activation across regions commonly associated with higher-level visual processing, suggest 13 

that MAG 1 was associated with the Observation of Body and Biological Motion (Figure 3.1).  14 

Manual annotations indicated that MAG 2 experiments involved language processing, inference, and 15 

judgements about congruence. This MAG included relatively large proportions of the experiments using 16 

speech, video games, and tactile stimulation (Fig 3B). Neurosynth results supported the manual 17 

annotations’ indication that this MAG was associated with language processing and comprehension, as 18 

terms such as “sentence”, “comprehension”, “semantic”, and “mentalizing” (Table 5) were returned. These 19 

annotations and the presence of convergent activation in predominately left lateralized regions typically 20 

associated with higher-order cognition and language suggest that MAG 2 related to Language Processing 21 

(Figure 3.2). 22 

Manual annotations indicated that MAG 3 experiments involved human interactions or affective displays, 23 

including emotional and erotic films. Films were the predominantly used stimuli across these experiments, 24 

while most paradigms using painful stimuli were grouped into this MAG (Fig 4B). Neurosynth results 25 
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corroborated these manual annotation interpretations regarding affective, aversive, and social processing, 1 

with terms such as “emotion”, “facial expressions”, “fearful”, and “affective” (Table 5). Together, these 2 

annotations and a convergent activation pattern involving bilateral amygdalae suggest that MAG 3 was 3 

associated with Emotional Processing (Figure 3.3). 4 
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 1 
Table 5. Automated functional decoding results from Neurosynth. The top ten Neurosynth (NS) terms are provided for each MAG, along with the 2 

corresponding Pearson’s correlation coefficient (“corr”) that indicates the strength of similarity between Neurosynth maps and each MAG3 

MAG 1 MAG 2 MAG 3 MAG 4 MAG 5 MAG 6 
NS term corr. NS term corr. NS term corr. NS term corr. NS term corr. NS term corr. 
motion 0.555 comprehension 0.417 neutral 0.446 navigation 0.324 sounds 0.74 visual 0.431 
body 0.451 sentence 0.408 fearful 0.437 scenes 0.316 auditory 0.732 spatial 0.414 
static 0.441 language 0.375 facial 0.435 episodic 0.294 listening 0.711 attention 0.342 
moving 0.415 semantic 0.351 emotion 0.434 virtual 0.278 acoustic 0.675 eye movements 0.300 
viewed 0.406 linguistic 0.336 expressions 0.431 memory 0.276 speech 0.669 execution 0.299 
visual 0.403 theory mind 0.318 happy 0.404 retrieval 0.270 music 0.625 task 0.286 
visual motion 0.381 mental state 0.309 angry 0.401 episodic memory 0.258 pitch 0.612 visuospatial 0.279 
videos 0.360 mind 0.306 affective 0.397 place 0.208 spoken o.590 movements 0.274 
perception 0.359 mentalizing 0.304 facial expressions 0.395 autobiographical 0.201 tones 0.572 spatial attention 0.256 
observation 0.350 language comprehension 0.289 neutral faces 0.385 remembering 0.201 voice 0.568 hand 0.250 
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Manual annotations indicated that MAG 4 heavily represented experiments involving navigation through 1 

virtual reality environments, with spatial memory demands related to encoding unfamiliar virtual 2 

landscapes for future use. A few of these experiments required language processing, as well, and half of the 3 

experiments that used 3D images were grouped into MAG 5 (Fig. 4B). The manual annotations were 4 

reflected in the Neurosynth results, as similar patterns of activation have been associated with “navigation”, 5 

“scenes”, “memory”, and “place”. Additional related terms added depth to our characterization, expanding 6 

on the memory demands with “retrieval”, “episodic memory”, and “remembering” (Table 5). Overall, these 7 

experimental characteristics and convergent activation in medial temporal regions and along the visual 8 

processing stream suggest that MAG 5 was associated with Navigation and Spatial Memory (Figure 3.4). 9 

Manual annotations showed that MAG 5 experiments primarily involved either film or music stimuli 10 

(Figure 4B) and engaged either audiovisual or purely auditory processing (Fig. 4A). More than half of the 11 

included experiments that used music as stimuli were grouped into this MAG (Fig. 2B), with some stimuli 12 

involving an emotional quality (Table 4). Neurosynth corroborated these interpretations returning terms 13 

such as “auditory”, “sounds”, “listening”, and “speech” associated with activation of the regions in this 14 

