001     845858
005     20210129233709.0
024 7 _ |a 10.23736/S1824-4785.18.03101-1
|2 doi
024 7 _ |a pmid:29761998
|2 pmid
024 7 _ |a WOS:000445240400008
|2 WOS
037 _ _ |a FZJ-2018-03059
082 _ _ |a 570
100 1 _ |a Volz, L. J.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Functional magnetic resonance imaging in glioma patients: from clinical applications to future perspectives
260 _ _ |a Torino
|c 2018
|b Ed. Minerva Medica
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1536757340_5304
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Functional magnetic resonance imaging (fMRI) allows the non-invasive assessment of human brain activity in vivo. In glioma patients, fMRI isfrequently used to determine the individual functional anatomy of the motor and language network in a presurgical setting to optimize surgicalprocedures and prevent extensive damage to functionally eloquent areas. Novel developments based on resting-state fMRI may help to improvepresurgical planning for patients which are unable to perform structured tasks and might extend presurgical mapping to include additional functionalnetworks. Recent advances indicate a promising potential for future applications of fMRI in glioma patients which might help to identifyneoplastic tissue or predict the long-term functional outcome of individual patients
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
700 1 _ |a Kocher, M.
|0 P:(DE-Juel1)173675
|b 1
700 1 _ |a Lohmann, P.
|0 P:(DE-Juel1)145110
|b 2
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 3
700 1 _ |a Fink, G. R.
|0 P:(DE-Juel1)131720
|b 4
700 1 _ |a Galldiks, N.
|0 P:(DE-Juel1)143792
|b 5
773 _ _ |a 10.23736/S1824-4785.18.03101-1
|0 PERI:(DE-600)2083933-9
|n 3
|p 295-302
|t The quarterly journal of nuclear medicine and molecular imaging
|v 62
|y 2018
|x 0392-0208
856 4 _ |u https://juser.fz-juelich.de/record/845858/files/R39Y2018N03A0295.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/845858/files/R39Y2018N03A0295.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:845858
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)173675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)143792
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21