000845849 001__ 845849
000845849 005__ 20240712084550.0
000845849 0247_ $$2doi$$a10.1021/acs.inorgchem.8b01072
000845849 0247_ $$2ISSN$$a0020-1669
000845849 0247_ $$2ISSN$$a1520-510X
000845849 0247_ $$2pmid$$apmid:29767508
000845849 0247_ $$2WOS$$aWOS:000434491700058
000845849 037__ $$aFZJ-2018-03052
000845849 082__ $$a540
000845849 1001_ $$0P:(DE-Juel1)168214$$aLi, Haijian$$b0$$ufzj
000845849 245__ $$aComparison of Uranium(VI) and Thorium(IV) Silicates Synthesized via Mixed Fluxes Techniques
000845849 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2018
000845849 3367_ $$2DRIVER$$aarticle
000845849 3367_ $$2DataCite$$aOutput Types/Journal article
000845849 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1528957813_3092
000845849 3367_ $$2BibTeX$$aARTICLE
000845849 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000845849 3367_ $$00$$2EndNote$$aJournal Article
000845849 520__ $$aTwo uranium and two thorium silicates were obtained using high temperature mixed fluxes methods. K14(UO2)3Si10O30 crystallizes in the P21/c space group and contains open-branched sechser (six) single silicate chains, whereas K2(UO2)Si2O6 crystallizes in the C2/c space group and is built of unbranched achter (eight) silicate chains. The crystals of K14(UO2)3Si10O30 and K2(UO2)Si2O6 are related by increasing U/Si molar ratios, and both structures contain the same secondary building units (SBUs), [USi6] heptamers. The triangle diagram for all known A+–UO22+–SiO44– phases demonstrates the high polymerization level of silicate groups in the system, which was compared with the family of A+–UO22+–BO33–/BO45– compounds. For both thorium silicates, the transformation of K2ThSi2O7 to K2ThSi3O9 was found to be a factor of the reaction time. K2ThSi2O7 crystallizes in the C2/c space group and belongs to the Na2SiVISi2O7 structure type. Its 3D framework consists of diorthosilicate Si2O7 group and ThO6 octahedra. Noncentrosymmetric K2ThSi3O9 crystallizes in the hexagonal P63 space group and adopts mineral wadeite-type structure based upon triorthosilicate Si3O9 rings and ThO6 octahedra. The coordination environment of thorium for all existing oxo-anion compounds including B, Si/Ge, P/As, Cr/Mo/W, and S/Se/Te are summarized and analyzed. Additionally, spectroscopic properties of all novel materials have been studied.
000845849 536__ $$0G:(DE-HGF)POF3-161$$a161 - Nuclear Waste Management (POF3-161)$$cPOF3-161$$fPOF III$$x0
000845849 536__ $$0G:(DE-HGF)HGF-YIG-Energy$$aHelmholtz Young Investigators Group: Energy (HGF-YIG-Energy)$$cHGF-YIG-Energy$$x1
000845849 588__ $$aDataset connected to CrossRef
000845849 7001_ $$0P:(DE-Juel1)159378$$aKegler, Philip$$b1$$ufzj
000845849 7001_ $$0P:(DE-HGF)0$$aKlepov, Vladislav V.$$b2
000845849 7001_ $$0P:(DE-Juel1)130364$$aKlinkenberg, Martina$$b3$$ufzj
000845849 7001_ $$0P:(DE-Juel1)130324$$aBosbach, Dirk$$b4$$ufzj
000845849 7001_ $$0P:(DE-Juel1)144426$$aAlekseev, Evgeny$$b5$$eCorresponding author$$ufzj
000845849 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.8b01072$$gp. acs.inorgchem.8b01072$$n11$$p6734-6745$$tInorganic chemistry$$v57$$x1520-510X$$y2018
000845849 8564_ $$uhttps://juser.fz-juelich.de/record/845849/files/acs.inorgchem.8b01072.pdf$$yRestricted
000845849 8564_ $$uhttps://juser.fz-juelich.de/record/845849/files/acs.inorgchem.8b01072.gif?subformat=icon$$xicon$$yRestricted
000845849 8564_ $$uhttps://juser.fz-juelich.de/record/845849/files/acs.inorgchem.8b01072.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000845849 8564_ $$uhttps://juser.fz-juelich.de/record/845849/files/acs.inorgchem.8b01072.jpg?subformat=icon-180$$xicon-180$$yRestricted
000845849 8564_ $$uhttps://juser.fz-juelich.de/record/845849/files/acs.inorgchem.8b01072.jpg?subformat=icon-640$$xicon-640$$yRestricted
000845849 909CO $$ooai:juser.fz-juelich.de:845849$$pVDB
000845849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168214$$aForschungszentrum Jülich$$b0$$kFZJ
000845849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159378$$aForschungszentrum Jülich$$b1$$kFZJ
000845849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130364$$aForschungszentrum Jülich$$b3$$kFZJ
000845849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130324$$aForschungszentrum Jülich$$b4$$kFZJ
000845849 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144426$$aForschungszentrum Jülich$$b5$$kFZJ
000845849 9131_ $$0G:(DE-HGF)POF3-161$$1G:(DE-HGF)POF3-160$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lNukleare Entsorgung und Sicherheit sowie Strahlenforschung$$vNuclear Waste Management$$x0
000845849 9141_ $$y2018
000845849 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000845849 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2015
000845849 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000845849 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000845849 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000845849 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000845849 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000845849 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000845849 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000845849 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000845849 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000845849 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000845849 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000845849 920__ $$lyes
000845849 9201_ $$0I:(DE-Juel1)IEK-6-20101013$$kIEK-6$$lNukleare Entsorgung und Reaktorsicherheit$$x0
000845849 980__ $$ajournal
000845849 980__ $$aVDB
000845849 980__ $$aI:(DE-Juel1)IEK-6-20101013
000845849 980__ $$aUNRESTRICTED
000845849 981__ $$aI:(DE-Juel1)IFN-2-20101013