MAG. These metadata descriptions combined with convergent activation in superior temporal regions 15 

suggest this MAG’s association with Auditory Processing (Figure 3.5). 16 

Manual annotations of MAG 6 experiments implicated tasks involving visual attentional demands and the 17 

processing of visual features, as participants engaged in video games, tactile stimulation, and virtual reality 18 

navigation (Figure 4B, Table 4). Stimuli with high visuospatial demands (i.e. video games, virtual reality, 19 

pictures, were represented more by this MAG than any other, while stimuli with low visuospatial demands 20 

(i.e. music, speech) were represented the least in this MAG. Some experiments involved memory encoding, 21 

and visual processing. Neurosynth supported this characterization returning terms including “visual,” 22 

“attention”, “eye movements”, “saccades”, and “spatial attention” associated with activation of the regions 23 

in this MAG (Table 5). These annotations and convergent activation in regions resembling the dorsal 24 
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attention network and areas of higher level visual processing (e.g., superior frontal and parietal regions, 1 

extrastriate cortex) suggest this MAG’s association with Visuospatial Attention (Figure 3.6). 2 

Discussion 3 

To characterize a core set of brain networks engaged in more ecologically valid neuroimaging designs, we 4 

employed a data-driven approach that meta-analytically grouped published naturalistic fMRI results 5 

according to their spatial topographies. Objective metrics suggested that a solution of K = 6 clusters 6 

provided the most stable and disparate grouping of experiments across the naturalistic fMRI literature, and 7 

ALE meta-analysis delineated convergent activation across spatially distinct brain regions for each meta-8 

analytic grouping (MAG) of experiments. We then considered how such networks subdivide information 9 

processing by assessing the characteristics of the constituent experiments from each MAG. Utilizing both 10 

manual and automated functional decoding approaches, enhanced interpretations of the mental processes 11 

associated with specific constellations of brain regions were gleaned such that the outcomes of the two 12 

approaches generally agreed, with differences highlighting domain-specific and domain-general processes 13 

associated with naturalistic paradigms.  14 

Distributed Processing for Complex Functions 15 

Though the six identified MAGs are spatially distinct and appear to correspond with dissociable mental 16 

processes, most of the included naturalistic tasks that reported more than one statistical contrast recruited 17 

more than one MAG (66 of 86). This is consistent with functional segregation and the flexible nature of the 18 

naturalistic design, demonstrating that the manipulation of different contrasts can identify distinct networks 19 

that likely cooperate to successfully perform a complex task. Further indicative of coordinated interactions 20 

and distributed processing, each MAG included experiments that utilized different task modalities and task 21 

types. Overwhelmingly, the identified MAGs and the functional characterizations thereof support the notion 22 

that complex behaviors are facilitated by coordinated interactions between several large-scale sensory, 23 

attentional, and domain-specific networks, a position increasingly endorsed in neuroimaging endeavors 24 
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(Barrett and Satpute, 2013; Lindquist et al., 2012; Mišić and Sporns, 2016; Spreng et al., 2013). The 1 

characterization of identified MAGs from aspects of the naturalistic paradigms that elicit them suggest an 2 

information processing model of cooperating systems (Figure 5) for sensory input (MAGs 1 and 5), 3 

attentional control (MAG 6), and domain-specific processing (MAGs 2, 3, and 4), into and from which 4 

information is segregated and integrated to enable complex behaviors (e.g., language, emotion, spatial 5 

navigation). Output relevant to the corresponding input would be relegated by motor planning and execution 6 

systems, which are notable absent from the characterization of MAGs presented here, as experiments 7 

requiring a motor response were evenly distributed across MAGs, rather than clustered together. 8 

MAGs 1 and 5 primarily represent the perceptual processing streams of incoming auditory and visual 9 

information, and likely cooperate to process audiovisual information. Functional decoding suggests that 10 

MAG 1 is involved in viewing faces and anthropomorphic figures, which is consistent with previous 11 

research showing that posterior temporal and temporo-occipital regions corresponding with area V5/MT 12 

are associated with the perception of movement, specifically biological movement (Cohen Kadosh et al., 13 

2010; Pelphrey et al., 2005, 2004; Puce et al., 1998; Wheaton et al., 2004). Similarly, MAG 5 is associated 14 

with listening to music and speech, as well as perceiving pitch and tone, stretching across primary auditory 15 

cortex and into regions of higher auditory processing (Gray et al., 2009; Türe et al., 1999). Per functional 16 

decoding of MAG 6 of both manual and automated annotations, MAG 6 is associated with visuospatial 17 

attention. This functional characterization is also supported by corresponding fronto-parietal activations 18 

that are often associated with attending to visual stimuli (Braga et al., 2016; Puschmann et al., 2016). MAGs 19 

1 and 5 represent the perceptual processing streams of audiovisual information.  20 
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 1 

Figure 5. Complex systems for dynamical information processing. The identified MAGs present a 2 

framework of component systems that interact to enable complex information processing needed for 3 

naturalistic behavior, including necessary input systems, as well as systems for modality-specific (indicated 4 

by dashed line) visuospatial attentional gating of irrelevant information and domain-specific processing for 5 

language-, emotion-, and navigation-related tasks 6 

Information processing depends on input from perceptual systems, filtered by attentional gating, but 7 

proceeds in a functionally-segregated manner, seen in domain-specific MAGs for linguistic, emotional, and 8 

spatial processing. When considering language processing, there is necessary input to primary auditory 9 

areas (MAG 5), that is further processed by higher-level language areas that facilitate speech perception 10 

and comprehension (MAG 2). More than a third of contrasts from experiments that utilized speech-based 11 

paradigms contributed to the convergent activation pattern of MAG 2, which was linked by both functional 12 

decoding techniques to language-related processes. Furthermore, the regions of MAG 2 resembles a neural 13 

“language network” (Friederici and Gierhan, 2013; Heim et al., 2003; Price, 2010; Saur et al., 2010), 14 
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including some regions associated with orofacial articulation (lip, tongue, and jaw movements) and motor 1 

planning (SMA, pre-SMA) that allow the motor components of speech. By presenting language in a context 2 

that is more representative of how we process language in everyday life, such as through the use of spoken 3 

fictional narratives (AbdulSabur et al., 2014; Wallentin et al., 2011; Xu et al., 2005a) or scene descriptions 4 

(Summerfield et al., 2010), naturalistic fMRI paradigms allow researchers to explore the multiple neural 5 

networks at work in performing the cooperating processes that facilitate language processing. Similarly, 6 

emotional processing (MAG 3) often necessitates audiovisual input (MAGs 1 and 5) and necessitates 7 

attention (MAG 6). Emotional films recruited regions across these four MAGs, suggesting a similarly 8 

diverse group of coordinated neural systems are engaged when observing affective displays. Additionally, 9 

navigation (Burgess et al., 2002; Kalpouzos et al., 2010; Wolbers et al., 2004) depends on visual input 10 

(MAG 1), effective visuospatial attentional (MAG 6), and spatial memory and processing (MAG 4). The 11 

functional characterization of MAG 4 from manual and Neurosynth decoding highlights its involvement in 12 

navigation and spatial memory, supported by studies of rats and humans with brain lesions that indicate the 13 

importance of medial temporal, hippocampal, and precuneus regions in processing visual scenes and spatial 14 

information (Bird and Burgess, 2008; Epstein, 2008; Lee et al., 2005; Sailer et al., 2000; Squire et al., 2004; 15 

Summerfield et al., 2010; Xu et al., 2005b).  16 

Finally, the characterization of MAG 6 indicates a domain-specific attentional system, as both manual and 17 

automated Neurosynth decoding highlight its involvement in visual processing in the absence of any 18 

association with other modalities. This is reflected by the distributions of stimuli across MAGs (Figure 4), 19 

which show low numbers of auditory and pain-related stimuli represented in MAG 6, while rich visual 20 

stimuli that include spatial information (i.e. video games, virtual reality, pictures) are highly represented 21 

across the experiments in MAG 6. Curiously, tactile object manipulation was highly represented in MAG 22 

6, representing the perception of spatial information in the absence of visual information (Figure 4, Table 23 

4). Together, these suggest that MAG 6 provides modality-specific attentional gating, depicted by the 24 

dashed line in Figure 5. 25 
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Limitations 1 

The present results may be limited by the k-means clustering method, which is limited by the assumptions 2 

of the algorithm and underlying topology of the data, as it is sensitive to spherical clusters and assumes the 3 

data are linearly separable. Furthermore, there is a potential for bias with this method, certain parameters 4 

are specified by the researcher beforehand. To address this potential for bias and the stability of our 5 

clustering solution, we performed duplicate clustering analyses with both linear (hierarchical clustering 6 

using Ward’s method) and nonlinear (kernel k-means and density-based spatial clustering) methods. The 7 

results of these analyses are provided in the Supplementary Material (Supplementary Figures 1 – 3) and 8 

confirmed that our choice of the k-means clustering method provided optimal separation of the data into 6 9 

clusters. Experiments in our corpus were grouped using the kmeans++ algorithm for each of K = 2 through 10 

K = 20 solutions, repeated 1000 times to ensure that each solution minimized the point-to-centroid distance, 11 

indicative of optimal clustering (Kanungo et al., 2004). Pearson’s correlation was selected as the distance 12 

metric, as recommended by Laird et al. (2015). The K = 6 solution was designated as an optimal candidate 13 

solution before assessing the convergent activation patterns of each MAG, based on the aforementioned 14 

metrics, yielding a data-driven result. These results are, of course, influenced by the choice of clustering 15 

method, and should be considered accordingly. As this was a meta-analytic effort, it is limited, too, by the 16 

initial modeling of the data. Despite this, coordinate-based meta-analyses are considered a robust method 17 

for synthesis of previously published functional neuroimaging literature (Eickhoff et al., 2012, 2009; Fox 18 

et al., 2005). Although the functional decoding based manual annotations relied on a subjective process, 19 

the results were largely confirmed by comparison with the wider body of functional neuroimaging literature 20 

facilitated by Neurosynth’s automated functional decoding. It is worth noting that the naturalistic literature 21 

is somewhat limited, with an emphasis on navigation and affective processing, and continued research and 22 

expansion of this corpus will facilitate development of a more comprehensive model of the neural networks 23 

that support realistic behavior.  24 

Summary and Future Work 25 
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In summary, this meta-analysis of naturalistic fMRI studies that apply dynamic, lifelike tasks to explore the 1 

neural correlates of behavior has shown that these paradigms engage a set of core neural networks, 2 

supporting both separate processing of different streams of information and the integration of related 3 

information to enable flexible cognition and complex behavior. We identified seven patterns of consistent 4 

activation that correspond with neural networks that are involved in sensory input, top-down attentional 5 

control, domain-specific processing, and motor planning, representing the set of behavioral processes 6 

elicited by naturalistic paradigms in our corpus. Across the corpus, tasks provided mainly visual and 7 

auditory sensory input which engaged regions across MAGs 1 and 5, while MAG 6 appeared to contribute 8 

to top-down attentional control to filter out nonessential visual and/or spatial information. Salient 9 

information can be processed by the relevant domain-specific networks, shown in MAGs 2 (language), 3 10 

(emotion), and 4 (navigation and spatial memory), informing the appropriate response. Most naturalistic 11 

tasks engaged multiple networks to process the relevant information from a stimulus and generate an 12 

appropriate response. A shift in favor of utilizing naturalistic paradigms, when possible, would greatly 13 

benefit the field, as naturalistic stimuli more closely approximate the full complement of processing 14 

necessary for realistic behavior. Due to the availability of naturalistic fMRI data from sources such as 15 

studyforrest.org, the Human Connectome Project, and the Healthy Brain Network Serial Scanning Initiative 16 

(HBNSSI), an intriguing next step in this line of work would include validating these MAGs in the primary 17 

analysis of imaging data. Exploring how multifaceted processes interact and, ultimately, contribute to 18 

behavior will allow us to better understand the brain and human behavior in the real world. In the future, 19 

studies of this sort would greatly benefit from an automated annotation process for an objective functional 20 

decoding of included papers, instead of subjective manual annotation. 21 

  22 
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Accessibility of Data and Other Materials 1 

The authors have released all code and data associated with this manuscript. The code and tabular data are 2 

available on GitHub (https://github.com/62442katieb/meta-analytic-kmeans), and the unthresholded maps 3 

of each MAG are available on NeuroVault (https://neurovault.org/collections/3179/). 4 
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